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Abstract—We give a polynomial time algorithm for the lossy
population recovery problem. In this problem, the goal is to
approximately learn an unknown distribution on binary strings
of length n from lossy samples: for some parameter μ each
coordinate of the sample is preserved with probability μ and
otherwise is replaced by a ‘?’. The running time and number
of samples needed for our algorithm is polynomial in n and
1/ε for each fixed μ > 0. This improves on the algorithm of
Wigderson and Yehudayoff [26] that runs in quasi-polynomial
time for any fixed μ > 0 and the polynomial time algorithm
of Dvir et al [9] which was shown to work for μ � 0.30 by
Batman et al [3]. In fact, our algorithm also works in the more
general framework of Batman et al. [3] in which there is no
a priori bound on the size of the support of the distribution.
The algorithm we analyze is implicit in previous work [9], [3];
our main contribution is to analyze the algorithm by showing
(via linear programming duality and connections to complex
analysis) that a certain matrix associated with the problem
has a robust local inverse even though its condition number
is exponentially small. A corollary of our result is the first
polynomial time algorithm for learning DNFs in the restriction
access model of Dvir et al [9].
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I. INTRODUCTION

A. Background and Our Results

The population recovery problem was introduced by Dvir

et al [9] and also studied by Wigderson and Yehudayoff [26].

To describe this basic statistical problem, we will borrow an

example from [26]:

Imagine that you are a paleontologist, who wishes

to determine the population of dinosaurs that

roamed the Earth before the hypothesized me-

teor made them extinct. Typical observations of

dinosaurs consist of finding a few teeth of one

here, a tailbone of another there, perhaps with

some more luck a skull and several vertebrae of

a third, and rarely a near complete skeleton of a

fourth....Using these fragments, you are supposed

to figure out the population of dinosaurs, namely

a complete description of (say) the bone skeleton

of each species and the fraction of each species

occupied in the entire dinosaur population.

To make this precise, suppose there is an unknown dis-

tribution π over binary strings of length n. We are given

samples from the following model:

• Choose a string a according to π
• Replace each coordinate with a “?” independently with

probability 1− μ

The goal is to reconstruct the distribution up to an additive

error ε > 0. We would like to output a set of strings S
and for each string a in S, an estimate π̃(a) of π(a) with

the requirement that each of these estimates is within ε of

π(a), and for every string a �∈ S, π(a) must be at most ε.

This formulation of the problem is adapted from [3]; in the

original version in [9] the support size of the distribution

(which we will denote by k) is also a parameter.
We remark that the maximum likelihood estimator can

be computed efficiently using a convex program [2]. Yet

the challenge is in showing that few samples are needed

information theoretically. We will see another instance of

this type of issue in our paper: our approach is based on the

notion of a ‘robust local inverse’ (defined later) [9], which

is easy to compute and the challenge is in showing that a

good robust local inverse exists for any fixed μ > 0.
Dvir et al [9] gave a polynomial time algorithm for lossy

population recovery for any μ � 0.365; their analysis was

improved by Batman, et al. [3] who showed that the same

algorithm works for any μ > 1− 1/
√
2 ≈ 0.30. Wigderson

and Yehudayoff [26] gave an alternate approach based on

a method termed “partial identification” that runs in time

quasi-polynomially in the support size k for any fixed μ >
0. Interestingly, Wigderson and Yehudayoff [26] show that

their framework cannot be used to get a polynomial time

algorithm (and the number of samples needed is at least

klog log k). In fact, their algorithm works even in the presence

of corruptions, not just erasures (whereas ours does not).
A generalization of the population recovery problem was

introduced in the seminal work of Kearns et al [19], which

they called the problem of learning mixtures of Hamming

balls: Again, we choose a string a according to π but now

each bit in a is flipped with probability ηa < 1/2 and this

probability is allowed to depend on a. Kearns et al [19] give

algorithms for the special case in which each flip probability

is the same (which is exactly the noisy population recovery
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problem) and their algorithms run in time exponential in the

support size k. This is an interesting phenomenon in learning

distributions, that for many problems we do not know how to

achieve a running time that is sub-exponential in the number

of components. For example, this is the case when learning

mixtures of product distributions [12], learning juntas [24],

learning decision trees [10], and learning mixtures of Gaus-

sians [23], [4]. In fact, many of these problems are inter-

reducible [11], so with this context it is interesting that the

population recovery problem is one positive example where

we can avoid exponential dependence on k. But is there a

polynomial time algorithm?

Here we give an estimator that solves the population

recovery problem, such that for any fixed μ > 0, the running

time and number of samples needed is polynomial in n and

1/ε.

Theorem I.1. There is an efficient algorithm for the pop-
ulation recovery problem whose running time and num-
ber of samples needed is O((n/ε)2f(μ)) where f(μ) =
1/μ log 2/μ+O(1).

The population recovery problem arose naturally from

the investigation of one of the central problems in learn-

ing theory, learning DNFs. The best known algorithm for

learning DNFs in Valiant’s PAC learning model [29] runs

in time (roughly) 2n
1/3

[20]. Dvir et al [9] introduced a

new model called restriction access that can be thought

of as an interpolation between black box and white box

access to the function: Each example consists of a restriction

of the unknown DNF obtained by fixing a random 1 − μ
fraction of the input variables.. Dvir et al [9] showed how

to reduce the problem of learning an n term, k-variable DNF

to solving an instance of the population recovery problem on

strings of length n and support size k. Previous algorithms

for population recovery yield a polynomial time algorithm

for learning DNFs in the restriction access model for any

μ > 1−1/
√
2 [9], [3], and Wigderson and Yehudayoff [26]

obtain a quasi-polynomial time algorithm that runs in time

klog k (where k is the number of clauses). Combining the

reduction of [9] with Theorem I.1 immediately gives:

Theorem I.2. There is an efficient algorithm to PAC
learn DNFs in the restriction access model for any μ >
0. The running time and number of samples needed is
O((n/ε)2f(μ)poly(n, k)) where f(μ) = 1/μ log 2/μ and
the algorithm succeeds with high probability.

The main open question in this paper is whether there is

a polynomial time algorithm for noisy population recovery

(see Section VI). If the goal was to learn a distribution that

is close to the true distribution (rather than more stringent

goal of learning its parameters), the maximum likelihood

estimator would suffice. But the main obstacle here is

showing that for two distributions whose parameters do not

match, their statistical distance is noticeably large.

B. The Robust Local Inverse

At a more philosophical level, what makes the population

recovery problem particularly interesting is that in order

to give an efficient estimator we need to solve a certain

inverse problem despite the fact that the corresponding

matrix has many exponentially small eigenvalues. As will be

reviewed in the next section, Dvir et al [9] showed that the

population recovery problem can be reduced to a problem

of the following form: We have two unknown probability

distributions π and φ over the domain {0, . . . , n}, which

when viewed as vectors indexed by {0, . . . , n} are related

by the equation:

φT = πTA

where A is a known (row) stochastic invertible matrix in-

dexed by {0, . . . , n}. We want to estimate π(0) but we only

have access to samples chosen according to the distribution

φ. We would like the running time and number of samples

needed to be (at most) a polynomial in n and 1/ε.

Let u denote the first column of A−1. Then:

π(0) = φTu

So, if we knew the vector φ exactly, we could use it to

recover π(0) exactly. But we do not know φ. We can

estimate φ from random samples in the obvious way: let φ̃(j)
be the fraction of observed samples that equal j. We might

then hope that π̃(0) = φ̃Tu is a good estimate to π(0). We

will refer to this as the natural estimator for π(0). The error

|(φ̃− φ)Tu| of this estimator is at most n‖φ̃− φ‖∞‖u‖∞.

Thus to obtain estimation error ε, it is enough that

‖φ̃− φ‖∞ ≤ ε

n‖u‖∞
and the Chernoff-Hoeffding bound says that

C log(n)(‖u‖∞n/ε)2 samples are enough so that the

probability of exceeding the desired error is less than e−C .

To ensure that this is not too many samples, we want

that ‖u‖∞ is polynomially bounded. For the estimation

problem that is derived from population recovery, it turns

out that ‖u‖∞ ≤ 1 provided that μ ≥ 1/2 and so in this

case the natural estimator yields an accurate estimate from

a polynomial number of samples. But if μ < 1/2, then

‖u‖∞ is exponentially large in n and this estimator requires

exponentially many samples to be at all accurate.

What else can we do? The vector u has entries that are

too large, so Dvir et al [9] suggested replacing u by another

vector v whose entries are not too large and such that πTAv
is close to πTAu for all distributions π. Remarkably, Dvir

et al [9] managed to construct such a v which works for

μ � .365 (the analysis was subsequently improved to μ � .3
[3]), which in turn yields a polynomial time algorithm for the

population recovery problem even in cases when the natural

estimator fails!
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Since πTAu = π(0), it follows that what we really want

is to find a vector v so that

‖Av − e0‖∞ ≤ ε

where e0 is the indicator vector for zero (i.e. its first entry

is one and the rest are all zero). And furthermore we want

‖v‖∞ to be as small as possible. A vector satisfying the

above condition is called a ε-local inverse for A at e0, and

we will refer to ‖v‖∞ as the sensitivity of v. If we can

find a v whose sensitivity is at most σ, then poly(n, 1/ε, σ)
samples suffice to get an estimate (φ̃T v) to π(0) that is

within an additive ε.

Geometrically, a local inverse is obtained by taking A−1e
where e is a small perturbation of the vector e0, which is

chosen so that A−1e has small norm even though A−1e0
does not. What controls the behavior of A−1e is the rep-

resentation of e in the basis of singular vectors of A. In

choosing e we want to remove from e0 the components

corresponding to tiny singular values, which will ensure that

the sensitivity of v = A−1e is not too large. We are hoping

that that the weight on these deleted components is small so

that the result is a good local inverse.

The problem of finding the ε-local inverse of minimum

sensitivity for a particular matrix A can be expressed directly

as a linear program whose variables are the vector v and the

sensitivity σ:

minσ (1)

Av ≥ e0 − ε1

−Av ≥ −e0 − ε1

v + σ1 ≥ 0

−v + σ1 ≥ 0

The solution v can be used in to estimate π(0) from φ̃,

where the number of samples depends on σ, as above. Note

that the matrix A depends on μ. Our main contribution is

to prove that there is a good solution to the above linear

program for any μ > 0.

The approach in Dvir et al [9] and in Batman et al [3] was

to guess a solution to the above linear program and bound

its sensitivity. Instead, we consider the dual (maximization)

problem and prove an upper bound on its maximum. After

some work, the dual problem becomes a problem of finding

a polynomial p of degree n so as to maximize p(0)−ε‖p‖1,

where ‖ · ‖1 denotes the sum of the absolute values of

the coefficients, subject to the constraint that the translated

polynomial q(x) = p(1+(x−1)/μ) has ‖q‖1 = 1. Bounding

this maximum from above is then reduced to a problem of

showing that if p is a polynomial (indeed any holomorphic

function) on the complex plane and there exists a disk of

nontrivial diameter where |p(z)| is much smaller than |p(0)|
then the maximum of p(z) on the unit circle must be much

larger than |p(0)|. This final result can be viewed as a kind of

uncertainty principle and is proved using tools from complex

analysis (the Hadamard 3-circle theorem, and the Möbius

transform).

II. REDUCTIONS FOR POPULATION RECOVERY

Here we describe (informally) the reduction of Dvir, et

al. [9] from the population recovery problem to the problem

of constructing a robust local inverse for a certain matrix

A (whose entries depend on μ): Recall that if we choose

a string a ∈ {0, 1}n (according to π), the observation is a

(random) string in {0, 1, ?}n obtained from a by replacing

each ai with ‘?’ independently with probability 1− μ.

The first observation of Dvir et al [9] is that we may

as well assume that we know all of the strings a whose

probability π(a) is at least Ω(ε). Of course, in the population

recovery both the strings and their probabilities are un-

known, so how can we reduce from the case when everything

is unknown to the case where at least the set of strings with

large probability is known? Suppose we ignore all but the

first n′ coordinates; then we get an instance of the population

recovery problem on length n′ strings. In particular, the

probability π(a′) of a length n′ string is the total probability

of all length n strings a whose first n′ coordinates are exactly

a′. Now the rough idea is that we can incrementally solve the

population recovery problem on longer and longer prefixes,

each time we increase the length of the prefix by one we

at most double the number of candidate strings. The crucial

insight is that we can always prune the set of strings because

we never need to keep a prefix whose total probability is less

than ε.

The second observation of Dvir et al [9] is that if all the

strings are known, then it suffices to estimate π(0) within

an additive ε. This type of reduction is standard: given a

string a, we can take each observation and XOR it with

a but keeping the symbol ‘?’ unchanged. The samples we

are given can be thought of as samples from an instance

of population recovery where every string is mapped to its

XOR with a, and so we can recover π(a) by finding the

probability of the all zero string in this new instance of the

problem.

The final simplification is: suppose we ignore the loca-

tions of the ones, zeros and question marks in the samples

but only recover the number of ones. Then we can map the

probability distribution π to a length n+1 vector where π(i)
is the total probability of all strings with exactly i ones. What

is the probability that we observe j ones (and the remaining

symbols are zeros or question marks) given that the sample

a had i ones? This quantity is exactly:

Ai,j =

(
i

j

)
μj(1− μ)i−j

So if we only count the number of ones in each observation,

we are given random samples from the distribution πTA.

Hence, if our goal is to recover the probability π(0) assigned

to the all zero string, and we ignore where the zeros, ones
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and question marks occur in our samples, we are faced with

a particular matrix A (whose entries depend on μ) for which

we would like to construct a robust local inverse.

Definition II.1. Let σn(μ, ε) denote the minimum sensitivity

of a ε-local inverse (i.e. the optimum value of (2)).

The following family of vectors will play a crucial role

in our analysis:

vα =
[
1, α, α2, ...αn−1

]
Then it can be checked that setting α = − 1−μ

μ is the

natural estimator (i.e. vα = A−1e0) and the sensitivity of

this estimator is exponentially large for μ < 1/2. We prove:

Theorem II.2. For all positive integers n and μ, ε > 0 we
have σn(μ, ε) ≤ (1/ε)f(μ) where f(u) = 1

μ log 2
μ .

Theorem I.1 follows since as discussed in Section I-B,

the number of samples we need to obtain the desired

approximation with high probability when using the best

local inverse is σn(μ, ε)
2poly(n, 1/ε).

III. A TRANSFORMED LINEAR PROGRAM

As outlined earlier, the problem of finding an ε-local

inverse can be expressed as a linear programming problem

whose objective is to minimize the sensitivity. We want to

prove an upper bound on the value of the solution, and

we will accomplish this by instead bounding the maximum

objective function of the dual.

However, before passing to the dual we will apply a

crucial change of basis to the linear program. The reason

we do this is so that the dual can then be interpreted as a

certain maximization problem over degree n polynomials.

We will choose n + 1 values α0, α1, . . . , αn (as we’ll see

the particular values won’t matter) and we will consider the

estimators vαi defined in the previous section. We will abuse

notation and refer to this estimator as vi. Since this family

forms a basis, we can write any local inverse v in the form

v =
∑n

i=0 λiv
i. Let V be the columns v0, . . . , vn and let

B = AV . Then our new linear program is:

minσ (2)

Bλ ≥ e0 − ε1

−Bλ ≥ −e0 − ε1

V λ+ σ1 ≥ 0

−V λ+ σ1 ≥ 0

σ ≥ 0

The final constraint is superfluous, but is helpful in formu-

lating the dual linear program.

The coefficient matrix V is a Vandermonde matrix (i.e.

each column has the form vα for some α) with the entry in

row i and column j given by V j
i = (αj)

i (with V 0
0 = 1).

In fact, it turns out that B is also a Vandermonde matrix

whose jth column is exactly v1+μ(αj−1):

Bj
i =

∑
k≤i

(
i

k

)
μk(1− μ)i−k(αj)

k

= (1− μ)i
∑
k≤i

(
i

k

)( αjμ

1− μ

)k

= (1− μ)i(1 +
αjμ

1− μ
)i = (1 + μ(αj − 1))i

Indeed, this simple form for B is precisely the reason we

chose this basis transformation.

The new linear program has n+2 variables and 4(n+1)
constraints (consisting of four groups of n + 1 constraints

each) so the dual will have 4(n + 1) variables consisting

of four vectors, denoted by p+, p−, q−, q+ each indexed by

{0, . . . , n}.The resulting dual program is:

max p+0 − p−0 − ε
∑
i

(p+i + p−i ) (3)

(p+ − p−)TB + (q− − q+)V = 0∑
i

(q+i + q−i ) ≤ 1

p+, p−, q+, q− ≥ 0

We can now make some simplifying observations. If for

any i, both p+i and p−i are positive, we can decrease them

each by their minimum without violating the constraints, and

only increasing the objective function. So we may assume

that at least one of them is zero. Similarly for q+i and q−i .

Then we can define p = p+ − p− and q = q+ − q− to

simplify the dual linear program to:

max p0 − ε
∑
i

|pi| (4)

pTB = qTV∑
i

|qi| ≤ 1.

Define the polynomials p(x) =
∑n

j=0 pjx
j and q(x) =∑n

j=0 qjx
j . The equality constraint gives n + 1 equations

indexed from 0 to n+ 1 where jth constraint is that p(1 +
μ(αj − 1)) = q(αj). Since p(1 + μ(x− 1)) and q(x) agree

on n + 1 values they must be the same polynomial. This

leads to the following formulation:

The optimal sensitivity σn(μ, ε) is equal to the

maximum of p(0) − ε‖p‖1 over all degree n
polynomials for which the translated polynomial

q(x) = p(1 + μ(x− 1)) satisfies ‖q‖1 ≤ 1.

Recall that ‖p‖1 denotes the sum of the absolute values of

the coefficients.

So now our goal is to prove an upper bound on the

maximum of this linear program. We can think of this

as trying to show a type of uncertainty principle for the

coefficients of a polynomial when applying an affine change

113



of variables. There is a considerable amount of literature

on establishing uncertainty principles for functions and their

Fourier transforms (see e.g. [8]), but there seems to be no

literature concerning other affine changes of variables (i.e.

p(1 + μ(x − 1)) = q(x)). In fact, here we will establish

such an uncertainty principle via the Hadamard three circle

theorem in complex analysis.

IV. SUP RELAXATIONS

The quantities ‖p‖1 and ‖q‖1 are unwieldy - e.g. given

just the graph of the polynomial, what can we say about

its coefficients? Here we will relax constraints on ‖p‖1 by

instead considering the maximum of the polynomial over

certain domains.

Definition IV.1. (Restricted sup-norm.) For a subset W of

R, let ‖q‖Wsup def
= supx∈W |q(x)|.

Recall that we used the notation ‖q‖1 to denote the sum

of the absolute values of the coefficients of q. Then it is easy

to see that:

Claim IV.2. ‖q‖1 ≥ ‖q‖[−1,1]
sup

Proof: For each x ∈ [−1, 1] we have:

n∑
i=0

|qi||x|i ≤
n∑

i=0

|qi| = ‖q(x)‖1

and this implies the claim.

In the polynomial formulation of σn(μ, ε) replacing the

objective function by p(0) − ε‖p‖[−1,1]
sup only increases the

value of the objective function. Similarly, replacing the

constraint ‖q‖1 ≤ 1 by ‖q‖[−1,1]
sup ≤ 1 can only increase the

objective function. Since q(x) = p(1 + μ(x − 1)) and the

transformation x −→ 1+μ(x−1) maps the interval [−1, 1]
to the interval [1− 2μ, 1] we have ‖q‖[−1,1]

sup = ‖p‖[1−2μ,1]
sup .

This leads to a relaxation of the polynomial formulation:

The optimal sensitivity σn(μ, ε) is at most the

maximum of p(0) − ε‖p‖[−1,1]
sup over all degree n

polynomials p(x) for which ‖p‖[1−2μ,1]
sup ≤ 1.

For this relaxation to be useful to us we will need to

prove that the new objective function can not be too large if

p satisfies the constraints of the relaxation. Informally, we

will say that a polynomial is bad if it satisfies the constraints

of the relaxation and makes the objective function very large.

If μ ≥ 1/2 then 0 ∈ [1 − 2μ, 1] and so |p(0)| ≤ 1 and

no polynomial can be bad. So assume μ < 1/2. A bad

polynomial must be bounded between −1 and 1 on the

interval [1 − 2μ, 1], must be very large at the origin, and

must have |p(x)| at most |p(0)|/ε for all x ∈ [−1, 1].
Is there any polynomial that satisfies these conditions?

Unfortunately for this approach, there is. The polynomial

(1 − x2)n/2 has its maximum on [−1, 1] at the origin,

where it is 1, and its maximum on [1− 2μ, 1] is at 1− 2μ

where its value is C = (2μ−μ2)n/2 which is exponentially

small. Thus the polynomial p(x) = 1
C (1 − x2)n/2 satisfies

the constraints and has objective function value that is

exponentially large in n.

To salvage this approach we move to complex numbers.

The definition of the restricted sup-norm extends directly to

subsets W of the complex numbers. For β ∈ C and positive

real number γ let Dγ(β) be the closed disk in the complex

plane of radius γ centered at β. Let Cγ(β) be the circle

bounding Dγ(β). If β = 0 we write simply Dγ and Cγ . As

with

Claim IV.3. ‖q(x)‖1 ≥ ‖q(x)‖D1
sup.

Observe that the image of the disk D1 under the transfor-

mation x −→ (1 + μ(x − 1)) is Dμ(1 − μ). Just as before

we obtain the following relaxation:

The optimal sensitivity σn(μ, ε) is at most the

maximum of p(0) − ε‖p‖D1
sup over all degree n

polynomials p(x) such that ‖p‖Dμ(1−μ)
sup ≤ 1

As we will see, there are no bad polynomials for this

relaxation. In hindsight, it is not surprising that the values

of the polynomial p(x) over the whole complex disk reveals

much more information than just the values on [−1, 1]; in

particular, we can recover the values of a polynomial from

integrating around the circle, so a polynomial cannot stay

too small on the boundary of the disk if it is large at the

origin. In particular the polynomial (x2 − 1)n/2 that was

bad for the ‖ · ‖[−1,1]
sup relaxation is no longer bad because its

maximum (on D1) is attained at x = ı and is exponentially

large.

In the next section we will prove:

Lemma IV.4. Let h be a holomorphic function and suppose
D = Dρ(β) is a disk contained in D1 such that ‖h‖Dsup ≤ 1.
Then there is a point x ∈ C1 such that |h(x)| ≥ |h(0)|1+d,
where d = (1− |β|)/ log(2/ρ).

From this uncertainty principle, we can now prove Theo-

rem II.2.

Proof of Theorem II.2. We use the bound from the D1-sup

relaxation. Let p be a polynomial satisfying the constraints

and let s = |p(0)|. Then p satisfies the conditions of Lemma

IV.4 with β = 1−μ and ρ = μ. Therefore ‖p‖D1
sup ≥ |s|d+1,

where d is as in the lemma. From this we conclude that the

objective function in the ‖·‖D1
sup relaxation is at most s−εsd

which is maximized when s = (1/(d + 1)ε)1/d, and this

quantity is itself an upper bound on the objective function.

We can therefore conclude that σn(ε, μ) ≤ (1/ε)1/d where

the exponent is equal to 1
μ log 2

μ .

V. PROOF OF LEMMA IV.4

Here we will prove the uncertainty principle stated in the

previous section using tools from complex analysis. Perhaps

one of the most useful theorems in understanding the rate
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of growth of holomorphic functions in the complex plane

is Hadamard’s Three Circle Theorem (and the related Three

Lines Theorem):

Theorem V.1. [13] Let 0 < a ≤ b ≤ c and let g(x) be a
holomorphic function on the Dc. Then

log
c

a
log ‖g‖Cb

sup ≤ log
c

b
log ‖g‖Ca

sup + log
b

a
log ‖g‖Cc

sup.

In Lemma IV.4 we do not have three concentric circles but

we can apply a Möbius transformation to put the problem in

the right form. Let β be the center of the disk D in the lemma

and consider the transformation φ(x) = φβ(x) = β+x
1+β∗x ,

where (·)∗ denotes complex conjugate. The following fact

is well known and easy to check:

Fact V.2. For |β| < 1, φβ is a holomorphic function which
maps D1 to itself.

1) φ(C1) = C1.

2) 0 ∈ φ(C|β|).
3) φ(Cρ/2) ⊆ D = Dρ(β).

The first claim is a standard fact about Möbius transfor-

mations. The second follows from φ(−β) = 0. For the third,

|φ(x)− β| =
∣∣∣ β + x

1 + β∗x
− β

∣∣∣
=

∣∣∣x(1− |β|2)
1 + β∗x

∣∣∣ ≤ |x|1− |β|2
1− |β|

= |x|(1 + |β|) ≤ 2|x|.
Now consider the function g defined on D1 by g(x) =

h(φ(x)). From the three previous observations we have:

• g(C1) = h(C1) and so ‖g‖C1
sup = ‖h‖C1

sup.

• h(0) ∈ g(Cβ) so ‖g‖Cβ
sup ≥ |h(0)|.

• g(Cρ/2) ⊆ h(D) so ‖g‖Cρ/2
sup | ≤ ‖h‖Dsup ≤ 1, by the

hypothesis of the lemma.

Applying Theorem V.1 with a = ρ/2, b = |β| and c = 1
we get:

log
2

ρ
‖g‖C|β|

sup ≤ log
1

β
log ‖g‖Cρ/2

sup + log
2β

ρ
log ‖g‖C1

sup,

which when combined with the three previous bounds gives:

log
2

ρ
|h(0)| ≤ log

2β

ρ
log ‖h‖C1

sup,

from which we conclude:

‖h‖C1
sup ≥ |h(0)|t,

where t = log( 2ρ )/ log
2β
ρ = 1 + log(1/β)/ log(2β/ρ) ≥

1 + (1− β)/ log(2/ρ), which is the parameter d defined in

the lemma.

VI. OPEN QUESTION

Is there a polynomial time algorithm for noisy population

recovery – i.e. when attributes are not deleted, but are flipped

(with probability η < 1/2)? It seems that new ideas are

needed to handle this case in part because if we try the

same method of writing a linear program over a basis of

estimators, then instead of two polynomials related by an

affine change of variables, we get two polynomials p(x) and

q(x) for which p(x) = �(x)nq(φ(x)) where �(x) is a linear

function and φ(x) is a Möbius transformation. However this

damping term �(x)n makes it much easier for q(x) to be

bounded in the complex disk.
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