2013 IEEE 54th Annual Symposium on Foundations of Computer Science

Simple Tabulation, Fast Expanders, Double Tabulation, and High Independence

Mikkel Thorup
Department of Computer Science
University of Copenhagen, Denmark
Email: mikkel2thorup @ gmail.com

Abstract—Simple tabulation dates back to Zobrist in 1970
who used it for game playing programs. Keys are viewed as
consisting of ¢ characters from some alphabet ®. We initialize c
tables ho, . .., h.—1 mapping characters to random hash values.
A key Tr = (l’o, e ,l’c_1) is hashed to ho[xo]@ . '@hc_1[:l,’c_1],
where @ denotes bit-wise exclusive-or. The scheme is extremely
fast when the character hash tables h; are in cache. Simple
tabulation hashing is not even 4-independent, but we show here
that if we apply it twice, then we do get high independence.
First we hash to some intermediate keys that are 6 times longer
than the original keys, and then we hash the intermediate keys
to the final hash values.

The intermediate keys have d = 6c¢ characters from .
We can then view the hash function as a highly unbalanced
bipartite graph with keys on one side, each with edges to
d output characters on the other side. We show that this
graph has nice expansion properties, and from that it follows
that if we perform another level of simple tabulation on the
intermediate keys, then the composition is a highly independent
hash function. More precisely, the independence we get is
|®|**/), In our O-notation, we view both |®| and c is going
to infinity, but with ¢ much smaller than |®|.

Our space is O(c|®|) and the hash function is evaluated
in O(c) time. Siegel [FOCS’89, SICOMP’04] has proved that
with this space, if the hash function is evaluated in o(c) time,
then the independence can only be o(c), so our evaluation time
is best possible for ((c) independence—our independence is
much higher if ¢ = |®[°(1/9,

Siegel used O(c)° evaluation time to get the same indepen-
dence with similar space. Siegel’s main focus was ¢ = O(1),
but we are exponentially faster when ¢ = w(1).

Applying our scheme recursively, we can increase our
independence to |®|*(!) with o(c!°¢¢) evaluation time. Com-
pared with Siegel’s scheme this is both faster and higher
independence.

Siegel states about his scheme that it is “far too slow for any
practical application”. Our scheme is trivial to implement, and
it does provide realistic implementations of 100-independent
hashing for, say, 32-bit and 64-bit keys.

Keywords-hashing; independence; expanders;

I. INTRODUCTION

Independent hashing: The concept of k-independent
hashing was introduced by Wegman and Carter [1] at
FOCS’79 and has been the cornerstone of our understanding
of hash functions ever since. The hash functions map keys
from some universe U to some range R of hash values.
Formally, a family % = {h | U — R} of hash functions is
k-independent if (1) for any distinct keys z1,...,x; € U,

0272-5428/13 $26.00 © 2013 IEEE
DOI 10.1109/FOCS.2013.18

90

the hash values h(x1),...,Rh(zx) are independent random
variables when h is picked at random from H; and (2) for
any fixed z, h(x) is uniformly distributed in R. By a k-
independent hash function we refer to a function chosen at
random from such a family. Often the family is only given
implicitly as all possible choices some random parameters
defining the function.

As the concept of independence is fundamental to prob-
abilistic analysis, k-independent hash functions are both
natural and powerful in algorithm analysis. They allow us
to replace the heuristic assumption of truly random hash
functions with real (implementable) hash functions that are
still “independent enough” to yield provable performance
guarantees. We are then left with the natural goal of un-
derstanding the independence required by algorithms. When
first we have proved that k-independence suffices for a
hashing-based randomized algorithm, then we are free to
use any k-independent hash function.

Let U and R be the sets U = [u] = {0,...,u — 1} and
R =1r] ={0,...,7 — 1}. The canonical construction of a
k-independent family is a polynomial of degree k — 1 over a
prime field Z,, where p > u. The random parameters are the
coefficients ag, ..., ai—1 € Zp. The hash function is then

h(z) = ((ak71$k71 +- --+a1x+a0) mod p) mod r (1)

For p > r, the hash function is statistically close to k-
independent. One thing that makes polynomial hashing over
Z, slow for p > 232 is that each multiplication over Z,
translates into multiple 64-bit multiplications that due to
discarded overflow can only do exact multiplication of 32-
bit numbers. The “mod p” operation is very expensive in
general, but [2] suggests using a Mersenne prime p such as
261 —1 or 289 — 1, and then 'mod p’ can be made very fast.

Word RAM model: We are assuming the word RAM
model where the operations on words are those available in
a standard programming language such as C [3]. A word
defines the maximal unit we can operate on in constant
time. For simplicity, we assume that each key or hash value
fits in a single word. This implies that the time it takes to
evaluate the degree k — 1 polynomial from (1) is O(k). The
Random Access Memory (RAM) implies that we can create
tables, accessing entries in constant time based on indices
computed from key values. Such random access memory has

@) CO‘ pute
1(!) I
& SOCIety

Non-Constructive Cell-Probe Model
Space Probes Independence | Reference
ul/e - < wul/e Trivial
ul/e t<c <t [5]
ul/c O(C) uQ(l/c) [5]
C-programmable Word RAM model
Space Time Independence | Reference
k O(k) k Polynomial
u 1 u Complete table
wl/e O(C)C uSZ(l/cz) [5]
ut/e | O(ck) k (61, (71, 8]
ul/e O(e) u(1/e?) This paper
uwl/c | O(clee) uf21/) This paper
Table I

HASHING WITH PREPROCESSED REPRESENTATION.

been assumed for hash tables since Dumey introduced them
in 1956 [4].

Time-space trade-offs: To get faster hash functions, we
implement them in two phases. First we have a preprocessing
phase where we based on a random seed construct a repre-
sentation of the hash function. We do not worry too much
about the resources used constructing the representation, but
we do worry about the space of the representation, measured
in number of words. Next we have a typically deterministic
query phase where we for a given key compute the hash
value using the representation. Table I presents an overview
of the results in this model that will be discussed here in
the introduction. In our O-notation, we view both » and ¢
as going to infinity, but ¢ is much smaller than w.

In the case of polynomial hashing, the preprocessing just
stores the coefficients ag,a; in k words. Unfortunately,
to find the hash value of a key =, we have to access all &k
words in O(k) time. Another extreme would be to store the
hash values of all possible keys in one big table of size wu.
Then we can find the hash of a key in constant time by a
single lookup.

There has been interesting work on representing a high
degree polynomial for fast evaluation [9, Theorem 5.1]. For
a degree k — 1 polynomial over Z,, the evaluation time is
(log k)°™ (log p)*+°(1). This avoids the linear dependence
on k, but the factor logp > logwu is prohibitive for our
purposes.

Simple tabulation hashing: In simple tabulation hash-
ing, we generally view both keys and hash values as bit
strings, so w and r are powers of two. Moreover, we view
a key = as a vector of ¢ characters zg,...,x.—1 from the
alphabet ® = [u'/¢]. Simple tabulation is defined in terms
of ¢ character tables hy,...,h.—1 : ® — R. This induces a
function h : U — R defined by

h(z) = @) hi(wi) = ho(wo) & +++ & her (we—1). ()

i€[c]

91

Here @ denotes bit-wise exclusive-or (xor). We call this
simple tabulation hashing when the character tables are filled
with random hash values from R. This is a well-known
scheme dating back at least to Zobrist in 1970 [10] who used
it for game playing programs. Simple tabulation hashing
is only 3-independent even if all character tables are fully
random.

In simple tabulation, the preprocessing phase fills the c
character tables h;. These may all be stored consecutively
as a single 2D array [c] x ® — R using cu'/¢ space. If we
already have some randomly filled memory, then a simple
tabulation hash function is defined in constant time, simply
by placing the offset of the array in the random memory.

In the query phase, we find each h;(z;) by a single
lookup. We do only ¢ lookups, and we only have a constant
number of word operations per lookup, so each hash value
is computed in O(c) time. If ® consists of 8-bit or 16-bit
characters, then the character tables fit in fast cache. For
32-bit or 64-bit keys, simple tabulation is about 3 times
faster than the 3-independent hashing obtained as in (1) by
a degree 2-polynomial tuned for a Mersenne prime (see,
e.g., experiments in [11], [8]). Also note that with simple
tabulation, the cost of expanding the range R to longer bit-
strings is minor in that we still only have to do ¢ lookups.
The added cost is only from storing and looking up longer
bit-strings that have to be xor’d.

In [11] it was proved for many concrete applications
that simple tabulation has far more power than its 3-
independence suggests. However, to use simple tabulation in
an application such as linear probing, one has to make a care-
ful analysis to show that the dependence is not harmful to
the application. This is not as attractive as the generic inde-
pendence paradigm where any k-independent hash function
can be used in any application for which k-independence
suffices. According to Google Scholar, Siegel’s [5] highly
independent hashing has more than 150 citations (including
those to the original conference version), but as he states, it
is “far too slow for any practical application”.

A. Results

In this paper we show that to get the same high indepen-
dence as Siegel [5] efficiently, we just have to apply simple
tabulation twice, and we get even higher independence with
more applications. Our key is to show that simple tabula-
tion, applied once, is likely to have some strong expander
properties.

Unbalanced expanders by simple tabulation: To de-
scribe the result, we need some simple notation and termi-
nology. Suppose y € U? is a vector of d characters from .
We let y; denote character j in y, so y = (Yo, .., Yd—1)-
By a position character we mean a pair (j,a) € [d] x ¥
consisting of a position and a character. The vector y is
identified with the corresponding set {(j,y;)|j € [d]} of
position characters.

Consider a function f : U — W9, It defines an unbalanced
bipartite graph with the key set U on the left-hand side
and the output position characters from V = [d] x ¥ on
the right-hand side. A key = € U has d distinct neighbors;
namely the d output position characters (0, f(z)o),. .. (d —
1, f(z)a—1) € V. Two keys = and y share a neighboring
output position character if and only if f(z); = f(y);
for some j. We say a set X C U has a unique output
position character (j,a) if there is an z € X such that
f(x); = a and for all other y € X \ {z}, f(y); # a. Our
basic result is that if we consider random simple tabulation
with 6 times more output than input characters, then every
not too large set X has a unique output position character.
This can be viewed as a weak expander property. As the
number of output characters increases, we get the standard
expansion property that X has Q(d|X|) distinct output
position characters (neighbors in the bipartite graph). The
formal statement is as follows.

Theorem 1: Consider a simple tabulation function h :
dc — U where d > 6¢ and where the character tables are
fully random. Assume ¢ = |®|°(") and (c + d)¢ = |¥|°D).
Let k = |¥|*/(5°) With probability 1 — o(|®|?/|¥|%/ (),
(a) every key set X C ®¢ of size | X| < k has at least one

unique output position character.

Moreover, for any ¢ € (0,1), with probability 1 —
of|B[2/| W[/ 2)),
(b) every key set X C ®° of size |X| < k has more than

(1 —e)d|X| distinct output position characters.

The requirement that the character tables are fully random
can be relaxed in the sense that we for (a) and (b) can
use any k < |¥['/(5¢) such that all character tables are k-
independent, and independent of each other.

Above we think of ¢ and d as slow growing. Our construction
is interesting also when d is constant, but then we cannot
measure its effect with O-notation.

The assumptions ¢ = |®|°™) and (¢ + d)¢ = |¥|°(") are
not essential, but serve to give simple probability bounds for
(a) and (b). As we shall see in Theorem 5, we can derive
much better bounds for concrete cases.

Our work is orthogonal to the deep work on explicit
expanders; for Theorem 1 relies on random values for the
character tables. Also, when it comes to highly unbalanced
expanders like in Theorem 1, the best explicit constructions
[12] have logarithmic degrees. It would be very interesting
if we could fill the character tables of Theorem 1 explicitly
during preprocessing with an efficient deterministic algo-
rithm. When done, we would enjoy the high speed of simple
tabulation.

High independence by double tabulation: In this paper,
we are mostly interested in the unique output position
characters from (a). We say that a function f : U — o
is k-unique, or has uniqueness k, if every subset X C U
of size at most k has a unique output position character.
Translating Lemma 2.6 in [5], we get

92

Lemma 2 (Siegel): Let f : U — U? be a k-unique
function. Consider a random simple tabulation function
r : ¥? — R where the character tables rj : ¥ = R,
j € [d], are independent of each other, and where each r;
is k-independent. Then r o f : U — R is k-independent.
Suppose we have a concrete simple tabulation function
h : & — U? that satisfies (a) from Theorem 1. Then h
is k-unique. We can now compose h with a random simple
tabulation function » : ¥¢ — R from Lemma 2. The
resulting function r o h is a k-independent function from
U = ®° to R. We call this composition double tabulation.

Note that if we want a new independent k-independent
hash function, we can still use the same k-unique h as
a universal constant. We only need to generate a new
independent simple tabulation hash function 7' : ¥4 — R,
and use ¥’ o h : U — R as the new k-independent hash
function.

Unfortunately, we do not know of any efficient way of
testing if the simple tabulation function h from Theorem 1 is
k-unique. However, a random A is k-unique with some good
probability. To emphasize that we only need k-uniqueness
for a single universal h : ®¢ — W%, we say that it happens
with universal probability.

Corollary 3: Let u = |U| and assume ¢ = u°®). With
universal probability 1 —o(1/4'/¢), using space o(u'/¢), we
get u®(1/¢) independent hashing from U to R in O(c) time.

Proof: We use the above double tabulation. For sim-
plicity, we assume that u is a power of a power of two. For
the first simple tabulation function A from Theorem 1, we
use ¢/ = 2M82¢1+1 input characters from ® and d = 8¢’
output characters, also from &®. The uniqueness we get
is k = |®Y/6) = |®|2%1/) and the error probability
is o((1/ul/¢")2=4/2<)) = o(1/u'/¢). The second simple
tabulation r from Lemma 2 has d input characters from @,
so the total number of tables is ¢’+d = O(c). This is also the
number of lookups, and for each lookup, we do a constant
number of operations on a constant number of words. The
space is thus O(cu!/") = o(u!/¢), and the evaluation time
is O(c). [|

Siegel [5] has proved that with space u'/¢ one needs
evaluation time (c) to get independence above c. The
time bound in Corollary 3 is thus optimal for any higher
independence. We note that the restriction e = ue® s
equivalent to saying that the independence u*(*/ ®) is more
than polynomial in c.

Higher independence by recursive tabulation: With
representation space /¢, the highest independence we can
hope for is u!'/¢. In Corollary 3 we only get independence
u?(1/¢*) . We will show that we can get independence
uf2(1/¢) using recursive tabulation. This is where it is impor-
tant that Theorem 1 allows different alphabets for input and
output characters. The basic idea is to use output characters
from ¥ = [u!/?], and recurse on them to prove:

Theorem 4: Let u = |U| and assume ¢ = u°(1). With
universal probability 1—o(1/u'/¢), using space o(u'/¢), we
can get u**(1/¢)-independent hashing from U to R in o(c'®2©)
time.

If we unravel the recursion (to be presented in Section IV),
for some D = o(c'8°) and k = u(1/¢), we get a function
f:U — [u'/ 9P that is not k-unique, yet which yields k-
independence if composed with a random simple tabulation
function 7 : [u!/(?9]P — R. If follows from [8, Proposition
2] or [7, Theorem 3] that f has the property that some output
position character appears an odd number of times.

Concrete parameters: Note that when dealing with n
keys, it is fairly standard to use universe reduction, applying
universal hashing into a domain of size n?*¢, ¢ = Q(1),
hoping for no collisions. Starting from this domain, dividing
into ¢ = 3 characters brings us down to space O(n?/3+)
which may be very acceptable. Thus it is often reasonable
to think of ¢ as small.

Below we consider some concrete parameter choices
yielding 100-independent hashing. This would have been
prohibitively slow with the polynomial hashing from (1).
With reference to Lemma 2, the challenge is to find a
100-unique function. The probabilities are based on careful
calculations yielding much better bounds than those derived
from the simple formula in Theorem 1 (a). We do not make
any assumptions like ¢ = |®[°() and (c + d)¢ = |¥|°(D),

Theorem 5: We consider a simple tabulation hash func-
tion h : ®¢ — WY Assuming that the character tables h;
of h are fully random, or at least 100-independent, and
independent of each other,

1) For 32-bit keys with ® = ¥ = [216], ¢ = 2, and

d = 20, the probability that h is not 100-unique is
bounded by 1.5 x 10742,

2) For 64-bit keys with @ = ¥ = [222], ¢ = 3, and
d = 24, the probability that h is not 100-unique is
bounded by 1.4 x 10749,

3) For 64-bit keys with & = [216], ¥ = [232], ¢ = 4,

and d = 14, the probability that A is not 100-unique
is bounded by 9.0 x 10735, The idea is to use triple
tabulation, applying Case 1 to each of the 32-bit output
characters.

Recall that we only need a single universal 100-unique func-
tion h for each set of parameters. Trusting some randomly
filled memory to represent such a 100-unique function as in
Theorem 5 is extremely safe.

B. Siegel’s highly independent hashing

Siegel’s study on hashing [5] considered the fundamental
trade-offs between independence, representation space, and
the time it takes to compute the hash of a key.

Lower bound: Siegel’s lower bound [5, Theorem 3.1]
is in Yao’s [13] powerful cell probe model. To get clean
bounds, he assumes that the domain of a word or cell is no

93

bigger that of a single hash value. Trivially this means that
we need at least k cells to get independence k.

The representation is an arbitrary function of the random
seed. If the representation has s cells, an equivalent formu-
lation is that the contents of the s cells follow an arbitrary
distribution.

The querier is given the key. To compute the hash value,
he can probe the cells of the representation. He is only
charged for these cell probes. His next move is an arbitrary
function of the key and the cells he has read so far: he can
either pick a cell based on this information, or output the
hash value.

Siegel shows that if the representation uses u'/¢ cells, and
the query phase makes ¢ < c probes, then the hash function
computed can be at most t-independent. His argument is
very robust, e.g., with no change to the asymptotics, he can
allow some quite substantial bias in the independence, look
at average query time, etc.

Upper bounds: Siegel’s framework for upper bounds is
similar to what we already described, but simpler and in that
he is not “position sensitive”: Given a function f : U — W9,
he considers the unbalanced bipartite graph with the keys
from U on the left-hand side, and output characters from ¥
on the right-hand side (on our right-hand side, we had the
position output characters from V = [d] x ¥). A key © € U
has the d neighbors f(x)o,. .., f(x)4—1 that may not all be
distinct. He says that f is k-peelable (corresponding to k-
unique) if every key set X of size at most k£ has a unique
output character. Here x,y € X share an output character
if f(x); = f(y); even if i # j. He uses a single character
table 7o : ¥ — R, and defines 7 : ¥¢ — R by

r(z) = EB ro(z;).

J€ld]

3

Siegel proves [5, Lemma 2.6] that if f is k-peelable, and
ro : ¥ — R is random, then 7 o f is k-independent. Note
that the space of r is independent of d since ry uses only
a single character table taking space |¥|. It does, however,
take d lookups to evaluate (3). The problem is to find the
k-peelable function f.

Let u = |U| and u!/¢ = |¥|. For the existence of a k-
peelable function, Siegel [5, Lemma 2.9] argues that a fully
random f : U — U? is likely to be a good expander from U
to U if d > 6¢. More precisely, with probability 1 —O(1/u),
for k = u'/(2¢), he gets that every set X of size |X| < k
has more than d|X|/2 neighbors. He also notes [5, Lemma
2.8] that if X has more than d|X|/2 distinct neighbors, then
some of them have to be unique, so f is also k-peelable.

Representing a fully random f would take space u, but
existence is all that is needed for upper bounds in the
abstract cell-probe model. We can simply use the unique
lexicographically smallest k-peelable F' = min{f : U —
U? | f is k-peelable}. The querier can identify F on-the-fly
without any probes. The representation only needs to include

the random 7o which takes u'/¢ space. The hash r(F(z))
of a key x is computed with d = O(c) probes to ry, and
the independence is k = u'/(2¢), The number of probes is
within a constant factor of the lower bound which says that
with ©'/¢, we need at least ¢ probes for any independence
above c.

To get an implementation on the word RAM [5, §2.2],
Siegel makes a graph product based on a small random graph
that can be stored in space u'/¢. Assuming that the random
graph has sufficient expander properties, the product induces
a u1/¢*) peelable function f : U — WO, This leads
to a u2(1/¢")independent hash function represented in u!/¢
space. Hash values are computed in O(c) ¢ time. It should be
noted that Siegel’s focus was the case where ¢ = O(1), and
then he does get uf*(M)-independence in O(1) time, but here
we consider ¢ = w(1) in order to qualify the dependence on
c.

The RAM implementation of Siegel should be compared
with our bounds from Theorem 4: 4*(1/¢)-independent hash-
ing using o(u'/¢) space, computing hash values in o(c'¢°)
time. Our independence is significantly higher—essentially
as high as in his existential cell-probe construction—and we
are almost exponentially faster. We should also compare with
Corollary 3: u®(1/*)-independent hashing using o(u!/°)
space, computing hash values in o(c) time. This is the same
independence as an Siegel’s RAM implementation, but with
the optimal speed of his existential cell probe construction.

On the technical side, recall that Siegel’s k-peelability
is not position sensitive. This is only a minor technical
issue, but being sensitive to positions does yield some
extra structure. In particular, we do not expect the simple
tabulation function from Theorem 1 to be k-peelable without
the positions.

C. Other related work

Siegel states [5, Abstract] about his scheme that it is “far
too slow for any practical application”. This and the O(c) ¢
evaluation time has lead researchers to seek simpler and
faster schemes. Several works [6], [7], [8] have been focused
on the case of smaller independence k. These works have
all been position sensitive like ours. Fix ¥ = [u!/¢]. We are
looking at functions f : U — ¥?, to be composed with a
simple tabulation hash function 7 : ¥¢ — R. The evaluation
time is O(d), so we want d to be small.

Dietzfelbinger and Woelfel [6, §5] pick d 2-independent
hash functions fy, ..., fq—1 : U — V. This yields a function
f U — U? defined by f(x) = (fo(x),..., fa1()).
Composing f with a random simple tabulation function
h : W% — R, they show that the result is close to k-
independent if d > kc.

Thorup and Zhang [8] found an explicit deterministic
construction of a k-unique f which also has better constants
than the scheme from [6]. By Lemma 2, the resulting
hash function is exactly k-independent. Simple tabulation

94

is by itself 3-independent, but [8] is motivated by appli-
cations needing 4 and 5-independence. For £ = 5 and
U = [u!/¢41], [8] gets down to d = 2¢ — 1. For general F,
using ¥ = [u!/¢], [8] gets d = (k — 1)(c — 1) + 1.

Klassen and Woelfel [7] focus mostly on ¢ = 2, where
for arbitrary k they get d = (k + 1)/2. For general ¢, their
bound is d = [25£ (k —1)](c — 1) + 1.

We note that the twisted tabulation in [14] has a similar
flavor to the above schemes, but it does not yield indepen-
dence above 3. The main target of [14] is to get strong
Chernoff style bounds.

The above works [6], [7], [8] thus need d = Q(kc) for
independence k. This contrasts our Theorem 1 which gets
d = O(c) with independence u*(*/¢). Apart from the case
¢ = 2, k =5 from [8], our new scheme is probably also
the easiest to implement, as we are just applying simple
tabulation twice with different parameters.

There are also constructions aimed at providing good
randomness for a single unknown set S of size n [15],
[16]. In particular, Pagh and Pagh [16] have a two-part
randomized construction of a constant time hash function
h that uses O(n) space so that for any given set S of size
n, if Part 1 does not fail on S, then Part 2 makes h fully
random on S. We have the same two-parts pattern in our
double tabulation where Part 1 generates a random simple
tabulation function that we hope to be k-unique on the whole
universe, and Part 2 composes this function with another
random simple tabulation function r. If Part 1 succeeds,
the result is k-independent. A principal difference is that
any concrete fixing of Part 1 from [16] fails for many
sets .S, so the success probability of Part 1 in [16] is not
universal; otherwise this would have been an n-independent
hash function. From a more practical perspective, often
we only need, say, logn-independence, and then double
tabulation with universe reduction and small character tables
in cache is much simpler and faster than [16]. In fact,
[16] uses Siegel’s [5] highly independent hash functions
as a subroutine, and now we can instead use our double
tabulation. Double tabulation fits very nicely with the other
use of random tables in [16], making the whole construction
of full randomness for a given set .S quite simple. It should
be noted that [6] have found a way of bypassing the need of
[5] in [16]. However, our double tabulation is even simpler,
and it replaces the use of [5] in all applications.

II. THE BASIC ANALYSIS

The next two sections are devoted to the proof of Theo-
rem 1. For now, we assume that all character tables are fully
random, leaving the relaxation to k-independent character
tables till the very end.

By an input position character we mean a value from [c] x
®. Notationally, we can then view a key = (zg,...,Tc—1)
as the set of input position characters: {(0,x),...,(c —
1,Z.—1)}. We can now specify h as a single table from

input position characters [c] x ® to vectors h(a) € U4, that
is, if (a,i) = a € [] x @, then h(a) = h;[a]. This view
induces a function h on arbitrary sets x of input position

characters:
h(z) = @) h().

acx

“

Note that when x is the set corresponding to a key, (4)
agrees with (2). We define an output index as a pair (a, j) €
([e] x ®) x [4] indexing the individual output character h(c);.

We want to show that the if we assign h : [¢] x & — ¥
at random, then there is only a small probability that there
exists a set X C ®°, |X| < k < |¥|Y/0), violating (a) or
(b) in Theorem 1.

Efficient coding: To specify h, we have to specify
a vector of d output characters from ¥ for each of the
¢|®| input position characters. Based on a violating set
X, we will construct an efficient coding of some of the
output characters. The number of such efficient codings will
be much smaller than the number of ways we can assign
the output characters coded. Efficient codings are therefore
rarely possible, hence so are the violating sets.

Our coding will not describe the set X, and it is important
that decoding can be done without any knowledge of X,
except that | X| < k. The coding starts by specifying a list
L with some of the input position characters from the keys
in X. We will now go through the input position characters
o € L in the order that they appear in L. For each o, we will
specify the d output characters h(c);, j € [d]. Some of these
output characters will be derivable from previously specified
output characters, leading to a more efficient encoding:

Definition 6: We say the output character h(«); is deriv-
able if there exist keys x,y € X such that:

o The symmetric difference xAy = {(4,2;), (i,v;)|¢ €
[c], z; # y;} of x and y is contained in L.
e « is last in L among the input position characters in
xA\y.
o h(x); = h(y);, or equivalently, h(zAy); = 0.
In our representation, we do not need to know the keys
z and y. We only need to know the symmetric difference
A =xAy C L. We call (A,j) an equation as it represents
the information that h(A); = 0. The output index specified
by the equation (A, j) is the pair («,j) where « is the last
input position character from A in the list L. The equation
derives the output character

hi(a) = @{n(B); | B € A\ {a}}.

The input position characters g all precede a in L, so the
output characters h(3); have all been specified. We do not
want more than one equation specifying the same output
index.

When the list L of length ¢ is given, the set A can be
picked in less than ¢?¢ ways, so the number of possible
derivations is less than ¢2¢d. If ¢?¢d < ||, then this is a

95

win. Indeed this is the case because £ < kc < ¢|W|'/(5¢)
and (¢ + d)¢ = |¥|°(Y). However, we will have to make a
lot of derivations to make up for the fact that we first have
to specify the ¢ input position characters in L. In Section III
we will show that a violating set X implies the existence
of a list L with many derivable output characters, e.g., a
violation of (a) in Theorem 1 will yield |L| d/(2¢) derivable
output characters.

Below, for a given parameter ¢, we study the probability
P of finding a list L of length at most kc with at least g|L|
derivable output characters. Below we will prove that

P?=o(|®/|w]).)

There may be much more than ¢|L| output characters
derivable from L. However, in our encoding, we also only
store equations for exactly [¢|L|] of them.

Coding and decoding: To summarize, the exact com-
ponents of our code are:

1) A list L of ¢ input position characters.

2) A set of M of [¢/] equations (A, j) where A C L and
j € [d]. Let I be the set of output indices specified
in these equations. The output indices should all be
distinct, so |I| = [¢f].

3) A reduced table H that for each (a, j) € (Ax [d])\1,
specifies the output character h(a); € 0.

Above, each component presumes that the previous com-
ponents are known, so L is known when we specify M,
and L, M, and hence I is known when we specify H.
Together, this specifies L and h|L. The decoding of h|L
goes as follows. From L and M we compute the set I of
output indices («, j) specified by M. For all other output
indices (o, j) € L x [d], we find the output character h(c);
in H. To get the remaining output characters we run through
the input position characters o € L in the order they appear
in L. For each « and j € [d], we check if (o,j) € I. If
so, we take the corresponding equation (A, j) € M, and set
ha); = h;(A\ {o}).

Bounding the probabilities: Let the above coding be
fixed, and consider a random simple tabulation function h.
The probability that our coding matches h(c); for all output
indices (a, j) € L x [d] is exactly 1/|¥|*e. A union bound
over all possible codes will imply that none of them are
likely to match a random h.

Let us first assume that ¢ is fixed, that is, we restrict our
attention to codes where |L| = ¢. The number of choices for
L is bounded as choices;(L) < (c|®|)*. Let choices}(M)
be the number of choices for M given L. We already saw
that the number of possible equations is bounded by £2¢d.
The number of ways we can pick [¢f] of these is trivially
bounded as

choices? (M) < (£%¢d)!*1.

Finally, we need to pick H with an output character for
each output index in (L x [d]) \ I. There are {d — [q/]

output characters to pick, leaving us |\1,|dequ] choices for
H. All in all we have choices,(L)-choices] (M) - |®|¢d—laf]
possible codes with the given ¢. By the union bound, the
probability that any of them match a random h is

choices(L) - choices] (M) - | @ [td—Tat]

P! = TG
_ choicesy(L) - choicesy (M) ©
|W|lqt]
02¢d [qf] 2¢d q
< (c|®|)* < (c|®|)* 7
eoi (1) <o () @
Strictly speaking, the last inequality assumes £od < 1.

) [V
However, if % > 1, the whole bound is above 1, and hence
a trivial upper bound on P,/ Since £ < ck < c|¥|/ (), we
have

02¢q
0|

<mw(ftowwww#wf

We will now use our assumptions ¢ = |®[°(1) and (c +
d)¢ = |¥|°(), We can also assume that |®]> < |¥|?, for
otherwise (5) is a trivial probability bound above 1. Hence
c=|®[°M = |¥|°9), 50 ¢(c**d)? = |¥|°(9), Hence

a5 o ¢
P < (|0 jw| /o)

However, we must have ¢ > 2, for otherwise there cannot
be any equations. Therefore

ck
P1< Y B =of|0/u)9).
£=2
This completes the proof of (5).

Finally, as stated in Theorem 1, we need to argue that we
do not need the character tables of & to be fully random. For
k < |®|/6) it should suffice that the character tables are
k-independents and independent of each other. The simple
point is that the violating set X is of size |X| < k, so it
involves at most k input characters for each position, and
L can only use these input characters. With k-independent
hashing, the assignment of output characters to the input
characters in L is completely random, so we do not need
any changes to the above analysis.

III. MANY DERIVABLE OUTPUT CHARACTERS.

The goal of this section is to prove that if there is a set
X violating (a) or (b) in Theorem 1, then we can construct
a list L with many derivable characters.

Theorem 7: Consider a simple tabulation function h :
o — v,

(@) If there is a key set X with no unique output position
characters, then there is a list L with some of the input
position characters from X so that at least |L| of the
output characters from L are derivable.

96

(b) If for some € < 1 there is a key set X with at most (1—
e)d| X | distinct output position characters, then there is

a list L with some of the input position characters from

X so that at least £2|L| of the output characters from

L are derivable.

Proof that Theorem 7 implies Theorem 1: Before
proving Theorem 7, we note that it trivially implies Theorem
1, for if there is a set X violating Theorem 1 (a), then
X satisfies Theorem 7 (@), so there is a list L with & |L]
derivable characters. By (5) the probability of this event is
P/(20) < |®|?/|W|%(2¢), Likewise Theorem 1 (b) follows
from Theorem 7 (b). B

Proof of Theorem 7: We assume that we have a set X
satisfying the conditions of (@) or (b). For a uniform proof,
if the condition of (a) is true, we set ¢ = 1, overruling a
possibly smaller ¢ from (b). Set ¢ = ;—‘i. We will identify
the list L so that at least g|L| of the output characters from
L are derivable.

Let aq,...,ap- be the distinct input position characters
from keys in X listed in order of decreasing frequency in
X. Let n; be the number of keys from X containing ;.
Then nq > no > --- > ny+ and Zle n; = c|X|.

Let L<y be the prefix a1, . .., ay. The list L in the theorem
will be L<, for some ¢ < ¢*. Let ¢, be the number of
new derivable output characters when «y is added to L<,—
creating L<,. Then

pe=1{j€ld|zyeX:
ag € xAy C L<g, h(z); = h(y);}H

The list L<, satisfies the theorem if Zf:l w; > qf. To prove
that this is true for some ¢ < ¢*, we study a related measure

v<e=H(z,j) € X x[d] [Ty € X\ {z}:
Ay C L<g, h(z); = h(y);}H
Then
v<ee = {(2,5) € X x[d] [Ty € X\ {z}:
h(z); = h(y);}|
counts with multiplicity the number of non-unique output
characters from X.

Lemma 8: ~y<¢+ > ed|X]|.

Proof: Each key z € X has d output position charac-
ters, so with multiplicity, the total number of output position
characters from X is d|X|. In case (a) these are all non-
unique and we have ¢ = 1.

In case (b) we have at most (1 — £)d|X]| distinct output
characters from X. The number of unique output position
characters must be smaller, so with multiplicity, the total
number of non-unique output characters from X is bigger

than ed| X|. [|
The following key lemma relates the two measures:
Lemma 9: For £ =2,...,0%,
V<o = V<e—1 < 200 g ®)

Proof: We want to count the pairs (z,7) € X x [d] that
are counted in y<, but not in y<,_;. First we consider “c-
pairs” (z, j) where = contains « and there is a “witnessing”
key y € X not containing o, such that Ay C L<, and
h(z); = h(y);. We note that in this case (o, j) is derivable,
so j is counted in y,. The number of ay-pairs (z, j) is thus
bounded by @y ny.

With the above x and y, we would also count the “wit-
nessing” pair (y, j) if (y, j) is not already counted in y<,_;.
Suppose we have another pair (z, j) witnessing (z, 7). Thus
xAy,xAy C L<, and h(z); = h(y); = h(z),;. We want to
show that zAy C L<y_4, hence that both (y, j) and (%, j)
were already counted in y<y—i.

All input position characters in y/\z come in pairs (i, y;),
(i, 2i), yi # 7. At least one of y; and z; is different from x;.
By symmetry, assume y; # ;. Then (i,y;), (i, z;) € yAz C
L<,. Therefore (i,2) € L<, if z; = x;; but otherwise z; #
x; and (i,2;),(4,2;) € zAx C L<y. In either case, we
conclude that (4,y;), (4, 2;) € L<g. But oy is in neither y
nor z, so it follows that (i,y;), (4, 2;) € L<¢—_1, hence that
yAz C Ly_1. We conclude that both (y, j) and (z,j) were
counted in y<¢_1, or conversely, that we for each cy-pair
(z,4) have at most one witnessing pair (y, j) that is counted
in y<¢ — y<e-1.

We conclude that the number of witnessing pairs is no
bigger than the number of «-pairs, hence that y<, —vy<¢—1
is at most 2y ny. |

By (8), for £ =1,...,¢%,
¢
V< <2 prmny.

i=1

C))

Recall that L<, satisfies the statement of the theorem if
Zle @w; > gf. Assume for a contradiction that there is a
q' < g, such that for all £ =1,...,¢%,

¢

Z o < q'L.

i=1

10)

The n, are decreasing, so the ¢, values that satisfy (10) and
maximize the sum in (9) are all equal to ¢’. Thus (9) and
(10) implies that

J4 14 14
Yo <2 pene <2 g'ng <20y ni.
i=1 i=1 i=1

In particular, we get
o
V<o < Qani = 2¢|X|e.
i=1
Since ¢ = ed/(2c), this contradicts Lemma 8. Thus we
conclude that there is an ¢ such that L, satisfies the
theorem. This completes the proof of Theorem 7, hence of
Theorem 1.]

an

97

IV. HIGHER INDEPENDENCE WITH RECURSIVE
TABULATION

We will now use recursive tabulation to get the higher
independence promised in Theorem 4:

Let v = |U| and ¢ = uo®), With universal

probability 1 —o(1/u'/¢), using space o(u'/¢), we

can get u*Y/°)-independent hashing from U to R

in o(c'®2¢) time.

Proof of Theorem 4: For simplicity, we assume that u
is a power of a power of two. Let £ = [lgoc] + 1, ¢
2¢, and ® = [u/¢']. The independence we aim for is k =
/10"y — 4, Q(1/c)

Our construction is a recursion of depth . On level i =
0,...,£—1 of the recursion, the input key universe is U(;) =

[u/2'], and we want a k-independent hash functions U, () =
R. The set of input characters will always be ® = [u!/¢], so
on level i, we have c(;) = ¢’/ 2% input characters. We apply
Theorem 1 with d(;) = 12c¢(;) output characters from W ;) =
U(i+1)- With universal probability 1 —[®|?/®¢,, Theorem 1
gives us a simple tabulation function h;y : ®°O — \Ili())
with uniqueness

|\I/(i)|1/(5c“)) _ (u1/2i+1)1/(5(c /24) > ul/(lOc’) —k

as desired. To get k-independence from U to R, as in
Lemma 2, we compose h ;) with a simple tabulation function
(i) \I!El;)) — R where the character tabulation functions
T@),; - Y(;) — R have to by k-independent and independent

of each other. Here W(;) = U1y, and the re ; are
constructed recursively. At the last recursive lerl, the output
characters are from W(,_y) = Uy = [u}/?] = ®. We

will store an independent random character table for each
of these output characters.

On each recursive level ¢ < ¢, we can use the same
universal k-unique simple tabulation function Ay : @ —

d .
14 i()). However, on the bottom level, we need independent
random character tables for all the output characters. The
total number of output characters on the bottom level is

-1
D=]ldw=
=0

Handling all of these, on the bottom level, we have a single
large simple tabulation function r : ®” — R where the D
character tables are fully random tables supporting look-ups
in constant time.

On recursive level i < /, the size of the intermediate
ip1 12¢/2°
wul/?

£—1

[]12¢ /2" < O(veye-.
=0

domain \IJ?;;) is (= 45, The elements from
this domain thus use O(c) words. It follows that the space
used by h(;) is O(c(;)|®|c), and that its evaluation time from
(2) is O(c(ye) = O(c?/2Y).

We only represent a single universal function h ;) on each
level i < ¢, to the total space is clearly dominated by the

D tables on the bottom level. The total space is therefore
O(D|®]) = O(v/e)'=: culle’ = o(ul),

The evaluation time is actually dominated by the calls
from level ¢ — 1. Formally a recursive evaluation from the
last recursive level i < ¢ takes time

T(0) = 0(1)
T(i) = O(c?/2") + d»T(i +1) for i = 0,...,0 — 1
Our evaluation time is thus 7'(0) = O(cD) = o(c'8°).

The probability that any of the universal h; is

not k-unique is bounded by >;Zjo(|®[2/¥¢)
o(|®?/ ¥,) = o(1/|®|*) = o(1/ul/).

Let k£ = u®(1/¢) be the independence obtained in the above
proof. Consider the ¢ — 1 recursive levels. They compose
into a function f : U — ®P, and we know that o f is
k-independent. The interesting point here is that we do not
expect f to be k-unique.

In [8, Proposition 2], or identically, [7, Theorem 3], is
given an exact characterization of the functions f : U —
P that yield k-independence when composed with random
simple tabulation hashing b’ : ®” — R. The requirement is
that every set X of size at most X has some output character
appearing an odd number of times. Our f must satisfy this
k-odd property.

V. COUNTING WITH CARE

Over the next two sections, we are now going tighten
the analysis from Section II. In particular, this will allow
us to derive the concrete values from Theorem 5 with no
reference to asymptotics. As in Section II, we parameterize
our analysis by the length ¢ of the list L of input characters.
Later we will add up over relevant lengths ¢ < ¢* = kc.
Using Theorem 7 we fix ¢ = ed/(2¢) with € = 1 if we are
only interested in uniqueness.

Removing order from the list: Our first improvement is
to argue that we do not need store the order of the list L,
i.e., we can just store L as a set. This immediately saves us
a factor /!, that is, choices,(L) < (c|®])¢/¢! < (ec|®|/¢)".

With L only a set, an equation (A, j), A C L, j € [d] still
has the same denotation that h(A); = 0. However, it was
the ordering of L that determined the specified output index
(a, j) with « being the last element from A in L. Changing
the ordering of L thus changes the specified output indices.
This may be OK as long as no two equations from M specify
the same output index.

When L is only given as an unordered set and when
we are further given a set M of equations, we implicitly
assign L the lexicographically first order such that no two
equations from M specify the same output index. This
lexicographically first order replaces original order of L that
we found in Section III. It redefines the set I of output
indices specified by M, hence the set (L X [d]) \ I of output
indices that have to be covered by the table H.

98

Equation count: We will now give a better bound on the
number choicesy(M) of possibilities for our set M of [¢/]
equations. We know that our equations are of the form (A4, j)
where A = xAy C L for keys z,y € X. More specifically,
we have A = xAy = {(x4,9), (v5,9)|i € [c],z; # y;}. Let
L; be the set of input position characters from L in position
7 and let ¢; be their number. Let us assume for now that
¢; > 2 for all i € [c]. If this is not the case, we will later
derive even better bounds with ¢’ < ¢ active positions.

To describe A, for each i € [c], we pick either two
elements from L; or none. Since ¢; > 2, this can be done
in (22) +1 < ¢2/2 ways. The total number of ways we can
pick A is thus

< [T ér2 < ey 2.

1€]c]

choicesy .(A)

For an equation, we also need j € [d]. We need [¢f] >
led/(2¢) equations for M. We conclude that

choicesy (M) < (ChOiceSe CW(A) : d)
s(f/c /2 d)[::
(st

< (e(t/e)e =t J(e2e 1)) .

Plugging our new bounds into (6), we get

choices, (L) - choicesg (M)
|0 [q€]

< (ec|®|/0)" - (e(t/)> /(257 w])) "]

YA
< ((ecl®|/) - (e(e/e)* /(2 w))))
(teelal/6) - (e(e/e)*= (2=) /).

As with (7), we note that replacing the exponent [¢/¢] with ¢¢
is valid whenever the probability bound is not bigger than 1.
Above we assumed that L contained two characters in all ¢
positions. In particular, this implies ¢ > 2c. If this L contains
less than two characters in some position, then that position
has no effect. There are () ways that we can choose ¢’

active positions, so the real bound we get for ¢ < /* is:

> ((2) 3)

c’'<c {=2c'

The above bound may look messy, but it is easily eval-
uated by computer. For k-independence, we just need k-
uniqueness, so € = 1. As an example, with 32-bit keys,
c=2,d =20, and £* = 32, we get a total error probability
less than 2.58 x 1073, This only allows us to rule out
k = ¢*/c = 16, but in the next section, we shall get up
to k£ = 100 with an even better error probability.

PE,CS

VI. CODING KEYS

Trivially, we have ¢ < kc since kc is the total number
of input position characters in the k at most keys. However,
as ¢ approaches k, we can start considering a much more
efficient encoding, for then, instead of encoding equations
by the involved input position characters, we first encode
the k keys, and then get a much cheaper encoding of the
equations.

Our goal is to find efficient encodings of symmetric
differences Ay C L where z,y € X. We would like to
use L to code all the keys in X. With that done, to describe
x /Ay, we just need to reference = and y. A small technical
issue is that x € X may contain characters not in L. As in
Section V, we assume that each position ¢ € [c] is active
with least two input position characters (¢,a) € L. Out of
these, we pick a default position character (i, a;). Now if
key x contains (i,z;) ¢ L, we replace it with (7, a;). Let 2/
the result of making these default replacements of all input
position characters outside L. Then =’ C L. Moreover, given
any two keys z,y € X, if zAy C L, then 2’ Ay’ = z/\y.
Each key 2’ is now described with ¢ characters from I,
one for each position, and we get the maximum number of
combinations if there are the same number in each position,
so there are at most (¢/¢)¢ combinations.

Instead of just coding X' = {2’ | z € X}, for simplicity,
we code a superset Y/ D X’ with exactly k keys. The
number of possible Y’ is bounded by

()< (4

An equation is now characterized by two keys from X’
and an output position j € [d], leaving us (’;)d < k%d/2
possibilities. We can therefore pick [¢f] equations in less

than
<k2d/2> § <e(k2d/2)>fq“ - <e(k20)>“‘”
[q0] [ql] A\ el
ways. Our probability bound for a given £ is thus
e\ k 2 [af]
o (ell/c) e(k?c)
ey (“G4) (S

< (ec|®|/0)* (6(5£C)C)k <Z(f;c|)>5de/(%).

k
QZ,C

We are always free to use the best of our probability bounds,
so with c active positions, the probability of getting a list L
of size £ is bounded by min{P;.,Q; }. Allowing ¢ < ¢
active positions and considering all lengths £ = 2¢/, ..., kc/,

we get the overall probability bound

c ke
Z (CC/> Z min{P€7c’7 QZC’}

c'=1 {=2c’

(12)

99

Proof of Theorem 5: To prove Theorem 5, we used
¢ = 1 for uniqueness, and evaluated the sum (12) with the
concrete parameters using a computer. [|

REFERENCES

[1] M. N. Wegman and L. Carter, “New classes and applications
of hash functions,” J. Comput. Syst. Sc., vol. 22, no. 3, pp.
265-279, 1981, announced at FOCS’79.

[2] L. Carter and M. N. Wegman, “Universal classes of hash
functions,” J. Comput. Syst. Sc., vol. 18, no. 2, pp. 143-154,
1979, announced at STOC’77.

[3] B. Kernighan and D. Ritchie, The C Programming Language,
2nd ed. Prentice Hall, 1988.

[4] A. I. Dumey, “Indexing for rapid random access memory
systems,” Computers and Automation, vol. 5, no. 12, pp. 6-9,
1956.

[5S] A. Siegel, “On universal classes of extremely random
constant-time hash functions,” SIAM J. Comput., vol. 33,
no. 3, pp. 505-543, 2004, announed at FOCS’89.

[6] M. Dietzfelbinger and P. Woelfel, “Almost random graphs
with simple hash functions,” in Proc. 25th STOC, 2003, pp.
629-638.

[7] T. Q. Klassen and P. Woelfel, “Independence of tabulation-
based hash classes,” in Proc. 10th LATIN, 2012, pp. 506-517.
[8] M. Thorup and Y. Zhang, “Tabulation-based 5-independent
hashing with applications to linear probing and second mo-
ment estimation,” SIAM J. Comput., vol. 41, no. 2, pp. 293—
331, 2012, announced at SODA’04 and ALENEX’10.

[9] K. S. Kedlaya and C. Umans, “Fast polynomial factorization
and modular composition,” SIAM J. Comput., vol. 40, no. 6,
pp. 1767-1802, 2011.

[10] A. L. Zobrist, “A new hashing method with application for
game playing,” Computer Sciences Department, University of
Wisconsin, Madison, Wisconsin, Tech. Rep. 88, 1970.

[11] M. Patrascu and M. Thorup, “The power of simple tabulation
hashing,” J. ACM, vol. 59, no. 3, p. Article 14, 2012,
announced at STOC’11.

[12] V. Guruswami, C. Umans, and S. P. Vadhan, “Unbalanced
expanders and randomness extractors from Parvaresh—Vardy
codes,” J. ACM, vol. 56, no. 4, 2009, announced at CCC’07.
[13] A. C.-C. Yao, “Should tables be sorted?” J. ACM, vol. 28,
no. 3, pp. 615-628, 1981, announced at FOCS’78.

[14] M. Pétragcu and M. Thorup, “Twisted tabulation hashing,” in
Proc. 24th SODA, 2013, pp. 209-228.

[15] M. Dietzfelbinger and M. Rink, “Applications of a splitting
trick,” in Proc. 36th ICALP, 2009, pp. 354-365.

[16] A. Pagh and R. Pagh, “Uniform hashing in constant time and
optimal space,” SIAM J. Comput., vol. 38, no. 1, pp. 85-96,
2008, announced at STOC’03.

