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Abstract— The dynamic approximate membership problem
asks to represent a set S of size n, whose elements are provided
in an on-line fashion, supporting membership queries without false
negatives and with a false positive rate at most ε. That is, the
membership algorithm must be correct on each x ∈ S, and may
err with probability at most ε on each x /∈ S.

We study a well-motivated, yet insufficiently explored, variant
of this problem where the size n of the set is not known in advance.
Existing optimal approximate membership data structures require
that the size is known in advance, but in many practical scenarios
this is not a realistic assumption. Moreover, even if the eventual
size n of the set is known in advance, it is desirable to have the
smallest possible space usage also when the current number of
inserted elements is smaller than n. Our contribution consists of
the following results:

• We show a super-linear gap between the space complexity
when the size is known in advance and the space complexity
when the size is not known in advance. When the size is
known in advance, it is well-known that Θ(n log(1/ε)) bits
of space are necessary and sufficient (Bloom ’70, Carter et
al. ’78). However, when the size is not known in advance, we
prove that at least (1−o(1))n log(1/ε)+Ω(n log log n) bits
of space must be used. In particular, the average number of
bits per element must depend on the size of the set.

• We show that our space lower bound is tight, and can even
be matched by a highly efficient data structure. We present a
data structure that uses (1+o(1))n log(1/ε)+O(n log log n)
bits of space for approximating any set of any size n,
without having to know n in advance. Our data structure
supports membership queries in constant time in the worst
case with high probability, and supports insertions in expected
amortized constant time. Moreover, it can be “de-amortized”
to support also insertions in constant time in the worst case
with high probability by only increasing its space usage to
O(n log(1/ε) + n log log n) bits.

1. INTRODUCTION

Dictionaries play a fundamental role in the design and

analysis of algorithms, enabling representation of any given

set S while supporting membership queries. For sets of size

n that are taken from a universe U of size u, any dictionary

must clearly use at least log
(
u
n

)
= n log(u/n)+Θ(n) bits of

space1. Whereas dictionaries offer exact representations of

sets, in many realistic scenarios it is desirable to trade exact

representations with approximate ones in order to reduce

space consumption. This was observed already by Bloom

[5], whose classical design of a Bloom Filter provides a

simple and practical alternative to dictionaries.

1Throughout this paper all logarithms are to the base 2.

Bloom’s data structure solves the problem known these

days as the approximate membership problem. This problem

asks to represent any given set S of size n while supporting

membership queries without false negatives, and with a false

positive rate at most ε. That is, the membership algorithm

must be correct on any x ∈ S, and may err with probability

at most ε on any x ∈ U \ S (where the probability is

taken over the randomness used by the data structure). The

approximate membership problem can be considered in the

static setting where the set is specified in advance, or in the

dynamic setting where the elements of the set are specified

one by one in an on-line fashion.

Bloom’s data structure uses only log e ·n log(1/ε) bits of

space (and solves the problem even in the dynamic setting),

and Carter et al. [8] proved that this is essentially optimal:

Any approximate membership data structure must use at

least n log(1/ε) bits of space, even in the static setting. Over

the years a long line of research has shown how to design

approximate membership data structures that are essentially

optimal in both their space utilization and efficiency of their

operations. We refer the reader to the survey of Broder and

Mitzenmacher [7] for various applications for approximation

membership data structures, and to Section 1.2 for an

overview of the known results.

Approximating sets of unknown sizes. The vast majority

of existing approximate membership data structures require

that the size n of the set S to be approximated will be

known in advance. In many practical scenarios, however, it is

unrealistic to assume that the size is known in advance [16].

Moreover, even if the eventual size n of the set is known in

advance, it is desirable to have the smallest possible space

usage also when the current number of inserted elements is

smaller than n.

In this paper we study the well motivated, yet in-

sufficiently explored, variant of the dynamic approximate

membership problem where the size n of the set is not

known in advance. We refer to this problem as approximate
membership for sets of unknown sizes. This problem is

parameterized by u ∈ N and 0 < ε < 1, and asks to design a

data structure offering three algorithms: Initialize, Insert, and

Membership. Upon initialization via the Initialize algorithm,

the data structure is presented with a sequence of elements

that are taken from a universe U of size u. The elements

are specified in an on-line fashion, and each element is
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processed using the Insert algorithm that updates the internal

state of the data structure. The Membership algorithm should

satisfy the following two requirements:

• No false negatives: For any n ≤ u, S ⊆ U of size n,

and x ∈ S, the Membership algorithm always outputs

Yes on x after the elements of S are processed by the

Insert algorithm.

• False positive rate at most ε: For any n ≤ u, S ⊆ U of

size n, and x /∈ S, the Membership algorithm outputs

Yes on x with probability at most ε after the elements

of S are processed by the Insert algorithm (where the

probability is taken over the randomness of the data

structure).

Gradually-increasing space consumption. For the approx-

imate membership problem when the size n of the set is

known in advance, it is well-known that Θ(n log(1/ε)) bits

of space suffice even in the dynamic setting, and are essential

even in the static setting (recall that a Bloom filter uses

O(n log(1/ε)) bits which is asymptotically optimal). That

is, the average number of bits for representing each element

is Θ(log(1/ε)) which is independent of the size of the set.

In this light, a natural question is whether this is also

the case when the size n is not known in advance, and

the data structure is required to work for sets of any size

n ≤ u. That is, we ask the following question: Is there a

dynamic approximate membership data structure that uses

space O(n log(1/ε)) for representing any set S of any size

n ≤ u? Somewhat surprisingly, this question was so far

addressed only from a practical perspective, and has not

been investigated from a foundational perspective. Moreover,

the data structures we could find in the literature [1], [20],

[16], [17], [28], [29] use space Ω(n log n) bits (and query

time Ω(log n) or Ω(log(1/ε))). These solution are somewhat

naive from an algorithmic point of view, and provide poor

asymptotic bounds.

1.1. Our Contributions

We present a lower bound and matching upper bounds

on the space complexity of approximate membership for

sets of unknown sizes. Our lower bound shows that if the

size n of the size of the sets to be approximated is not

known in advance, then it is not possible to use an average

of O(log(1/ε)) bits per elements as in the standard case.

Specifically, we show a super-linear gap between the space

complexity when n is known in advance and the space

complexity when n is not known in advance. We prove the

following theorem:

Theorem 1.1 (Lower bound – informal). Any data structure
for approximate membership for sets of unknown sizes with
false positive rate ε must use space (1− o(1))n log(1/ε) +
Ω(n log log n) bits after some number of insertions n > uδ ,
for any arbitrary small constant 0 < δ < 1.

In particular, Theorem 1.1 states that the average number

of bits per element must be at least (1 − o(1)) log(1/ε) +
Ω(log log n) at some point in time while processing a not-

too-short sequence. We emphasize that in many practical

scenarios (see [7]) a typical false positive rate is a not-

too-small constant (e.g., ε = 1/10). For such a range of

parameters our lower bound states that the average number

of bits per element must be Ω(log log n) as opposed to

constant.

We then show that our lower bound is asymptotically tight

by presenting constructions with a space usage that matches

our lower bound up to additive lower order terms. We prove

the following theorem:

Theorem 1.2 (Upper bound – informal). There exists a
data structure for approximate membership for sets of
unknown sizes with false positive rate ε that uses space
(1+ o(1))n log(1/ε)+O(n log log n) bits for any sequence
of n > uδ insertions, for any arbitrary small constant
0 < δ < 1.

Our first construction (which can be viewed as a warm-

up) is quite natural and uses a sequence of dynamic

approximate membership data structures of geometrically-

increasing sizes. It supports insertions in expected amortized

constant time, but membership queries are supported in

time O(log n). Our second construction is significantly more

subtle, showing that in fact our space lower bound can be

matched by a highly efficient data structure supporting mem-

bership queries in constant time in the worst case with high

probability (while still enjoying expected amortized constant

insertion time as in our first construction). Moreover, we

show that it can be “de-amortized” to support also insertions

in constant time in the worst case with high probability

by increasing its space usage from (1 + o(1))n log(1/ε) +
O(n log log n) bits to O(n log(1/ε)+n log log n) bits (with

a rather small leading constant). We refer the reader to Table

I for a summary of the different parameters of our construc-

tions, and to Section 1.3 for a high-level overview of the

main ideas underlying our lower bound and constructions.

Finally, we note that in both our lower bound and con-

structions we consider approximate representation of sets

whose size n is polynomially related to the universe size u
(i.e., n > uδ for any arbitrary small constant 0 < δ < 1).

This is rather standard for exact or approximate represen-

tation of sets as one can always apply a universe reduction

via universal hashing given any polynomial upper bound on

the number of elements.

1.2. Related work

Bloom filters. The elegant data structure proposed by

Bloom [5] naturally allows dynamic insertions, but uses

space that is a factor log e ≈ 1.44 larger than the information

theoretic lower bound of n log(1/ε) bits [8]. Another thing
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Space (bits) Insertion time Membership time

Construction 1 (1 + o(1))n log(1/ε) +O(n log log n) O(1) expected amortized O(log n)

Construction 2 (1 + o(1))n log(1/ε) +O(n log log n) O(1) expected amortized O(1)

Construction 3 O(n log(1/ε) + n log log n) O(1) w.h.p. O(1)

Table I
THE PARAMETERS OF OUR CONSTRUCTIONS.

to notice is that Bloom filters do not allow deletions from

S, as setting any bit to 0 could result in false negatives.

Deletion queries can be supported by using counting
Bloom filters [15], at the cost of an Ω(log log n) factor

increase in space usage. Deletions are supported in the sense

that the data structure will work correctly if no attempt is

made to delete a false positive, but by definition it is not

possible to prevent such deletions. Cohen and Matias [11]

present a way of decreasing the space overhead to O(n)
bits, and generalize approximate membership to approximate

multiplicity in a multiset.

Dictionary-based approximate membership. Already in

1978, Carter et al. [8] had presented a technique that would

lead to a similar result. They observed that maintaining the

multiset h(S), where h : [u] → [n/ε] is a universal hash

function [9], yields a solution with space n log(1/ε)+O(n)
bits if the set h(S) is stored in space close to the information

theoretic bound of log
(
n/ε+n

n

)
bits. If deletions are not

needed it suffices to store the set of distinct hash values

h(S). This dynamic set can be stored succinctly with all

operations taking O(1) time with high probability [3]. Dy-

namic multisets, and thus deletions, can be supported via a

reduction to the standard membership problem [25], at the

cost of amortized expected update bounds. A more practical

alternative was explored in [6].

Separation of on-line and off-line space requirements.
Dietzfelbinger and Pagh [13] showed how to approach the

n log(1/ε) space lower bound up to a o(n) term using

query time ω(log(1/ε)), in the case where ε is an integer

power of 2. Independently, Porat [26] achieved the same

result with constant query time. Recently, Bellazougui and

Venturini [4] showed how to eliminate the restriction on ε,
still maintaining constant query time.

Lovett and Porat [21] showed that these results for the

static case do not extend to the situation where dynamic

updates are allowed: An overhead of Ω(n/ log(1/ε)) bits is

required. The lower bound holds even if there are no queries

before the end of the insertion sequence. In other words, this

result implies that to build an approximate membership data

structure for a key set given as a data stream, it does not

suffice to use space close to the static size lower bound.

Dynamic space usage. The setting where space must depend

on the current size of the set is more demanding from

an upper bound perspective. In fact, the techniques for

this problem that we could find in the literature [1], [20],

[16], [17], [28], [29] lead to Ω(log n) or Ω(log(1/ε)) query

time, and a space overhead of Ω(n log n) bits. These data

structures share the idea of working with a sequence of

approximate membership data structures, all of which are

queried. If geometrically increasing capacity is chosen this

means that there will be Ω(log n) such data structures (of

course, if we have some initial capacity n0 this number

decreases to O(log(n/n0)), which might be fine in prac-

tical situations – but it is not asymptotically optimal). A

consequence of working with a series of approximations is

that the sum of corresponding false positive rates ε1, ε2, . . .
must converge to ε. For example, In [1] it is suggested to

achieve this by letting εi decrease geometrically with i. This

implies that εi = n−Ω(i), yielding Ω(n log n) space usage.

Dynamic perfect hashing and retrieval. An approach to

approximate membership in the static case is to store a per-

fect hash function that maps keys injectively to {1, . . . , n},
and then store a signature of log(1/ε) bits for each key

in an array, placed according to the perfect hash function.

More generally, a dynamic data structure for retrieval (e.g.

the Bloomier filters of [10]) allows us to make a dynamic

approximate membership data structure. As shown in [23]

both these problems require space Θ(n log log n) in the on-

line setting. However, the upper bounds have a fixed space

usage (up to constant factors), and hence do not allow the

kind of result we obtain.

1.3. Overview of Our Contributions

In this section we provide a high-level overview of the

main ideas underlying our lower bound and constructions.

The lower bound: From approximate membership to
compression. When dealing with dictionaries (i.e., with

exact membership as opposed to approximate membership),

it is quite simple to deal with the fact that the size of the

set S to be stored is not known in advance. Specifically, at

any point in time a dictionary stores a description of the

set S of elements that were inserted so far. Then, upon

inserting a new element x ∈ U \ S this description can

simply be updated to that of S′ = S ∪ {x}. The dictionary

can describe S and then S′ using the minimal, information-

theoretic, number of bits. Moreover, there are even time-

efficient solutions that gradually increase the size of the
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dictionary while offering constant-time operations in the

worst case together with an asymptotically-optimal space

consumption at any point in time (see, for example, the work

of Dietzfelbinger and auf der Heide [12]).

When dealing with approximate membership, however,

it seems significantly more challenging when the size of

the set S to be approximated is not known in advance. For

simplifying the following discussion we consider here de-
terministic approximate membership data structures, where

the probability of false positives is taken over the choice of

a uniformly sampled element (instead of over the internal

randomness of the data structure), but note that the exact

same ideas carry over to randomized ones. Specifically,

for using asymptotically optimal space, an approximate

membership data structure cannot afford to store an exact

description of the set S of elements that were inserted so

far. Instead, any particular state of the data structure may

be used for many sets other than S, and the result of the

Membership algorithm must be Yes on any element that

belongs to the union Ŝ of these sets. Upon inserting a new

element x ∈ U \ S, the data structure has to update the

description of the current superset Ŝ to the description of

some superset Ŝ′ of S′ = S ∪ {x}. Note, however, that the

data structure does not have access to the set S, but only to

the approximation Ŝ containing S. Therefore, it must hold

that Ŝ ⊆ Ŝ′ as any element of Ŝ might have been inserted,

and false negatives are not allowed.

The main observation underlying our lower bound proof

is that not only the new superset Ŝ′ has to be larger than the

old one Ŝ (as Ŝ ⊆ Ŝ′), but it actually has to be significantly

larger. That is, upon the insertion of an element, the data

structure must update its internal state by adding many
elements to the currently stored superset. This is in contrast

to the setting of exact membership discussed above, where

upon the insertion of an element, a dictionary can update

its internal state by adding only the newly added element to

the currently stored set. We formalize this observation via a

compression argument showing that if Ŝ′ \ Ŝ is rather small,

then we can “compress” the set S′ below the information-

theoretic lower bound. We note that this argument takes into

account only space utilization, and does not need to make

any assumptions on the efficiency of the data structure in

terms of the time complexity of its Insert and Membership
algorithms. We refer the reader to Section 3 for the proof

of our lower bound.

Construction 1 (warm-up): Geometrically-increasing
data structures. Our first construction is quite natural and

uses a sequence of dynamic approximate membership data

structures of geometrically-increasing sizes. When viewing

the sequence of inserted elements as consecutive subse-

quences, where the ith subsequence consists of 2i elements,

at the beginning of the ith subsequence we allocate a

dynamic approximate membership data structure Bi with a

false positive rate εi = Θ(ε/i2). The elements of the ith
subsequence are processed by Bi. A membership query for

an element x ∈ U is performed by invoking the membership

algorithm of each of the existing data structures Bi, and

reporting Yes if any of them does. Clearly, the construction

has no false negatives, and its false positive rate is at most∑∞
i=1 εi ≤ ε.
By carefully instantiating the underlying Bi’s with exist-

ing dynamic approximate membership data structures, for

any sequence of n insertions the data structure uses only

(1 + o(1))n log(1/ε) + O(n log log n) bits of space, and

insertions are performed in expected amortized constant

time. However, membership queries require time Θ(log n)
after n insertions, as a separate membership query is needed

for each of the existing Bi’s.2 We refer the reader to Section

4 for more details.

Construction 2: Constant-time operations. Whereas our

first construction is somewhat naive, our second construction

is significantly more subtle, supporting membership queries

in constant time in the worst case with high probability

(while still enjoying expected amortized constant insertion

time as in our first construction). Moreover, we show

that it can be “de-amortized” to support also insertions

in constant time in the worst case by increasing its space

usage from (1 + o(1))n log(1/ε) + O(n log log n) bits to

O(n log(1/ε)+n log log n) bits (with a rather small leading

constant).

Unlike our first construction, this construction consists

of only one data structure at any point in time. This data

structure is a dynamic dictionary (i.e., an exact representa-

tion of a set) that is used for storing a carefully chosen

superset of the elements that were inserted so far. For

describing the main ideas underlying this construction, we

again view the sequence of inserted elements as consecutive

subsequences, where the ith subsequence consists of 2i

elements. The construction is initialized by sampling a

function h : U → {0, 1}� from a pairwise independent

collection of functions, where � ≥ 	log(1/ε)
 + log u + 2
(recall that ε is the required false positive rate, and that u is

that size of the universe of elements).

The basic idea is that for inserting an element x as

part of the ith subsequence, we store in the current dic-

tionary Di the value hi(x) that is defined as the leftmost

�i = 	log(1/ε)
+ i+ 2 bits of h(x). At the end of the ith
subsequence, we transition from the current dictionary Di

to a newly allocated dictionary Di+1, and de-allocate the

space used by Di. The transition is performed as follows:

As Di is a dictionary, we can enumerate all of its stored

values, and for each such value y ∈ {0, 1}�i we insert

both y0 ∈ {0, 1}�i+1 and y1 ∈ {0, 1}�i+1 to the new

dictionary Di+1. Note that Di stores �i-bit values, and Di+1

2We note that these Θ(logn) membership queries can be executed in
parallel.
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stores �i+1-bit values. The key point is that at any point

in time there is only one dictionary Di, and therefore any

membership query requires executing only one such query:

Given an element x and given that the current dictionary

is Di, we execute a membership query for hi(x) in Di.

Therefore, the time for supporting membership queries is

identical to that of the underlying dictionaries.

This approach, however, needs to be refined as the number

of stored values increases too fast. To match our lower

bound, we would like to argue that each dictionary Di stores

O(2i) values. This is not the case: Each of the 2j elements

that is inserted as part of the jth subsequence, for any j < i,
“contributes” 2i−j values to Di, and therefore the number

of values stored by Dlogn would be O(n log n) instead of

O(n).

We resolve this difficulty as follows. For inserting an

element x as part of the ith subsequence, we store in Di the

pair (hi(x), gi(x)), where hi(x) is defined as the leftmost

�i = 	log(1/ε)
 + i + 2 bits of h(x) (as before), and

gi(x) is defined as the next r = 	log log u
 output bits of

h(x) (padded with the symbol ⊥ when less than r such

bits are available)3. The transitioning from Di to Di+1 is

now performed as follows: For each pair (y, α1 · · ·αr) ∈
{0, 1}�i × {0, 1,⊥}r that is stored in Di we insert to Di+1

either the pair (yα1, α2 · · ·αr⊥) if α1 �= ⊥ (using yα1 as its

key), or the two pairs (y0, α) and (y1, α) if α1 = ⊥ (using

y0 and y1 as the respective keys). This way, each of the 2j

elements that are inserted as part of the jth subsequence, for

any j < i, “contributes” only 2i−j−r values to Di, which

guarantees that each Di stores only O(2i) values. This,

combined with a standard bucketing argument, enables us to

match our space lower bound of using (1+ o(1))n log(1/ε)
+O(n log log n) bits for any sequence of n insertions. Note

that this method has no false negatives, and we show that our

choice of parameters guarantees that the false positive rate

is at most ε. Moreover, the time for supporting membership

queries is identical to that of the underlying dictionaries.

The construction enjoys a good amortized insertion time:

Most insertions correspond to standard insertions for the

current Di, while only a small number of insertions require

transitioning from Di to Di+1. Specifically, we show that if

the underlying dictionaries support insertions in expected

amortize constant time, then so does our construction.

Moreover, we also show that if the underlying dictionaries

offer a constant insertion time in the worst case with

high probability, then our construction can be modified to

offer constant time insertions in the worst case with high

probability. This follows the de-amortization technique of

Arbitman, Naor and Segev [2], [3], and only increases the

space usage from (1 + o(1))n log(1/ε) + O(n log log n)
bits to O(n log(1/ε) + n log log n) bits (with a rather small

3Such a pair (hi(x), gi(x)) is inserted using hi(x) as its key, for
enabling constant-time membership queries.

leading constant).

Finally, we also show that our construction can even

support deletions, as long as no false positives are deleted.

We refer the reader to Section 5 for more details.

2. PRELIMINARIES

Notation. For an integer n ∈ N we denote by [n] the

set {1, . . . , n}. For a random variable X we denote by

x ← X the process of sampling a value x according to

the distribution of X . Similarly, for a finite set S we denote

by x ← S the process of sampling a value x according to

the uniform distribution over S.

Computational model. We consider the unit cost RAM

model in which the elements are taken from a universe

of size u, and each element can be stored in a single

word of length w = 	log u
 bits. Any operation in the

standard instruction set can be executed in constant time on

w-bit operands. This includes addition, subtraction, bitwise

Boolean operations, left and right bit shifts by an arbitrary

number of positions, and multiplication. The unit cost RAM

model has been the subject of much research, and is consid-

ered the standard model for analyzing the efficiency of data

structures (see, for example, [13], [18], [19], [22], [24], [27]

and the references therein).

k-Wise independent functions. A collection H of functions

h : U → V is k-wise independent if for any distinct

x1, . . . , xk ∈ U and for any y1, . . . , yk ∈ V it holds that

Pr
h←H

[h(x1) = y1 ∧ · · · ∧ h(xk) = yk] =
1

|V |k .

3. THE LOWER BOUND: FROM APPROXIMATE

MEMBERSHIP TO COMPRESSION

Let D be an approximate membership data structure for

sets of unknown size, for a universe U of size u with a false

positive rate 0 < ε < 1. Our lower bound holds for any

such data structure that supports insertions and membership

queries. We assume D has access to a read-only array of

random bits at no cost in space, allowing randomized data

structures. Since we do not limit the time complexity of the

Membership algorithm, and all possible histories of the data

structure can be computed using the random bits array, we

may without loss of generality assume that D answers Yes on

input x exactly when the current state of the data structure is

consistent with some history in which x was inserted using

the current array of random bits.

In this section we prove a lower bound on the space usage

of D even if the size of the sets to be approximated is known

to be in a certain interval (this only strengthens the lower

bound). Specifically, we prove the following theorem:

Theorem 3.1. Let D, U , and ε be as above, and let n ≤ εu
be sufficiently large and 1/

√
n ≤ α < 1. If for any sequence

of insertions of any length m such that αn < m < n, the
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data structure D uses at most βm bits of space, then for
any integer γ ≥ 2 it holds that

β≥
(
1− 1

γ

)
·(log(1/ε) + (1−9ε) log logγ(1/α)−Θ(1)

)
.

In particular, by setting α = 1/
√
n and γ = 2(logn)η , for

some constant 0 < η < 1, we obtain the lower bound of

(1 − o(1))n log(1/ε) + Ω(n log log n) bits that is stated in

Theorem 1.1. We note that asking that the data structure is

space efficient only for sequences of at least αn elements

can be viewed as allowing the data structure to process the

first αn elements in an off-line manner using arbitrary space

(which, again, only strengthens the lower bound). We also

note that setting α = 1 corresponds to the case where the

size n of the set is known in advance.
The proof of Theorem 3.1 consists of two parts. In the

first part (see Section 3.1) we show that it suffices to prove

the lower bound for deterministic data structures, where the

probability of false positives is taken over the choice of a

uniformly sampled element (instead of over the internal ran-

domness of the data structure). This is a standard averaging

argument showing that one can fix the randomness of any

randomized data structure, without significantly increasing

the false positive rate. In the second part (see Section 3.2),

we then follow the overview discussed in Section 1.3 for

proving the lower bound for deterministic data structures.

3.1. From Randomized to Deterministic Approximate Mem-
bership

For any (sufficiently long) string r ∈ {0, 1}∗, we denote

by Br the deterministic data structure obtained by fixing r
as B’s internal randomness. In addition, for any sequence

S ∈ Un of n insertions we denote by Ŝr ⊆ U the set of all

elements on which the Membership algorithm of Br outputs

Yes after processing the sequence S. We note that S ∈ Un is

an ordered sequence of (not necessarily distinct) elements,

while Ŝr is a set. When we refer to the elements of S we

may abuse notation and treat S as a set. Note that the fact

that there are no false negatives guarantees that S ⊆ Ŝr

for any r ∈ {0, 1}∗. Finally, for each such r and S define

μ(Ŝr) = |Ŝr|/u, and define

Sr,ε =
{
S ∈ Un : μ(Ŝr) ≤ 4ε

}
.

The following lemma uses an averaging argument and

states that there exists a choice of r ∈ {0, 1}∗ such that

μ(Ŝr) is rather small for many sequences S (i.e., that the

set Sr,ε consists of many sequences).

Lemma 3.2. Let B, u, ε and n be as above. Then, there
exists a string r∗ ∈ {0, 1}∗ such that |Sr∗,ε| ≥ un/2.

Proof: The randomized data structure B has false pos-

itive rate at most ε, and therefore for any sequence S ∈ Un

it holds that

Er←{0,1}∗
[
μ(|Ŝr|)

]
≤ ε+ n/u ≤ 2ε.

By Markov’s inequality it holds that

Pr
r←{0,1}∗

[
μ(|Ŝr|) ≥ 4ε

]
≤ 1

2
.

In particular, there exists an r∗ ∈ {0, 1}∗ for which for at

least 1/2 of all the sequences S ∈ Un it holds that μ(|Ŝr|) <
4ε.

3.2. A Compression Argument for Deterministic Approxi-
mate Membership

Form this point on focus on the deterministic data struc-

ture Br∗ , where r∗ ∈ {0, 1}∗ is the internal random string

r∗ provided by Lemma 3.2. In this part of the proof we

show that the data structure Br∗ can be used to encode the

sequences in a large subset of S = Sr∗,ε. Since Lemma 3.2

provides a lower bound on the cardinality of S , it also

provides a lower bound on the length of such an encoding.

Let S be a sequence in S and partition it into consecutive

subsequences S = C1, C2, ... such that each Ci consists of

γi elements, where γ ≥ 2 is an integer. We define Si to

be the concatenation of the first i subsequences, and ni to

be its length. In other words Si is the prefix of S of length

ni =
∑

j≤i γ
j . In addition, we denote by Ŝi the set of all

elements on which the Membership algorithm outputs Yes
after processing the first i subsequences. Observe that since

there are no false negatives, then Ŝi ⊆ Ŝi+1,4 and therefore

μ(Ŝi) ≤ μ(Ŝi+1) ≤ 4ε for every integer i.

Lemma 3.3. For any sequence S ∈ S of length n, there
exists an integer i such that |Si| ∈ [αn, n] and

μ(Ŝi)− μ(Ŝi−1) ≤ 4ε

logγ(1/α)− 2
.

Proof: Let j1 = �logγ(αn(γ − 1) + 1)� and j2 =
�logγ(n(γ − 1))�. For every j1 ≤ i ≤ j2 it holds that

ni ∈ [αn, n]. Since μ(Ŝj1) ≥ 0 and μ(Ŝj2) ≤ 4ε, and since

for all i it holds that μ(Ŝi) ≤ μ(Ŝi+1), there must be an

i ∈ [j1, j2] such that

μ(Ŝi)− μ(Ŝi−1) ≤ 4ε

j2 − j1
≤ 4ε

logγ(1/α)− 2
.

Fix a sequence S of length n, let i be the smallest integer

that satisfies the condition in Lemma 3.3, and let ki(S) =
|Ci ∩ Ŝi−1|. That is, ki(S) is the number of elements from

the subsequence Ci for which the Membership algorithm

already answers Yes right before the ith subsequence Ci

is processed by the Insert algorithm. Observe that since

the data structure is deterministic, ki(S) is completely

determined by the sequence S. We are interested in the case

4Recall that, as stated above, we may without loss of generality assume
that D answers Yes on input x exactly when the current state of the data
structure is consistent with some history in which x was inserted using the
current array of random bits.
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ki(S) ≤ 9ε|Ci|. In the next lemma we show that for most

sequences in S this is indeed the case.

Lemma 3.4. It holds that

|{S ∈ S : ki(S) ≤ 9ε|Ci|}| ≥ un

3
. (3.1)

Proof: Consider a sequence S which is uniformly sam-

pled in Un one subsequence after the other. We emphasize

that we sample from Un in order to avoid the dependencies

associated with sampling from S . Assume that each prefix

Sj is associated with an arbitrary set Ŝj with measure at

most 4ε. If it happens that Sj is a prefix of some sequence

in S , then Ŝj is indeed defined as before to be the set of

positive replies. Otherwise Ŝj can be any set in U of measure

at most 4ε.

Now, since the subsequence Cj is sampled uniformly and

independently from Sj−1, it holds that E[|Cj ∩ Ŝj−1| ≤
4ε|Cj |], and by a Chernoff bound it holds that Pr[|Cj ∩
Ŝj−1| ≥ 9ε|Cj |] ≤ exp(−|Cj |). Under our assumptions

|Cj | ≥ nΩ(1) so by the union bound, with probability at

least 1− logγ n ·exp(−nΩ(1)) ≥ 1−1/n all the j for which

|Cj | is large enough satisfy |Cj ∩ Ŝj−1| ≥ 9ε|Cj |. Again,

by the union bound we have

|{S ∈ S : ki(S) ≤ 9ε|Ci|}| ≥
(
1

2
− 1

n

)
un,

from which the lemma follows for all n sufficiently large.

Assume that after the insertion of Ci the data structure

uses space bi bits. We now describe the encoding itself for

a given sequence S.

First write the number i from Lemma 3.3, followed by

an explicit uncompressed representation of all items in the

sequence S, except those of Ci. This requires at most

(n− ci) log u+ log log n bits, where ci = |Ci|. We will use

the data structure in order to encode Ci in a more compact

form as follows. Recall that ki(S) items out of ci are in Ŝi−1.

We need at most ci bits to denote where in the sequence

these items are located. Next, we store the data structure

itself using bi bits. We observe that since the data structure

is deterministic and we write all the elements other than Ci

explicitly, the encoding thus far characterizes the set Ŝi−1.

Also, since the data structure itself is written, the encoding

so far characterizes the sets Ŝi. The remaining part of the

encoding consists of the elements of Ci encoded relative to

these two sets: We encode the ci−ki(S) elements in Ŝi\Ŝi−1

using (ci−ki(S)) log((μ(Ŝi)−μ(Ŝi−1))u)+O(1) bits and

the remaining ki(S) elements using ki(S) log(μ(Ŝi)u) +
O(1) bits. All in all the length of this part of the encoding

is

(ci − ki(S)) log((μ(Ŝi)− μ(Ŝi−1))u)

+ki(S) log(μ(Ŝi)u) +O(1). (3.2)

By our choice of i we have

log(μ(Ŝi)− μ(Ŝi−1)) ≤ log(ε)− log logγ(1/α) +O(1).

Plugging in (3.2) and using the fact that μ(Ŝi) ≤ ε, the

length is at most

(ci − ki(S))(log u+ log(ε)− log logγ(1/α))

+ki(S) log(εu) +O(ci)

≤ ci (log u+ log ε

−(1− 9ε) log logγ(1/α) +O(1)
)
,

and the length of the remaining part of the encoding is at

most

bi + log log n+ (n− ci) log u+ ci.

By (3.1), the total length of the encoding has to be greater

than log(un/3) so we have:

bi + log log n+ (n− ci) log u

+ni

(
log u+ log ε− (1− 9ε) log logγ(1/α) +O(1)

)
≥ n log u−O(1).

which implies that

bi ≥ ci(log(1/ε) + (1− 9ε) log logγ(1/α)−O(1)).

Finally, since ci = γi we have that ci = (ni +
1

γ−1 ) · γ−1
γ

which, together with the assumption βni ≥ bi in the state-

ment of Theorem 3.1, completes the proof of Theorem 3.1.

4. CONSTRUCTION 1 (WARM-UP):

GEOMETRICALLY-INCREASING DATA STRUCTURES

Our first construction is quite simple and natural and uses

a sequence of dynamic approximate membership data struc-

tures of geometrically-increasing sizes. When viewing the

sequence of inserted elements as consecutive subsequences,

where the ith subsequence consists of 2i elements, at the

beginning of the ith subsequence we allocate and initialize

a dynamic approximate membership data structure Bi with

a false positive rate εi = Θ(ε/i2). The elements of the ith
subsequence are processed by the insertion algorithm of the

data structure Bi. A membership query for an element x ∈ U
is performed by invoking the membership algorithm of each

of the existing data structures Bi, and reporting Yes if any of

them does. Clearly, as the underlying data structures have no

false negatives, then our construction has no false negatives.

In addition, a union bound guarantees that the false positive

rate is at most
∑∞

i=1 εi = Θ(επ2/6) ≤ ε by appropriately

adjusting the constants in the choices of the εi.
We can instantiate the Bis, for example, with the dynamic

approximate membership data structure resulting from the

dynamic dictionary of Raman and Rao [27] (via the general

dictionary-based methodology described in Section 1.2).

This dynamic approximate data structure supports insertions

in constant expected amortized time, membership queries in
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constant time in the worst case, and its space consumption is

(1+o(1))2i log(1/εi) bits for any set of known size 2i with

a false positive rate εi. This guarantees that, for any number

n of elements, the number of bits used by our construction

after inserting any n elements is at most

(1 + o(1))n ·
(

max
1≤i≤�logn�

{log(1/εi) +O(1)}
)

= (1 + o(1))n ·(
max

1≤i≤�logn�
{log(1/ε) + log

(
i2
)
+O(1)}

)

= (1 + o(1))n log(1/ε) +O(n log log n).

Note, however, that membership queries require time

Θ(log n), since given an element x we do not know to which

of the Bi it might have been inserted in. Therefore we need

a separate membership query for each of the Bi. This yields

the following theorem:

Theorem 4.1. For any 0 < ε < 1 there exists a data
structure for approximate membership for sets of unknown
sizes with the following properties:

1) The false positive rate is at most ε.
2) For any integer n, the data structure uses at most (1+

o(1))n log(1/ε)+O(n log log n) bits of space after n
insertions.

3) Insertions take expected amortized constant time, and
for any integer n membership queries are supported
in O(log n) time after n insertions.

5. CONSTRUCTION 2: CONSTANT-TIME OPERATIONS

As in our first construction, when processing a sequence

of elements we partition it into consecutive subsequences,

where the ith subsequence consists of 2i elements. For

every integer i we denote the ith subsequence by si =
x2i−1 · · ·x2i−1, and denote by Si the set {x2i−1 , . . . , x2i−1}.

Let H be a pairwise independent collection of functions

h : U → {0, 1}�, where � ≥ 	log(1/ε)
 + log u + 2 and

|U | = u. For each h ∈ H and integer i ∈ [�] we let hi : U →
{0, 1}�i be the leftmost �i = 	log(1/ε)
+ i+ 2 output bits

of h, and let gi : U → {0, 1}r be the next r = 	log log u

output bits of h (padded with the symbol ⊥ when less than

r such bits are available).

The basic construction. The data structure is initialized

by sampling a function h ∈ H. At any point in time,

when the ith subsequence si is being processed, the data

structure consists of a dynamic dictionary Di. As discussed

in Section 1.3, the insertion procedure operates in one out

of two possible modes, depending on whether or not the

element that is currently being inserted is the first element of

its subsequence. We describe each of these modes separately.

• Mode 1. When the inserted element x ∈ Si is not the

first of its subsequence, we store the pair (hi(x), gi(x))
in the current dictionary Di using hi(x) as its key.

• Mode 2. When the inserted element x ∈ Si is the first

of its subsequence (i.e., x = x2i−1 ), we transition from

the current dictionary Di−1 to a new dictionary Di,

deallocate the space used by Di−1, and then proceed

as in mode 1 above.

Specifically, the dictionary Di is initialized for storing

at most 2i+2 elements, each of length �i + r bits.

If i > 1 we initialize Di by enumerating all pairs

currently stored by Di−1, and processing each such pair

(y, α1 · · ·αr) ∈ {0, 1}�i−1 × {0, 1,⊥}r as follows: If

α1 �= ⊥, we insert to Di the pair (yα1, α2 · · ·αr⊥)
using yα1 as its key. Otherwise, we insert to Di the

two pairs (y0, α) and (y1, α) using y0 and y1 as their

keys, respectively.

Membership queries are naturally defined: Given an el-

ement x ∈ U and that the currently dictionary is Di for

some i, we query Di with the key hi(x) to retrieve a pair

of the form (hi(x), α) for some α. If such a pair is found

we output Yes, and otherwise we output No.

Dealing with failures. We note that a subtle point in the

construction is that each of the dictionaries D1,D2, . . . may

have a certain failure probability. Using existing dictionaries,

the failure probability for each Di can be made as small

as any polynomial in 2−i. This means that whenever i =
Ω(log u), the failure probability can be made polynomially

small in u, but when i = o(log u) the failure probability is

rather large.

There are two standard methods for dealing with such

large failure probabilities. The first is to simply rebuild each

Di that fails. Even for small values of i, the expected number

of failures is typically a small constant, and thus we will be

able to guarantee good expected performance. The second is

to group together into one dictionary the first uδ elements,

for an arbitrary small constant 0 < δ < 1. This way, for

any pre-determined constant c > 1, we can instantiate the

dictionaries such that a union bound shows that no dictionary

fails except with probability u−c. For simplicity, in what

follows we analyze our construction assuming that at least

n > uδ elements are inserted, and that we group together

the first uδ elements.

Optimal space via bucketing. Note that transitioning from

dictionary Di to Di+1 requires storing both until all elements

of Di have been transitioned into Di+1 (as explained above).

This increases the space used by the data structure by a

multiplicative constant factor. Using a standard bucketing

technique (see, for example, [12], [14]) we reduce the space

usage of the construction when at least n > uδ elements are

inserted, for an arbitrary small constant 0 < δ < 1.

Specifically, we first hash the elements into uδ/2 buckets,

and then apply our basic construction in each bucket. For

enabling the data structure to gradually allocate more space,

the data structures in the buckets are interleaved word-

wise: For every i ∈ [uδ/2], the data structure of the ith
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bucket resides in memory words whose location is equal

to i modulo uδ/2. This guarantees that if the maximum

space usage of the data structures in the buckets is smax

words, then the total space required for the construction is

uδ/2 · smax words.
For any uδ < n ≤ u the hash functions of [12], [14]

split the elements quite evenly: each bucket contains at most

(1+ o(1))n/uδ/2 elements, except with a probability that is

polynomially small in u. Moreover, these functions can be

evaluated in constant time. Applying our basic construction

in each bucket guarantees that the transitioning operation

occurs in at most one bucket at any point in time, and

therefore the additional space that is required is proportional

to the number of elements in each bucket and not to total

number of elements.

Performance analysis. The following theorem is obtained

by instantiating our construction with a sufficiently good

construction of a dynamic dictionary. For example, the one

by Raman and Rao [27] is space optimal up to additive

lower-order terms, supports insertions in constant expected

amortized time, and membership queries in constant time in

the worst case.

Theorem 5.1. For any 0 < ε < 1, integer u, and
constant c > 1, there exists a data structure for approximate
membership for sets of unknown sizes from a universe of size
u with the following properties:

1) The false positive rate is ε+ u−c.
2) For any constant 0 < δ < 1 and n > uδ , the

data structure uses at most (1 + o(1))n log(1/ε) +
O(n log log n) bits of space after n insertions.

3) Insertions take expected amortized constant time, and
membership queries take constant time in the worst
case.

Proof: As discussed above, hashing the inserted ele-

ments into uδ/2 buckets results in a balanced allocation up to

additive lower order terms with all but a polynomially small

probability in u. Therefore, for simplicity, from this point

on we focus on n elements that are inserted into a single

bucket. We first prove that for every i, at most 2i+2 elements

are inserted into the dictionary Di. Fix an i, and partition

the elements that are inserted to Di to two disjoint sets:

elements that correspond to elements from S1, . . . , Si−r, and

elements that correspond to elements from Si−r+1, . . . , Si.

For each element x that belongs to some Sj , we observe

that it contributes 2i−j−r elements if 1 ≤ j ≤ i − r, and

exactly one element if i − r + 1 ≤ j ≤ i. Therefore, the

number of elements that are inserted into Di is

i−r∑
j=1

|Sj | · 2i−j−r +
i∑

j=i−r+1

|Sj |

=

i−r∑
j=1

2i−r−1 +
i∑

j=i−r+1

2j ≤ 2i+2.

Now, for bounding the false positive rate, fix a sequence

x1 · · ·xj of inserted elements, an element x /∈ {x1, . . . , xj},
and let i be such that 2i−1 ≤ j ≤ 2i − 1. Then, the current

state of the data structure consists of a dictionary Di, and

a query for x initiates a membership query for the key

hi(x). Since at most 2i+2 keys were inserted so far to the

dictionary Di, the pairwise independence of H guarantees

that x forms a collision with some existing element with

probability at most 2i+2 · 2−�i ≤ ε. In addition, we assume

that the constructions of all the Di are successful except

with probability u−c, and therefore the false positive rate is

at most ε+ u−c.

We now bound the space overhead. Assume that 2i−1 ≤
n ≤ 2i − 1 elements were inserted, and that the current

dictionary Di is constructed using a dictionary that can store

n elements from a universe of size u′ = poly(n′) with r bits

of satellite data using space (1+ o(1))n(log(u′/n)+ r) bits

(e.g., [27] as discussed above). Then, the space utilized by

Di is at most

(1 + o(1))n(log(2�i/2i) + r)

≤ (1 + o(1))n log(1/ε) +O(n log log u)

= (1 + o(1))n log(1/ε) +O(n log log n)

Finally, note that membership queries are supported in

constant time, and that the expected amortized insertion time

is also constant (as in the underlying dictionary).

In the remainder of this section we describe two ex-

tensions of our construction. The first shows how to have

constant-time insertions in the worst case by increasing the

space usage from (1 + o(1))n log(1/ε) + O(n log log n)
to O(n log(1/ε) + n log log n). The second shows how to

support deletions.

Constant-time insertions in the worst case via de-
amortization. As presented above using the two different

insertion modes, the construction enjoys a good amortized

insertion time: Most insertions correspond to mode 1 and are

processed very fast, while only a small number of insertions

correspond to case 2. The main observation is that if the

underlying Di offers a constant insertion time in the worst

case with high probability (e.g., as in [3]), then our construc-

tion without the bucketing can be de-amortized: Instead of

initializing each Di only when inserting x2i−1 , then the total

amount of work required for initializing Di can be equally

split among the insertions of x2i−1 , . . . , x2i−1. Specifically,

on each such insertion, devote a constant number of addi-

tional steps for the initialization of Di. As shown in the

proof of Theorem 5.1, for every i at most 2i+1 elements

are inserted into the dictionary Di−1. Therefore, the total

amount of work (in the worst case) required for initializing

Di is O(2i). We note that the idea of bucketing the elements

that we used above does not seem useful here. The reason

is that it is no longer the case that a transition between

dictionaries occurs in at most one bucket at any point in time.
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Therefore, the space usage (even with bucketing) would be

O(n log(1/ε)+n log log n) bits (with a rather small leading

constant) instead of (1 + o(1))n log(1/ε) + O(n log log n)
bits as in Theorem 5.1.

Supporting deletions. For any approximate membership

data structure it is impossible to detect if an attempt is made

to delete a false positive. Thus, the user carries the burden

of ensuring that deletions are applied only to elements that

are in fact in the set (otherwise, false negatives may arise).

We also assume that insertions are proper, i.e., an element

may be inserted at most once. Given these assumptions it

is possible to support deletions by cleverly marking items

as deleted and periodically removing them from the data

structure. Details appear in the full version of the paper.
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