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Abstract—Resettable-security, introduced by Canetti,
Goldreich, Goldwasser and Micali (STOC’00), considers
the security of cryptographic two-party protocols (in
particular zero-knowledge arguments) in a setting where
the attacker may “reset” or “rewind” one of the players.
The strongest notion of resettable security, simultaneous
resettability, introduced by Barak, Goldreich, Goldwasser
and Lindell (FOCS’01), requires resettable security to hold
for both parties: in the context of zero-knowledge, both
the soundness and the zero-knowledge conditions remain
robust to resetting attacks.

To date, all known constructions of protocols satisfying
simultaneous resettable security rely on the existence of
ZAPs; constructions of ZAPs are only known based on the
existence of trapdoor permutations or number-theoretic
assumptions.

In this paper, we provide a new method for constructing
protocols satisfying simultaneous resettable security while
relying only on the minimal assumption of one-way func-
tions. Our key results establish, assuming only one-way
functions:

• Every language in NP has an ω(1)-round simulta-
neously resettable witness indistinguishable argument
system.

• Every language in NP has a (polynomial-round)
simultaneously resettable zero-knowledge argument
system.

The key conceptual insight in our technique is relying
on black-box impossibility results for concurrent zero-
knowledge to achieve resettable-security.

Keywords-proof systems; resettable WI/ZK/soundness;

I. INTRODUCTION

Zero-knowledge (ZK) interactive proofs [GMR89]

and arguments [BCC88] are paradoxical constructs that

allow one player (called the Prover) to convince an-

other player (called the Verifier) of the validity of a

mathematical statement x ∈ L, while providing zero
additional knowledge to the Verifier. The soundness
condition of a zero-knowledge proof (resp. argument)

stipulates that if x /∈ L, the no matter what the

Prover does (resp., no matter what a computationally

bounded Prover does), the Verifier will only accept

at the end of the interaction with negligible probabil-

ity. The zero-knowledge condition, on the other hand,

stipulates that no efficient malicious verifier can learn

anything new from the prover. The zero-knowledge

property is formalized using the so-called simulation

paradigm: for every malicious verifier V ∗, we require

the existence of a “simulator” S that, given just the

input x, can indistinguishably reproduce the view of

V ∗ in an interaction with the honest prover. Beyond

being fascinating in their own right, zero-knowledge

proofs/arguments have numerous cryptographic applica-

tions and are one of the most fundamental cryptographic

building blocks. Additionally, the simulation paradigm

on which it is based extends well beyond the notion of

zero-knowledge, and is a crucial component of modern

definitions of protocol security and as such, the study

of zero-knowledge proofs often provides insight into

protocol security more widely.

Zero-knowledge protocols rely on both the Prover and

the Verifier tossing random coins; furthermore, while

for some protocols (called public-coin protocols) the

Verifier’s randomness can be public, it is crucial that

the Prover’s randomness is kept secret from the Verifier;

additionally, though out the interaction, it is crucial that

the Prover keeps a secret state. A natural question is

whether zero-knowledge protocols can be made secure

if an attacker may “reset” and “restart” his opponent,

forcing him to return to an earlier state of the computa-

tion, and reusing the same random tape. (This model is

particularly relevant for cryptographic protocols being

executed on embedded devices, such as smart cards.

Since these devices have neither a built-in power supply,

nor a non-volatile re-writable memory, they can be

“reset” by simply disconnecting and reconnecting the

power supply.) Note that any stateless protocol (that is

secure under multiple execution) is also directly secure

under a reset-attack, but since cryptographic protocols

typically aren’t, achieving resettable security becomes

demanding.

The notion of resettable-zero knowledge (rZK), in-

troduced by Canetti, Goldreich, Goldwasser and Micali

[CGGM00] considers zero-knowledge protocols where

the zero-knowledge property is retained under a re-

setting attack. That is, the Prover is protected even

if the Verifier can reset him to his original state,

while reusing the same randomness (but the Verifier

is not necessarily protected against a resetting attack.)

The following year, Barak, Goldreich, Goldwasser and

Lindell [BGGL01] considered resettably-sound zero-
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knowledge (rsZK) proofs, where instead the soundness

condition holds against resetting attacks. That is, the

Prover cannot convince the Verifier of any false state-

ments even if he can reset the Verifier to its original state

(but, now, the Prover is not necessarily protected against

a resetting attack.) Both resettable zero-knowledge and

resettably-sound zero-knowledge arguments were orig-

inally constructed based on the existence of collision-

resistant hash functions [CGGM00], [BGGL01]; Bitan-

sky and Paneth, more recently, provided a construction

of resettably-sound zero-knowledge arguments based on

the existence of an Oblivious Transfer protocol [BP12],

and finally Chung, Pass and Seth [CPS13] provided a

construction of both primitives based on the minimal

assumption of one-way functions [CPS13] (as shown by

Ostrovsky and Wigderson [OW93], one-way functions

are also necessary for constructing zero-knowledge ar-

guments for hard-on-the-average languages).

But resettable zero-knowledge, and resettably-sound

zero-knowledge only consider resettably security for

a single of the players (either the Prover or the Ver-

ifier). Can we achieve resettable security for both?

Such a notion of resettable security was called si-
multaneous resettability by Barak et al [BGGL01].

While [BGGL01] left open the question of constructing

simultaneously resettable zero-knowledge arguments,

they provided a construction of a relaxation of zero-

knowledge arguments that satisfy simultaneous reset-

table security: namely, witness-indistinguishable (WI)

arguments [FS90] (rather than ensuring that the Verifier

does not learn anything new, in a witness indistin-

guishable argument, the Prover is guaranteed that the

Verifier cannot learn what witness the Prover is using.)

Their construction was based on the existence of, so-

called, ZAPs [DN00] (namely, the existence of two-

round witness-indistinguishable proofs), which in turn

can be based on enhanced trapdoor permutations, or

number-theoretic assumptions.

More recently, Deng, Goyal and Sahai [DGS09] pro-

vided the first construction of simultaneously resettable

zero-knowledge (i.e., resettable-sound resettable zero-

knowledge (rsrZK)) for NP . Their construction was

based on the existence of one-to-one one-way functions,

collision-resistant hash functions and ZAPs; more re-

cently, the collision-resistant hash function assumption

was removed in [CPS13], and the one-to-one one-way

function assumption was removed in [BP13].1 Thus,

given the state-of-the art, constructions of both simul-

taneously resettable witness indistinguishability (rsrWI)

1The authors of [DGS09] also claimed to have a variant of their
protocol that does not need one-to-one one-way functions, but the
results never appear in writing. In an earlier version of this paper, we
provided our own variant of the [DGS09] protocol that dispensed of
one-to-one one-way functions.

and zero-knowledge can be constructed assuming the

existence of ZAPs. We here focus on the question of

whether ZAPs are necessary for achieving simultaneous

resettable security.

Can we achieve simultaneous resettable secu-
rity without assuming the existence of ZAPs?
In particular, does the the existence of only
one-way functions suffice?

Before turning to our results, let us briefly ex-

plain the central role of ZAPs: as mentioned above,

ZAPs are two-round witness-indistinguishable proofs.

As such protocols are two-round (i.e., essentially non-

interactive), they are stateless2 which enables the prop-

erty of simultaneous resettability. ZAPs are equivalent to

the existence of non-interactive zero-knowledge proofs

[DN00]; it is a long-standing open question whether

non-interactive zero-knowledge proofs (with an efficient

prover strategy) can be based only on the existence of

one-way functions.

We stress that resettable security has also been stud-

ied in various relaxed models of security (e.g., with bare

public keys [CGGM00], [MR01], [CPV04a], [YZ07],

[CPV04b]) and “bounded”-resettable security ([Bar01],

[BGGL01], [BOV12]), but despite the relaxations, all

protocols achieving rsrWI and rsrZK rely on ZAPs.

A. Our Result

In this work, we answer the above questions in the

affirmative. We show how to achieve simultaneously

resettable witness-indistinguishable and zero-knowledge

argument systems from one-way functions.

Theorem 1 (Main Theorem 1, informally stated). As-
sume the existence of one-way functions. Then there
exists an ω(1)-round simultaneously resettable witness-
indistinguishable argument of knowledge for NP .

(An argument of knowledge is a stronger notion

of an interactive argument where not only the Prover

convinces the verifier that the statement x (to be proven)

is part of some language L, but also that it “knows” a

NP-witness for x ∈ L.)

We next employ simultaneously resettable witness-

indistinguishable arguments to obtain simultaneously

resettable zero-knowledge.

Theorem 2 (Main Theorem 2, informally stated). As-
sume the existence of one-way functions. Then, for every
ε > 0, there exists an O(kε)-round simultaneously
resettable zero-knowledge argument of knowledge for
NP .

In our approach, we abandon the “stateless” approach

for achieving simultaneous resettability and demonstrate

2Rather, although the prover need to keep some secret state, this
state never changes.
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how to keep a stateful protocol (which then can be based

on one-way functions) without sacrificing resettable

security.

B. Our Techniques

rsrWI from OWFs. The starting point of our technique

is a connection between lower bounds for black-box
zero-knowledge3 and resettable soundness. Black-box

zero-knowledge impossibility results typically demon-

strate that certain classes of protocols (e.g., constant-

round public-coin protocols), or composition (e.g., par-

allel repetition) of certain classes of underlying pro-

tocols (e.g., public-coin protocols), satisfy a weaker

notion of fixed-input resettable soundness (where sound-

ness only needs to hold as long as the resetting prover

does not get to change the statement) if the verifier

is slightly modified to appropriately generate its ran-

domness using a pseudorandom function (PRF). This

connection was first made by Pass, Tseng and Wikstrom

[PTW11] where it was shown that the original black-

box zero-knowledge impossibility result of [GK96] for

constant-round public-coin protocols implicitly shows

that any constant-round public-coin argument is fixed-

input resettably-sound if the verifier generates its ran-

domness by applying a PRF to the transcript. Ad-

ditionally, the black-box zero-knowledge impossibility

results for parallel composition of public-coin protocols

of [PTW11] shows that repeating any (not necessarily

constant-round) public-coin protocol sufficiently many

times in parallel and generating the verifier’s random-

ness in each session by applying a PRF to the tran-

script, yields a fixed-input resettably-sound protocol.

[PTW11] also note that, following the technique used

in [BGGL01], if the underlying protocol also is an

argument of knowledge, then the resulting protocol

actually satisfies the standard (unbounded) notion of

resettable soundness.

However, although, the connection between im-

possibility results for black-box zero-knowledge and

resettable-soundness was made in [PTW11], no new

corollaries of this connection were provided. We here

show that this connection can be taken even further, and

by doing so, provide new (and improved) constructions

of resettably-sound protocol. More precisely, we show

that impossibility results for black-box concurrent zero-

knowledge4 can be appropriately interpreted as a way

to transform a class of protocols into ones that are

3In a black-box zero-knowledge protocol we require the existence
of a universal simulator S that, given only black-box access to any
(efficient) V ∗, can reproduce the view of V ∗ in an interaction with
the honest prover.

4In a concurrent zero-knowledge protocol, the zero-knowledge
property is required to remain intact even if the Verifier can, con-
currently, start many interaction with the prover, and may arbitrarily
schedule its messages between the different interactions.

resettably sound. To explain this approach in a simple

setting, consider the black-box impossibility result of

4-round concurrent zero-knowledge of Kilian, Petrank,

Rackoff [KPR98]. This impossibility result can be inter-

preted as showing that if we take a 4-round protocol, run

sufficiently many instances of it concurrently (according

to some well-specified “nesting” schedule; see Figure

1) and have the verifier generate its randomness by

applying a PRF to the transcript, then there exists at

least one of the instances that remains sound, even in

the presence of a (fixed-input) resetting attack. In other

words, we can take any 4-round protocol and transform

it into a fixed-input resettably-sound one by running suf-

ficiently many copies of the protocol according to some

pre-determined schedule. Additionally, if the starting 4-

round protocol also is an argument of knowledge, the

resulting protocol is (fully) resettably-sound. Now, they

key observation is that this “concurrent-scheduling”

transformation actually preserves (resettable) witness in-

distinguishability: if the original protocol is (resettable)

witness indistinguishable, the new one is so as well—

thus, the new one is simultaneously resettable witness

indistinguishable!

1 2 logε k
V 1

P 2

⇐⇒ ⇒⇐⇒ · · · ⇒⇐⇒
⇐⇒· · ·⇐⇒

V 3

P 4

⇐⇒

Figure 1. The nested scheduling of [KPR98].

So, if we could just come up with a 4-round

resettable-witness indistinguishable argument of knowl-

edge from one-way functions, we would be done. Un-

fortunately, no such protocols are known: Resettable

witness-indistinguishable arguments of knowledge were

first constructed based on the existence of collision-

resistant hash functions in [BGGL01] and more recently

based on one-way functions in [CPS13] but, while both

constructions are constant-round, they have more than

4 rounds.

But, improved impossibility results for black-box

concurrent zero-knowledge are known: Rosen [Ros00]

presented an impossibility result for 7-round proto-

cols and Canetti, Kilian, Petrank and Rosen [CKPR01]

presented an impossibility result for o(log k/ log log k)
rounds; Chung, Pass and Tseng [CPT12] provide

an alternative variant of the impossibility result of
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[CKPR01]. Can we rely on these lower bounds in-

stead? Indeed, Rosen’s lower bound follows the same

structure as the one from [KPR98] and thus it would

suffice to come up with a 7-round resettably-sound

witness-indistinguishable argument of knowledge.5 The

impossibility result of [CKPR01], on the other hand,

doesn’t simply present a scheduling that ensures reset-

table soundness. Rather, [CKPR01] consider a particular

“aborting” verifier strategy to prove its lower-bound.

We note, however, that just as in the work of

Haitner on parallel repetition [Hai09], such “random-

termination” can be used as a protocol transforma-

tion. More precisely, take any (sub-logarithmic round)

argument of knowledge, repeat it sufficiently many

times in parallel where at each round, each of the

parallel verifiers terminates, accepting, at random with

some appropriately set probability. Each parallel verifier

generates the randomness needed to decide whether to

terminate or not, by applying a PRF to the current

transcript. Relying on a result from Chung, Pass and

Tseng [CPT12], it follows that if we appropriately fix

the number of parallel repetitions and the termination

probability, the resulting protocol is resettably sound as

long as the number of resets queries is bounded.

A different result from [CPT12] can be used to show

that the number of queries can be amplified to become

super-polynomial by combining the above random-

termination strategy with a concurrent scheduling (sim-

ilar, but somewhat different, to the one in [CKPR01]).6

We additionally observe that each of these transforma-

tions preserves (resettable) witness indistinguishability.

Combining the above, we thus have the following

“soundness upgrade” lemma:

Lemma 3 (Soundness upgrade Lemma for WI).
There exists a constructive protocol transformation that
takes any (resettable) witness-indistinguishable argu-
ment of knowledge for NP with round-complexity
o(log k/ log log k) and outputs a resettable-sound, (re-
settable) witness-indistinguishable argument of knowl-
edge for NP . Additionally, if the original protocol has
constant round-complexity, then resulting protocol will
have round-complexity ω(1).

Combining this theorem with the recent constant-

5In an earlier version of this paper we showed that such a proto-
col can be constructed based on the existence of collision-resistant
hash functions. As mentioned, in contrast, we here aim to provide
a construction of rsrWI arguments of knowledge from just one-
way functions. Another more subtle disadvantage of relying on the
scheduling from [Ros00] is that it blows up the round-complexity to
become polynomial; in contrast, in our solution we obtain a protocol
with just ω(1) rounds.

6Although we haven’t verifier the details, we believe we could also
have relied on the [CKPR01] scheduling. However, doing so would
have resulted in a polynomial (as opposed to slightly super-constant
(ω(1)) round-complexity.

round resettable witness-indistinguishable argument of

knowledge of [CPS13] based on OWFs yields our Main

Theorem 1.

rsrZK from OWF. Deng, Goyal and Sahai [DGS09]

construction of rsrZK proceeded in two steps: 1) they

first constructed a resettably-sound concurrent zero-

knowledge protocol, and 2) they next present a generic

transformation that takes any resettably-sound concur-

rent zero-knowledge argument and turns it into a rsrZK

argument for the same language.7 [DGS09] relied on

ZAPs in both of the above steps. More recently, Bitan-

sky and Paneth provided a construction of resettably-

sound concurrent zero-knowledge for NP based on just

one-way functions.8 We here show how to perform the

second step based on only one-way functions.

Lemma 4 (Soundness upgrade Lemma for ZK). Assume
the existence of one-way functions. Then, there exists
a constructive protocol transformation that takes any
resettably-sound concurrent zero-knowledge argument
of knowledge for NP and outputs a simultaneously
resettable zero-knowledge argument of knowledge for
NP .

Our protocol transformation closely follows the one

in [DGS09]; our key observation is that we can simply

replace ZAPs in the construction of [DGS09] with rsrWI

arguments. Combining these observation with our Main

Theorem 1 yields the lemma. Our Main Theorem 2

is now a direct consequence of the resettably-sound

concurrent zero-knowledge protocol from [BP13] and

Lemma 4.

II. DEFINITIONS AND TOOLS

A polynomial-time relation R is a relation for which

it is possible to verify in time polynomial in |x| whether

R(x,w) = 1. Let us consider an NP-language L
and denote by RL the corresponding polynomial-time

relation such that x ∈ L if and only if there exists w
such that RL(x,w) = 1. We will call such a w a valid
witness for x ∈ L. A negligible function ν(k) is a non-

negative function such that for any constant c < 0 and

for all sufficiently large k, ν(k) < kc. We will denote by

Prr[ X ] the probability of an event X over coins r. The

abbreviation “PPT” stands for probabilistic polynomial

7We are slightly oversimplifying here. Their protocol from step
1 only satisfied a relaxed notion of concurrent zero-knowledge, and
their second step applies also to protocols only satisfying this relaxed
notion. In our context, we need not worry about this relaxed notion.

8In an earlier version of this paper, we also independently showed
how to achieve resettably-sound “relaxed” concurrent zero-knowledge
(as in [DGS09]) from one-way functions, by adapting the protocol
from [CPS13]. Since the second step of the transformation applies also
to such relaxed zero-knowledge protocol, this also sufficed to conclude
our main result. Here, for simplicity of exposition, we instead directly
appeal to the result of [BP13].
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time. We will use the standard notion of computational

indistinguishability [GM84].

We now give definitions for interactive

proof/argument systems with all variants that are

useful in this work.

Definition 5 (interactive proofs [GMR85]). A proof

system for the language L, is a pair of interactive Turing

machines (P, V ) running on common input x such that:

• Efficiency: P and V are PPT.

• Completeness: There exists a negligible function

ν(·) such that for every pair (x,w) such that

RL(x,w) = 1,

Pr[ 〈P (w), V 〉(x) = 1 ] ≥ 1− ν(|x|).
• Soundness: For every x �∈ L and for every inter-

active Turing machine P ∗ there exists a negligible

function ν(·) such that

Pr[ 〈P ∗, V 〉(x) = 1 ] < ν(|x|).
In the above definition we can relax the soundness

requirement by considering P ∗ as PPT. In this case,

we say that (P, V ) is an argument system.

We denote by viewP (w)
V ∗(x,z) the view (i.e., its private

coins and the received messages) of V ∗ during an

interaction with P (w) on common input x and auxiliary

input z.

Definition 6 (zero-knowledge arguments [GMR85]).
Let (P, V ) be an interactive argument system for a

language L. We say that (P, V ) is zero knowledge

(ZK) if, for any probabilistic polynomial-time adver-

sary V ∗ receiving an auxiliary input z, there exists a

probabilistic polynomial-time algorithm SV ∗ such for

all pairs (x,w) ∈ RL the ensembles {viewP (w)
V ∗(x,z)}

and {SV ∗(x, z)} are computationally indistinguishable.

Arguments of knowledge are arguments where there

additionally exists an expected PPT extractor that can

extract a witness from any successful prover, and this

is a stronger notion of soundness. We will give now

a definition that is slightly weaker than the standard

definition of [BG92] but is useful for our constructions.

Note, also, that in the following definition, the extrac-

tor is given non-black box access to the prover. This is

an essential property for our techniques.

Definition 7 (arguments of knowledge [BGGL01]). Let

R be a binary relation. We say that a probabilistic,

polynomial-time interactive machine V is a knowledge
verifier for the relation R with negligible knowledge
error if the following two conditions hold:

• Non-triviality: There exists a probabilistic

polynomial-time interactive machine P such that

for every (x,w) ∈ R, all possible interactions

of V with P on common input x, where P has

auxiliary input w, are accepting, except with

negligible probability.

• Validity (or knowledge soundness) with negligi-

ble error: There exists a probabilistic polynomial-

time machine K such that for every probabilistic

polynomial-time machine P ∗, every polynomial

p(·) and all sufficiently large x’s,

Pr[w ← K(desc(P ∗), x) ∧ RL(x,w) = 1] >
Pr[〈P ∗, V 〉(x) = accept]− 1

p(|x|)
where 〈P ∗, V 〉(x) denotes V ’s output after in-

teracting with P ∗ upon common input x and

desc(P ∗) denotes the description of P ∗’s strategy.

Further, (P, V ) is an argument of knowledge for relation

R.

Definition 8 (resetting adversary [CGGM00]). Let

(P, V ) be an interactive proof or argument system

for a language L, t = poly(k), x̄ = x1, . . . , xt be

a sequence of common inputs and w̄ = w1, . . . , wt

the corresponding witnesses (i.e., (xi, wi) ∈ RL) for

i = 1, . . . , t. We say that a PPT V ∗ is a resetting
verifier if it concurrently interacts with an unbounded

number of independent copies of P by choosing for

each interaction the value i so that the common input

will be xi ∈ x̄, and the prover will use witness wi, and

choosing j so that the prover will use rj as randomness,

with i, j ∈ {1, . . . , t}. The scheduling or the messages

to be sent in the different interactions with P are freely

decided by V ∗. Moreover we say that the transcript of

such interactions consist of the common inputs x̄ and

the sequence of prover and verifier messages exchanged

during the interactions. We refer to viewP (w̄)
V ∗(x̄,z) as the

random variable describing the content of the random

tape of V ∗ and the transcript of the interactions between

P and V ∗, where z is an auxiliary input received by V ∗.

Definition 9 (resettable zero knowledge [CGGM00]).
Let (P, V ) be an interactive argument system for a

language L. We say that 〈P, V 〉 is resettable zero knowl-

edge (rZK) if, for any PPT resetting verifier V ∗ there

exists a probabilistic polynomial-time algorithm SV ∗

such that the for all pairs (x̄, w̄) ∈ RL the ensembles

{viewP (w̄)
V ∗(x̄,z)} and {SV ∗(x̄, z)} are computationally

indistinguishable.

The definition of concurrent zero knowledge can

be seen as a relaxation of the one of resettable zero

knowledge. The adversarial concurrent verifier has the

same power of the resetting verifier except it can not

ask the prover to run multiple sessions with the same

randomness.

Definition 10 (concurrent adversary). Let (P, V ) be an

interactive proof or argument system for a language L,

t = poly(k), x̄ = x1, . . . , xt be a sequence of common
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inputs and w̄ = w1, . . . , wt the corresponding witnesses

(i.e., (xi, wi) ∈ RL) for i = 1, . . . , t. We say that a PPT

V ∗ is a concurrent verifier if it concurrently interacts

with an unbounded number of independent copies of

P by choosing for each interaction the value i so that

the common input will be xi ∈ x̄, and the prover will

use witness wi. Each copy of P runs with independent

randomness. The scheduling or the messages to be sent

in the different interactions with P are freely decided

by V ∗. Moreover we say that the transcript of such

interactions consist of the common inputs x̄ and the

sequence of prover and verifier messages exchanged

during the interactions. We refer to viewP (w̄)
V ∗(x̄,z) as the

random variable describing the content of the random

tape of V ∗ and the transcript of the interactions between

P and V ∗, where z is an auxiliary input received by V ∗.

Definition 11 (concurrent zero knowledge [DNS98]).
Let (P, V ) be an interactive argument system for a

language L. We say that 〈P, V 〉 is concurrent zero

knowledge (cZK) if, for any PPT concurrent verifier V ∗

there exists a probabilistic polynomial-time algorithm

SV ∗ such that the for all pairs (x̄, w̄) ∈ RL the

ensembles {viewP (w̄)
V ∗(x̄,z)} and {SV ∗(x̄, z)} are com-

putationally indistinguishable.

Definition 12 (witness indistinguishability [FS90]). Let

L be a language in NP and RL be the corresponding

relation. An interactive argument (P, V ) for L is witness
indistinguishable (WI) if for every verifier V ∗, every

pair (w0, w1) such that (x,w0) ∈ RL and (x,w1) ∈ RL

and every auxiliary input z, the following ensembles are

computationally indistinguishable:

{viewP (w0)
V ∗(x,z)} and {viewP (w1)

V ∗(x,z)}.
Definition 13 (resettable WI [CGGM00]). Let L be a

language in NP and RL be the corresponding relation.

An interactive argument 〈P, V 〉 for L is resettable
witness indistinguishable (rWI) if for every PPT reset-

ting verifier V ∗ every t = poly(k), and every pair

(w̄0 = (w0
1, . . . , w

0
t ), w̄

1 = (w1
1, . . . , w

1
t )) such that

(xi, w
0
i ) ∈ RL and (xi, w

1
i ) ∈ RL for i = 1, . . . , t,

and any auxiliary input z, the following ensembles are

computationally indistinguishable:

{viewP (w̄0)
V ∗(x̄,z)} and {viewP (w̄1)

V ∗(x̄,z)}.
In [DN00], a construction of 2-round resettable

witness-indistinguishable proof based on NIZK proofs

has been shown, and then in [GOS06], a non-interactive

resettable witness-indistinguishable proof has been

shown by relying on specific number-theoretic assump-

tions.

Let us recall the definition of resettable soundness

due to [BGGL01].

Definition 14 (resettably-sound arguments [BGGL01]).
A resetting attack of a cheating prover P ∗ on a reset-

table verifier V is defined by the following two-step

random process, indexed by a security parameter k.

1) Uniformly select and fix t = poly(k) random-

tapes, denoted r1, . . . , rt, for V , resulting in de-

terministic strategies V (j)(x) = Vx,rj defined by

Vx,rj (α) = V (x, rj , α),
9 where x ∈ {0, 1}k and

j ∈ [t]. Each V (j)(x) is called an incarnation of

V .

2) On input 1k, machine P ∗ is allowed to initiate

poly(k)-many interactions with the V (j)(x)’s.

The activity of P ∗ proceeds in rounds. In each

round P ∗ chooses x ∈ {0, 1}k and j ∈ [t], thus

defining V (j)(x), and conducts a complete session

with it.

Let (P, V ) be an interactive argument for a language

L. We say that (P, V ) is a resettably-sound argument
for L if the following condition holds:

• Resettable-soundness: For every polynomial-size

resetting attack, the probability that in some ses-

sion the corresponding V (j)(x) has accepted and

x /∈ L is negligible.

We will also consider a slight weakening of the

notion of resettable soundness, where the statement to

be proven is fixed, and the verifier uses a single random

tape (that is, the prover cannot start many independent

instances of the verifier).

Definition 15 (fixed-input resettably-sound argu-

ments [PTW11]). An interactive argument (P, V ) for a

NP language L with witness relation RL is fixed-input
resettably-sound if it satisfies the following property:

For all non-uniform polynomial-time adversarial reset-

ting prover P ∗, there exists a negligible function μ(·)
such that for every all x /∈ L,

Pr[R← {0, 1}∞; (P ∗VR(x), VR)(x) = 1] ≤ μ(|x|)
Additionally, we will consider a further weaken no-

tion of bounded-query fixed-input resettable soundness,

where the cheating prover can reset the verifier, but is

restricted to only learn a bounded number of verifier’s

messages in total (summed over all sessions).

Definition 16 (q-query fixed-input resettably-sound ar-

guments [PTW11]). An interactive argument (P, V )
for a NP language L with witness relation RL is

q-query fixed-input resettably-sound if it satisfies the

following property: For all non-uniform polynomial-

time adversarial resetting prover P ∗ that makes at most

9Here, V (x, r, α) denotes the message sent by the strategy V on
common input x, random-tape r, after seeing the message-sequence
α.
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q queries to the verifier, there exists a negligible function

μ(·) such that for every all x /∈ L,

Pr[R← {0, 1}∞; (P ∗VR(x), VR)(x) = 1] ≤ μ(|x|)
The definitions of rsrWI (resp., rsrZK) simply con-

sists in requiring both rWI (resp., rZK) and resettably

sound WI (resp., rsZK) hold for the same proof system.

We stress that all our definitions and constructions do

not impose any a priori bound on the number of resets

and we only consider the non-adaptive attack models

where input(s) and corrupted parties are fixed in advance

before protocol executions begin.

III. ω(1)-ROUND RSRWI AOK FROM OWFS

In this section, we show how to transform any

constant-round argument of knowledge into an ω(1)-
round resettably-sound argument of knowledge by ap-

propriately scheduling concurrent sessions of the under-

lying protocol, and letting the verifier generate its ran-

domness using a PRF. Since, such concurrent scheduling

preserve rWI and completeness, we have the following

theorem.

Theorem 17. Assume the existence of a constant-round
rWI argument of knowledge for NP . Then there exists
an ω(1)-round rsrWI argument of knowledge for NP .
More generally, the existence of a o( log k

log log k )-round rWI
argument of knowledge for NP implies the existence of
a poly(k)-round rsrWI argument of knowledge forNP .

Combined with the recent constant-round rWI argu-

ment of knowledge construction of Chung, Pass and

Seth [CPS13] based on one-way functions, we get an

ω(1)-round rsrWI based on the minimal assumption of

OWFs (proving our Main Theorem 1).

Theorem 18 (Main Theorem 1, restate). Assume the
existence of one-way functions. Then there exists an
ω(1)-round rsrWI argument of knowledge for NP .

Proof of Theorem 17: We proceed proving The-

orem 17 by combining and interpreting results proven

in [CPT12], [PTW11], [BGGL01], [CPS13]. The key

component of the transformation is a construction

from [CPT12] (CPT), which modularizes (and im-

proves in terms of round-complexity) the construction

of [CKPR01]. The construction proceeds in two steps:

Step 1: Parallel Repetition With Random-
Terminating Verifiers. Take any constant-round

protocol (P, V ). Repeat the protocol sufficiently many

times in parallel with the follow exception: following

[CKPR01], [Hai09], at each round, let each of the

parallel verifier terminate, accepting, at random with

some appropriately set probability; each parallel verifier

generates the randomness needed to decide whether

to terminate or not, by applying a PRF to the current

transcript. CPT shows that by appropriately fixing

the number of parallel repetitions and the termination

probability, the resulting protocol (P̂ , V̂ ) is k-query

fixed-input resettable sound, where k is the security

parameter.

Specifically (and more generally), let (P, V ) be an

m-round interactive argument for an NP language L.

Define (P̂ k, V̂ k) to be k parallel repetition of (P, V )
where at each round, each of the parallel verifier ter-

minates and accepts with probability ρ = (1 − 1/q)
with q = k1/m/ log2 k (with randomness generated

by applying a PRF to the current transcript). The

following lemma is proved in CPT (but using a different

language).10

Lemma 19 (“Lemma 7, generalized” in [CPT12]). If
(P, V ) is sound, then (P̂ k, V̂ k) is q-query fixed-input
resettable sound.

Step 2: Amplification Through Nesting. The second

step shows how to amplify fixed-input bounded-query

resettable soundness by “nesting” protocol executions.

Roughly speaking, given an underlying m-round pro-

tocol (P̂ , V̂ ) with fixed-input q-query resettable sound-

ness, recursively define a d-level protocol (P (d), V (d))
by executing (P̂ , V̂ ) once, and in-between any two mes-

sages in (P̂ , V̂ ) running an instance of (P (d−1), V (d−1))
where V (d−1)’s randomness is generated by applying

a PRF to the transcript, and letting (P (1), V (1)) be

the “base” protocol (P̂ , V̂ ) (without recursion calls in-

between messages). The resulting protocol (P (d), V (d))
has O(md) rounds and CPT shows that (P (d), V (d)) has

fixed-input qd-query resettable soundness.

More specifically, let (P̂ , V̂ ) be an m-round interac-

tive argument for an NP language L. Without loss of

generality, we assume that (P̂ , V̂ ) starts with a verifier

message and end with a prover message. Also, we let

V̂r denote V̂ with random tape r. For d ∈ N, we define

a d-level protocol (P (d), V (d)) by defining the verifier

V (d) recursively as follows.

• Specifying the recursive schedule. Simply put,

each call to V (d) corresponds with an incarnation

V̂r, with the additional modification that between

every prover query and verifier response, V (d)

nests a recursive call of itself, V (d−1), with de-

creased depth; since protocol (P̂ , V̂ ) start with a

10There is also a slight semantical difference between the con-
struction and lemma state here and that in CPT. More precisely,
in the construction of [CPT12], the randomness used to determine
termination is in fact generated by applying a q-wise independent
hash function (as opposed to a PRF) to the transcript. However, as is
well-known (and made explicitly in [PTW11], see e.g., Theorem 17),
it follows by a standard hybrid argument that the verifier can use a
PRF as described above, and the same results hold. We emphasize that
this is true only since we consider fixed-input resettable soundness.

66



verifier message and end with a prover message,

there will be m− 1 nested calls.

Formally, V (d) starts by generating a “fresh ran-

dom tape” r for V̂ (we clarify this later) and

invokes V̂r with the following modification. After

every prover query τ for V̂r that expects a verifier

response, V (d) delays the response from V̂r, and

instead recursively calls in itself with decreased

depth V (d−1). We call τ the initiating query for

V (d−1). (Then V (d−1) invokes an incarnation V̂r′

and returns the first verifier message of V̂r′ .)

When V (d−1) terminates, signaled by some the

final prover query τ ′ meant for V (d−1) (we call

τ ′ the closing query for V (d−1)), V (d) makes

sure that the prover has successfully “convinced”

V (d−1) (as we will define later, this means that the

prover has successfully convinced the incarnation

of V̂ invoked by V (d−1)). At this point, V (d)

generates a verifier response by forwarding the

original initiating query τ to V̂r. Note that while

this is V (d)’s response to the closing query τ ′, the

response depends only on the randomness r and

the initiating query τ (because it is in fact V̂r’s

response to τ ).

When V (d) receives the closing query for V̂r, it

accepts if and only if the prover has successfully

convinced V̂r.

• Specifying the base case of the recursion. When

d = 1, V (1) simply invokes a corresponding

incarnation V̂r without recursive calls (i.e., V (1)

answers each prover query without delay).

To help understand the definition, we note that for

an incarnation V̂ , the first m− 1 round prover message

queries are initiation queries, and the last round prover

message queries are closing queries. Also, all except for

the first round verifier messages of V̂ are responses to

initiating queries.

It remains to define how each recursive call of V (d)

generates the randomness r for its own incarnation of

V̂ . Just as before, V (d) generates r using a (global) PRF.

More precisely, V (d) additionally takes as input a PRF

f (which is sampled at the beginning of the protocol),

and in each recursive call of V (d), corresponding to an

initiating query τ , V (d) generates r by apply f to τ (note

that the query τ is just the current global transcript of

interaction right when V (d) is about to spawn V̂ , and

that the whole random tape of V̂ is generated).

This completes the description of the transformation

in CPT, and the following lemma is proved there (again

stated in a different language).11

11Again, in the construction of [CPT12], the randomness of incar-
nations of V̂ is in fact generated by a many-wise independent hash
function (as opposed to a PRF). But, as mentioned above, it follows
by a standard hybrid argument that the verifier can use a PRF instead.

Lemma 20 (Lemma 9 in [CPT12]). For every q ≥
m and d, if (P̂ , V̂ ) is q-query fixed-input resettably
sound, then (P (d), V (d)) is qd-query fixed-input reset-
table sound.

So, by combining the above two steps, if we let

d = ω(1), we turn any constant-round argument (P, V )
into an ω(1)-round fixed-input (unbounded query) re-

settably sound argument. (More generally, as long as

the original protocol has m = o( log k
log log k ) rounds, the

parallel protocol obtained in Step 1 is q-query resettably

sound for q = O(k1/m) = mω(1). A poly(k)-round

single-instance (unbounded query) resettably sound ar-

gument can be obtained by properly choosing d so that

qd = kω(1) while O(md) = poly(k).)
We notice that the transformation preserves rWI since

any attack of a resetting verifier on the transformed

scheme is also a legitimate attack to the original scheme.

Finally, Theorem 17 follows by additionally applying

the following lemma in [CPS13] (which relies on the

technique from [BGGL01]), which shows that any rWI

argument of knowledge satisfying fixed-input resettable

soundness can be transformed into one that satisfies the

full-fledged one, while preserving rWI (or any other

secrecy property against malicious verifiers.

Lemma 21 ([CPS13]). Let (P, V ) be a fixed-input
resettably sound rWI (resp., ZK or rZK) argument of
knowledge for a language L ∈ NP . Then there exists a
protocol (P ′, V ′) that is a resettably-sound rWI (resp.,
ZK or rZK) argument of knowledge for L with the same
round complexity as (P, V ).

IV. SIMULTANEOUSLY RESETTABLE ZK FROM

OWFS

In this section we prove the second main theorem of

this work, namely: the existence of OWFs implies the

existence of a rsrZK argument of knowledge for NP .

We start by recalling a protocol transformation from

[DGS09], [GS08] (DGS).

Lemma 22 ([DGS09], [GS08]). Assume the existence
of ZAPs. Then, there exists a constructive protocol
transformation DGS that takes any resettably-sound
concurrent zero-knowledge argument Π = (P, V ) and
outputs a protocol DGSΠ = (P ′, V ′) that is fixed-input
resettably-sound, resettable zero-knowledge.

We first observe that in their proof, the only properties

they rely on from ZAPs is that they (can be made) to

satisfy both resettable-soundness and resettable WI—

that is, they are rsrWI. So we can simply replace the

use of ZAPs with an rsrWI in their protocol.

Lemma 23 ([DGS09], [GS08]). Assume the existence
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Figure 2. An execution of the O(md)-round protocol (P (d), V (d)).

of an rsrWI for NP . Then, there exists a constructive
protocol transformation DGS that takes any resettably-
sound concurrent zero-knowledge argument Π = (P, V )
and outputs a protocol DGSΠ = (P ′, V ′) that is fixed-
input resettably-sound, resettable zero-knowledge.

Additionally, the soundness proof from DGS implic-

itly proves the following lemma.

Lemma 24 (implicit in [DGS09], [GS08]). Given any
efficient cheating prover P ′∗ for the transformed proto-
col DGSΠ, there exists an efficient cheating prover P ∗

for the original protocol Π that succeeds with negligibly
close probability.

As a consequence, if Π is an argument of knowledge,

then so is DGSΠ; that is, the DGS transformation

preserves the argument of knowledge property. We

summarize the above two observation in the following

lemma.

Combining the above two lemmas, we thus have:

Lemma 25. Assume the existence of an rsrWI for NP .
Then, there exists a constructive protocol transformation
DGS that takes any resettably-sound concurrent zero-
knowledge argument Π = (P, V ) and outputs a protocol
Π′ = DGSΠ that is fixed-input resettably-sound, reset-
table zero-knowledge. Additionally, if Π is an argument
of knowledge, so is Π′.

Therefore, if we start with a resettably-sound concur-

rent ZK protocol Π that is an argument of knowledge,

we can additionally appeal to Lemma 21 after applying

the DGS transformation to obtain a “full-fledged” (as

opposed to fixed-input) simultaneously resettable zero

knowledge argument of knowledge. Combined with our

Theorem 18 (i.e., the construction of rsrWI from one-

way functions), we thus have the following theorem.

Theorem 26. Assume the existence of one-way func-
tions. Then, there exists a constructive protocol trans-
formation that takes any resettably-sound concurrent
zero-knowledge argument of knowledge and outputs a
simultaneously resettable zero-knowledge argument of
knowledge.

Finally, our Main Theorem 2 follows directly by

combining Theorem 26 with the resettably sound con-

current ZK argument of knowledge of Bitansky and

Paneth [BP13] (which is based on one-way functions):

Theorem 27 (Main Theorem 2, restated). Assume the
existence of one-way functions. Then there exists an
rsrZK for NP .
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