
Constant-Round Concurrent Zero Knowledge
From P-Certificates

Kai-Min Chung

Academia Sinica, Taiwan

chung@cs.cornell.edu

Huijia Lin

University of California, Santa Barbara

huijial@gmail.com

Rafael Pass

Cornell University

rafael@cs.cornell.edu

Abstract—We present a constant-round concurrent
zero-knowledge protocol for NP. Our protocol relies
on the existence of families of collision-resistant hash
functions, and a new, but in our eyes, natural complexity-
theoretic assumption: the existence of P-certificates—that
is, “succinct” non-interactive proofs/arguments for P. As
far as we know, our results yield the first constant-round
concurrent zero-knowledge protocol for NP with an ex-
plicit zero-knowledge simulator based on any assumption.

I. INTRODUCTION

Zero-knowledge (ZK) interactive proofs [GMR89]

are paradoxical constructs that allow one player (called

the Prover) to convince another player (called the

Verifier) of the validity of a mathematical statement

x ∈ L, while providing zero additional knowledge to

the Verifier. Beyond being fascinating in their own right,

ZK proofs have numerous cryptographic applications

and are one of the most fundamental cryptographic

building blocks.

The notion of concurrent zero knowledge, first in-

troduced and achieved in the paper by Dwork, Naor

and Sahai [DNS04], considers the execution of zero-

knowledge proofs in an asynchronous and concurrent

setting. More precisely, we consider a single adversary

mounting a coordinated attack by acting as a verifier

in many concurrent executions (called sessions). Con-

current ZK proofs are significantly harder to construct

and analyze. Since the original protocol by Dwork,

Naor and Sahai (which relied on so called “timing

assumptions”), various other concurrent ZK protocols

have been obtained based on different set-up assump-

tions (e.g., [DS98], [Dam00], [CGGM00], [Gol02],

[PTV12], [GJO+12]), or in alternative models (e.g.,

super-polynomial-time simulation [Pas03b], [PV10]).

Chung is supported by NSF Award CNS-1217821, NSF Award
CCF-1214844 and Pass’ Sloan Fellowship; work was done when
being at Cornell.

Pass is supported in part by a Alfred P. Sloan Fellowship, Microsoft
New Faculty Fellowship, NSF Award CNS-1217821, NSF CAREER
Award CCF-0746990, NSF Award CCF-1214844, AFOSR YIP Award
FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-
11-2- 0211. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

In the standard model, without set-up assumptions

(the focus of our work,) Canetti, Kilian, Petrank

and Rosen [CKPR01] (building on earlier works by

[KPR98], [Ros00]) show that concurrent ZK proofs

for non-trivial languages, with “black-box” simulators,

require at least Ω̃(log n) number of communication

rounds. Richardson and Kilian [RK99] constructed the

first concurrent ZK argument in the standard model

without any extra set-up assumptions. Their protocol,

which uses a black-box simulator, requires O(nε) num-

ber of rounds. The round-complexity was later improved

in the work of Kilian and Petrank (KP) [KP01] to

Õ(log2 n) round. Somewhat surprisingly, the simulator

strategy of KP is “oblivious”—the “rewinding schedule”

of the simulator ignores how the malicious verifier

schedules its messages. The key insight behind this

oblivious simulation technique is that a single “rewind-

ing” may be helpful for simulating multiple sessions; in

essence, KP performs an amortized analysis, which im-

proves the round-complexity. (As we shall see shortly,

such an amortized analysis will play an important role

also in this work.) More recent work by Prabhakaran,

Rosen and Sahai [PRS02] improves the analysis of the

KP simulator, achieving an essentially optimal, w.r.t.

black-box simulation, round-complexity of Õ(log n);
see also [PTV12] for an (arguably) simplified and

generalized analysis.

The central open problem in the area is whether

a constant-round concurrent ZK protocol (for a non-

trivial language) can be obtained. A major breakthrough

towards resolving this question came with the work of

Barak [Bar01], demonstrating a new non-black-box sim-

ulation technique that seemed amenable for constructing

constant-round protocols that are resilient to concurrent

attacks. Indeed, Barak demonstrated a constant-round

bounded-concurrent argument for NP based on the

existence of collision-resistant hash-functions; bounded-

concurrency here means that for every a-priori poly-

nomial bound m on the number of concurrent execu-

tions, there exists a protocol (which depends on m)

that remains zero-knowledge as long as the number of

concurrent execution does not exceed m. (In particular,

in the protocol of Barak, the message length of the

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.14

50

protocol grows linearly with the a-priori bound m on

the number of concurrent executions.)

But a decade later, the question of whether “full” (i.e.,

unbounded) concurrent zero-knowledge is achievable in

a constant number of rounds is still wide open. Note

that it could very well be the case that all “classic”

zero-knowledge protocols already are concurrent zero-

knowledge; thus, simply assuming that those protocols

are concurrent zero-knowledge yields an assumption

under which constant-round concurrent zero-knowledge

(trivially) exists—in essence, we are assuming that for

every attacker a simulator exists. Furthermore, as we

discuss in Section III, if we make strong “concur-

rent extractability” assumptions of the knowledge-of-

exponent type [Dam91], [HT98], [BP04], concurrent

zero-knowledge is easy to construct.1 But such ex-

tractability assumptions also simply assume that for

every attacker, a simulator (“the extractor”) exists. In

essence, rather than basing constant-round concurrent

zero-knowledge on a hardness assumption, it is based

on a “knowledge” assumption; that is, an assumption

that is very similar in flavour to simply assuming that

a protocol is zero-knowledge. The central question that

we address in this paper is thus the following:

Can constant-round concurrent zero-
knowledge be based on any (reasonable)
complexity-theoretic hardness assumption?

As an additional point, even under the above-

mentioned strong “knowledge” assumptions, an explicit

construction of the concurrent zero-knowledge simu-

lator is not known—it is simply assumed that one

exists. For some applications of zero-knowledge such

as deniability (see e.g., [DNS04], [Pas03b]), having an

explicit simulator is crucial. As far as we know, there are

currently no assumptions (no matter how crazy) under

which constant-round concurrent zero-knowledge with

an explicit simulator is known.

In fact, even in the common reference string (CRS)

model, there are no known constructions of constant-

round concurrent zero-knowledge where the simulator

does not “program” the CRS; such zero-knowledge

protocols were referred to as deniable zero-knowledge
in the CRS model in [Pas03b].2 Indeed, as shown in

[Pas03b], the black-box lower-bounds for concurrent

zero-knowledge in the plain model extend also to such

a “non-programmable” CRS model.

1Furthermore, as shown in the recent independent work of [GS12],
even a “non-concurrent” (but quite strong in a different way)
extractability-type assumption can be used.

2Again, if the simulator gets to program the CRS, such a simulator
cannot be used to get deniability.

A. Our Results

In this work, we present new complexity-theoretic

assumptions, which in our eyes are both natural and

reasonable (and can be efficiently falsified), under

which constant-round concurrent zero-knowledge is

achievable. Furthermore, we provide an explicit zero-

knowledge simulator.

P-certificates We consider an analogue of Micali’s

non-interactive CS-proofs [Mic00] for languages in P.

Roughly speaking, we say that (P, V) is a P-certificate
system if (P, V) is a non-interactive proof system

(i.e., the prover send a single message to the verifier,

who either accepts or rejects) allowing an efficient

prover to convince the verifier of the validity of any

deterministic polynomial-time computation M(x) = y
using a “certificate” of some fixed polynomial length

(independent of the size and the running-time of M)

whose validity the verifier can check in some fixed

polynomial time (independent of the running-time of

M). That is, a P-certificate allows every deterministic

polynomial-time computation to be “succinctly” cer-

tified using a “short” certificate (of a-priori bounded

polynomial length) that can be “quickly” verified (in

a-priori bounded polynomial-time).

We may consider the existence of P-certificates either

in the “plain” model (without any set-up), or with

some set-up, such as the CRS model. We may also

consider various different notions of soundness: uni-
form computational soundness—which states that no

uniform polynomial-time algorithm can output an ac-

cepting certificate for any false statement, non-uniform
computational soundness—where the same condition

holds also w.r.t. non-uniform polynomial-time attackers,

and statistical soundness—where soundness condition

holds also with respect to unbounded attackers restricted

to selecting statements of polynomial length.

Note that in the plain model, non-uniform soundness

and statistical Sundanese are equivalent, since if an

accepting proof of a false statement exists, a non-

uniform efficient attacker can simply get it as non-

uniform advice. In the CRS model, however, the notions

are (seemingly) distinct.

For our application we will require a slightly stronger

soundness condition: soundness needs to hold even

against T (·)-time attackers attempting to prove the

validity also of T (·)-time computations, where T (·) is

some “nice” (slightly) super-polynomial function (e.g.,

T (n) = nlog log logn). We refer to such proof systems

as strong P-certificates.

On the Existence of P-certificates In the plain model,

a candidate construction of uniformly computationally-

sound P-certificate systems come from Micali’s CS-

51

proofs [Mic00]. These constructs provide short certifi-

cates even for all of NEXP. However, since we here

restrict to certificates only for P, the assumption that

these constructions are sound (resp. strongly sound)

P-certificates is falsifiable [Pop63], [Nao03]: Roughly

speaking, we can efficiently test if an attacker outputs

a valid proof of an incorrect statement, since whether a

statement is correct or not can be checked in determin-

istic polynomial time.3

In our eyes, on a qualitatively level, the assumption

that Micali’s CS-proofs yield strong P-certificates is

not very different from the assumption that e.g., the

Full Domain Hash [BR93] or Schnorr [Sch91] signature

schemes are existentially unforgeable: 1) whether an at-

tacker succeeds can be efficiently checked, 2) no attacks

are currently known, and 3) the “design-principles”

underlying the construction rely on similar intuitions.

As a final point, recall that Micali’s CS-proofs rely on

the Fiat-Shamir heuristic, which in general may result

in unsecure schemes [Bar01], [GK03]; however, note

that whereas Micali’s construction is unconditionally
secure in the random oracle model, the counterexamples

of [Bar01], [GK03] extensively rely on the underlying

protocol only being computationally secure; as such, at

this time, we have no reason to believe that the Fiat-

Shamir heuristic does not work for Micali’s protocol (or

any other protocol that is unconditionally secure in the

random oracle model).

In the CRS model, we may additionally assume that

Micali’s CS-proofs satisfy non-uniform computational

soundness. Additionally, several recent works provide

constructions of “SNARGs” (succinct non-interactive

arguments) for NP in the CRS model [Gro10], [Lip12],

[BCCT13], [GGPR13]; such constructions are trivially

P-certificates with non-uniform computational sound-

ness in the CRS model. However, since we restrict to

languages in P, checking whether soundness of any of

these constructions is broken now becomes efficiently

checkable (and thus assuming that they are secure

becomes falsifiable).

Finally, let us remark that even statistically-sound

P-certificates may exist: Note that the existence of

statistically-sound strong P-certificates is implied by

the assumption that 1) DTIME(nω(1)) ⊆ NP and 2)

NP proofs for statements in DTIME(t) can be found

in time polynomial in t [BLV06]. In essence, these

assumptions says that non-determinism can slightly

speed-up computation, and that the non-deterministic

choices can be found efficiently, where efficiency is

3In contrast, as shown by Gentry and Wichs [GW11], (under
reasonable complexity theoretic assumptions) non-interactive CS-
proofs for NP cannot be based on any falsifiable assumption using
a black-box proof of security.

measured in terms of the original deterministic compu-

tation. Although we have no real intuition for whether

this assumption is true or false,4 it seems beyond current

techniques to contradict it. (As far as we know, at

this point, there is no substantial evidence that even

SUBEXP �⊆ NP.)

From P-certificates to O(1)-round Concurrent ZK
Our main theorem is the following.

Theorem. Assume the existence of families of collision-
resistant hash-functions secure against polynomial-size
circuits, and the existence of a strong P-certificate sys-
tem with uniform (resp. non-uniform) soundness. Then
there exists a constant-round concurrent zero-knowledge
argument for NP with uniform (resp. non-uniform)
soundness. Furthermore, the protocol is public-coin and
its communication complexity depends only on the se-
curity parameter (but not on the length of the statement
proved).

Let us briefly remark that from a theoretical point

of view, we find the notion of uniform soundness of

interactive arguments as well-motivated as the one of

non-uniform soundness; see e.g., [Gol93] for further dis-

cussion. From a practical point of view (and following

Rogaway [Rog06])5, an asymptotic treatment of sound-

ness is not needed for our results, even in the uniform

setting: our soundness proof is a constructive black-

box reduction that (assuming the existence of fam-

ilies of collision-resistant hash-functions), transforms

any attacker that breaks soundness of our concurrent

ZK protocol on a single security parameter 1n into

an attacker that breaks the the soundness of the P-

certificate systems with comparable probability on the

same security parameter 1n, with only a “small” polyno-

mial overhead. In particular, if some attacker manages to

break the soundness of a particular instantiation of our

protocol using e.g., Micali’s CS-proof for languages in

P implemented using some specific hash function (e.g.,

SHA-256), then this attacker can be used to break this

particular implementation of CS-proofs.

Furthermore, by the above argument, we may also

instantiate our protocol with P-certificates in the CRS

model, leading to a constant-round concurrent zero-

knowledge protocol (with non-uniform soundness) in

the non-programmable CRS model.

Beyond Concurrent ZK Since the work of Barak

[Bar01], non-black-box simulation techniques have

4As far as we know, the only evidence against it is that it con-
tradicts very strong forms of derandomization assumptions [BLV06],
[BOV07].

5Rogaway used this argument to formalize what it means for a
concrete hash function (as opposed to a family of hash functions) to
be collision resistant.

52

been used in several other contexts (e.g., [BGGL01],

[DGS09], [BP12], [Lin03], [PR03a], [Pas04], [BS05],

[GJ10]. We believe that our techniques will be ap-

plicable also in those scenarios. In particular, in the

full version, we show that our protocols directly

yield a constant-round simultaneously-resettable ZK
[BGGL01], [DGS09] for NP, and discuss applications

to concurrent secure computation.

II. PROOF OUTLINE

In this extended abstract, due to lack of space, we

only provide a (detailed) outline of our techniques. The

full proof is found in the full version [CLP12]. The

starting point of our construction is Barak’s [Bar01]

non-black-box zero-knowledge argument for NP. Let

us start by very briefly recalling the ideas behind his

protocol (following a slight variant of this protocol due

to [PR03b]). Roughly speaking, on common input 1n

and x ∈ {0, 1}poly(n), the Prover P and Verifier V ,

proceed in two stages. In Stage 1, P starts by sending

a computationally-binding commitment c ∈ {0, 1}n to

0n; V next sends a “challenge” r ∈ {0, 1}2n. In Stage

2, P shows (using a witness indistinguishable argument

of knowledge) that either x is true, or there exists a

“short” string σ ∈ {0, 1}n such that c is a commitment

to a program M such that M(σ) = r.6

Soundness follows from the fact that even if a ma-

licious prover P ∗ tries to commit to some program M
(instead of committing to 0n), with high probability,

the string r sent by V will be different from M(σ) for

every string σ ∈ {0, 1}n. To prove ZK, consider the

non-black-box simulator S that commits to the code of

the malicious verifier V ∗; note that by definition it thus

holds that M(c) = r, and the simulator can use σ = c
as a “fake” witness in the final proof. To formalize

this approach, the witness indistinguishable argument

in Stage 2 must actually be a witness indistinguishable

universal argument (WIUA) [Mic00], [BG08] since the

statement that c is a commitment to a program M of

arbitrary polynomial-size, and that M(c) = r within

some arbitrary polynomial time, is not in NP.

Now, let us consider concurrent composition. That

is, we need to simulate the view of a verifier that starts

m = poly(n) concurrent executions of the protocol.

The above simulator no longer works in this setting:

the problem is that the verifier’s code is now a function

of all the prover messages sent in different executions.

(Note that if we increase the length of r we can handle

6We require that C is a commitment scheme allowing the committer
to commit to an arbitrarily long string m ∈ {0, 1}∗. Any commitment
scheme for fixed-length messages can easily be modified to handle
arbitrarily long messages by asking the committer to first hash down
m using a collision-resistant hash function h chosen by the receiver,
and next commit to h(m).

a bounded number of concurrent executions, by simply

letting σ include all these messages).

So, if the simulator could commit not only to the code

of V ∗, but also to a program M that generates all other

prover messages, then we would seemingly be done.

And at first sight, this doesn’t seem impossible: since the

simulator S is actually the one generating all the prover

messages, why don’t we just let M be an appropriate

combination of S and V ∗? This idea can indeed be

implemented [PR03b], [PRT11], but there is a serious

issue: if the verifier “nests” its concurrent executions,

the running-time of the simulation quickly blows up

exponentially—for instance, if we have three nested

sessions, to simulate session 3 the simulator needs to

generate a WIUA regarding the computation needed to

generate a WIUA for session 2 which in turn is regarding

the generation of the WIUA of session 1 (so even if there

is just a constant overhead in generating a WIUA, we

can handle at most log n nested sessions).

P-certificates to The Rescue Our principal idea is

to use P-certificates to overcome the above-mentioned

blow-up in the running time. On a very high-level,

the idea is that once the simulator S has generated

a P-certificate π to certify some partial computation

performed by S in a particular session i, then the

same certificate may be reused (without any additional

“cost”) to certify the same computation also in other

sessions i′ �= i. In essence, by reusing the same P-

certificates, we can amortize the cost of generating

them and may then generate WIUA’s about WIUA’s

etc., without blowing-up the running time of the sim-

ulator. Let us briefly mention how the two salient fea-

tures of P-certificates, namely “non-interactivity” and

“succinctness”, are used: Without non-interactivity, the

same certificate cannot be reused in multiple sessions,

and without succinctness, we do not gain anything

by reusing a proof, since just reading the proof may

be more expensive than verifying the statement from

“scratch”.

Implementing the above high-level idea, however, is

quite non-trivial. Below, we outline our actual imple-

mentation. We proceed in three steps:

1) We first present a protocol that only achieves

bounded-concurrent ZK, using P-certificates,

2) We next show how this bounded-concurrent pro-

tocol can be slightly modified to become a (fully)

concurrent ZK protocol assuming the existence

of so-called unique P-certificates—P-certificates

having the property that for every true statement,

there exists a single accepting certificate.

3) In the final step, we show how to eliminate the

need for uniqueness, by generating P-certificates

about the generation of P-certificates etc., in a

53

tree-like fashion.

Step 1: Bounded Concurrency Using P-certificates
In this first step, we present a (somewhat convoluted)

protocol using strong P-certificates that achieves m(·)-
bounded concurrency (using an even more convoluted

simulation). As mentioned, Barak’s original protocol

could already be modified to handle bounded concur-

rency, without the use of P-certificates; but as we shall

see shortly, our protocol can later be modified to handle

full concurrency.
The protocol proceeds just as Barak’s protocol in

Stage 1 except that the verifier now sends a string

r ∈ {0, 1}2m(n)n2

(instead of length 2n). Stage 2 is

modified as follows: instead of having P prove (using

a WIUA) that either x is true, or there exists a “short”

string σ ∈ {0, 1}m(n)n2

such that c is a commitment to

a program M such that M(σ) = r, we now ask P to

use a WIUA to prove that either x is true, or

• commitment consistency: c is a commitment to a

program M1, and

• input certification: there exists a “short” string

σ ∈ {0, 1}m(n)n, and

• prediction correctness: there exists a P-certificate

π of length n demonstrating that M1(σ) = r.

(Note that the only reason we still need to use a

universal argument is that there is no a-priori upper-

bound on the length of the program M1; the use of

the P-certificate takes care of the fact that there is

no a-priori upper-bound on the running-time of M1,

though.) Soundness follows using essentially the same

approach as above, except that we now also rely on

the strong soundness of the P-certificate; since there

is no a-priori upper-bound on neither the length nor

the running-time of M1, we need to put a cap on both

using a (slightly) super-polynomial function, and thus to

guarantee soundness of the concurrent zero-knowledge

protocol, we need the P-certificate to satisfy strong
soundness.

Let us turn to (bounded-concurrent) zero-knowledge.

Roughly speaking, our simulator will attempt to commit

to its own code in a way that prevents a blow-up in

the running-time. Recall that the main reason that we

had a blow-up in the running-time of the simulator

was that the generation of the WIUA is expensive.

Observe that in the new protocol, the only expensive

part of the generation of the WIUA is the generation

of the P-certificates π; the rest of the computation

has a-priori bounded complexity (depending only on

the size and running-time of V ∗). To take advantage

of this observation, we thus have the simulator only

commit to a program that generates prover messages

(in identically the same way as the actual simulator),

but getting certificates �π as input.

S2 S1 V ∗

πj

πi

π1

mj

aj

mi

ai

m1

a1

·· ·

·· ·

·· ·

·· ·

·· ·

·· ·
Figure 1. Simulation using P-certificates.

In more detail, to describe the actual simulator S, let

us first describe two “helper” simulators S1, S2. S1 is an

interactive machine that simulates prover messages in a

“right” interaction with V ∗. Additionally, S1 is expect-

ing some “external” messages on the “left”—looking

forward, these “left” messages will later be certificates

provided by S2. See Figure 1 for an illustration of the

communication patterns between S1, S2 and V ∗.
S1 proceeds as follows in the right interaction. In

Stage 1 of every session i, S1 first commits to a machine

S̃1(j
′, τ) that emulates an interaction between S1 and

V ∗, feeding S1 input τ as messages on the left, and

finally S̃1 outputs the verifier message in the j′’th
communication round in the right interaction with V ∗.
(Formalizing what it means for S1 to commit to S̃1 is

not entirely trivial since the definition of S̃1 depends

on S1; we refer the reader to the formal proof for

a description of how this circularity is broken.7 S1

next simulates Stage 2 by checking if it has received

a message (j, πj) in the left interaction, where j is

the communication round (in the right interaction with

V ∗) where the verifier sends its random challenge and

expects to receive the first message of Stage 2; if so, it

uses M1 = S̃1 (and the randomness it used to commit

to it), j and σ being the list of messages received by S1

in the left interaction, as a ”fake” witness to complete

Stage 2.

The job of S2 is to provide P-certificates πj for S1

allowing S1 to complete its simulation. S2 emulates

the interaction between S1 and V ∗, and additionally,

at each communication round j, S2 feeds S1 a mes-

sage (j, πj) where πj is a P-certificate showing that

S̃1(j, σ<j) = rj , where σ<j is the list of messages

already generated by S2, and rj is the verifier message

in the j’th communication round. Finally, S2 outputs its

view of the full interaction.

The actual simulator S just runs S2 and recovers from

7Roughly speaking, we let S1 take the description of a machine
M as input, and we then run S1 on input M = S1.

54

the view of S2 the view of V ∗ and outputs it. Note that

since S1 has polynomial running-time, generating each

certificate about S̃1 (which is just about an interaction

between S1 and V ∗) also takes polynomial time. As

such S2 can also be implemented in polynomial time

and thus also S. Additionally, note that if there are

m(n) sessions, the length of σ is at most O(m(n)n)�
m(n)n2—for each of the m(n) sessions, and for each

round of the constant number of rounds in each session,

we need to store a pair (j, π) where π is of length

n; therefore, the simulation always succeeds without

getting “stuck”.

Finally, indistinguishability of this simulation,

roughly speaking, should follow from the hiding

property of the commitment in Stage 1, and the WI

property of the WIUA in Stage 2. Or does it? Note

that since S1 is committing to its own code (including

its randomness), it is committing to a message that

depends on the randomness used for the commitment.

(In the language of [BCPT12], this constitutes a

randomness-dependent message (RDM) attack on the

commitment scheme.) This circularity can be easily

overcome (as in [PRT11]) by simply not committing

to the randomness of S̃1, and instead providing it as

an additional input to S̃1 that may be incorporated

in σ; without loss of generality, we may assume that

the randomness is “short” since S1 can always use

a PRG to expand it. But the same circularity arises

also in the WIUA, and here σ, which contains the

seed used to generate the randomness of S1, needs

to be an input. To overcome it, we here require S1

to use a forward-secure PRG [BY03] to expand its

randomness; roughly speaking, a forward-secure PRG

ensures that ”earlier” chunks of the output of the

PRG are indistinguishable from random, even if a

seed generating the ”later” ones is revealed. We next

have S1 use a new chunk of the output of the PRG

to generate each new message in the interaction, but

uses these chunk in reverse order (i.e., in step 1, the

last chunk of the output of the PRG is used, etc.);

this means that we can give proofs about ”earlier”

computations of S1 (which requires knowing a seeds

expanding the randomness used in the computation)

while still guaranteeing indistinguishability of ”later”

messages.8

Step 2: Full Concurrency using Unique P-certificates
The reason that the above approach only yields a

bounded concurrent zero-knowledge protocol is that for

each new session i, we require S2 to provide S1 with

8Although the language of forward-security was not used, it was
noticed in [PR03b] that GGM’s pseudo-random function [GGM86]
could be used to remove circularity in situations as above. A related
trick is used in the contemporary work of [CLP13].

new certificates, which thus grows the length of σ. If

we could somehow guarantee that these certificates are

determined by the statement proved in the WIUA, then

soundness would hold even if σ is long. Let’s first sketch

how to do this when assuming the existence of unique
strong P-certificates—that is, P-certificates having the

property that for each true statement x, there exists a

single proof π that is accepted. (We are not aware of

any candidates for unique P-certificates, but using them

serves as a simpler warm-up for our actual protocol.)

We simply modify the input certification and prediction

correction conditions in the WIUA to be the following:

• input certification: there exists a vector λ =
((1, π1), (2, π2), . . .) and a vector of messages �m
such that πi certifies that M1(λ<j) output mj

in its j’th communication round, where λ<j =
((1, π1), . . . , (j − 1, πj−1)), and

• prediction correctness: there exists a P-certificate

π of length n demonstrating that M1(λ) = r.

Soundness of the modified protocol, roughly speaking,

follows since by the unique certificate property, for

every program M1 it inductively follows that for every

j, mj is uniquely defined, and thus also the unique

(accepting) certificate πj certifying M1(λ<j) = mj ;

it follows that M1 determines a unique vector λ that

passes the input certification conditions, and thus there

exists a single r that make M1 also pass the prediction

correctness conditions. Zero-knowledge, on the other

hand, can be shown in exactly the same way as above

(using S1, S2), but we can now handle also unbounded

concurrency (since there is no longer a restriction on

the length of the input λ).

Step 3: Full Concurrency Using (Plain) P-certificates
Let us finally see how to implement the above idea

while using “plain” (i.e., non-unique) P-certificates.

The above protocol is no longer sound since we cannot

guarantee that the proofs πj are unique, and thus the

messages mj may not be unique either, which may

make it possible for an attacker to pass the “prediction

correctness” condition (without knowing the code of

V ∗) and thus break soundness. A natural idea would

thus be to ask the prover to commit to a machine M2

(which in the simulation will be a variant of S2) that

produces the certificates πj , and then require the prover

to provide a ”second-level” certificate that the ”first-

level” certificates were generated (deterministically) by

running M2. But have we really gained anything? Now,

to perform the simulation, we need to provide the

second-level certificates as input to both M1 and M2;

however, for these second-level certificates, we have no

guarantees that they were deterministically generated

and again there is no a-prior upper bound on the number

of such certificates, so it seems we haven’t really gained

55

anything.

Our main observation is that a single ”second-level”

certificate can be used to to certify the (deterministic

generation) of n ”first-level”certificates. And a sequence

of n “second-level” certificates can be certified by a

single “third-level” certificate, etc. At each level, there

will be less than n certificates that are not certified by a

higher-level certificate; we refer to these as “dangling”

certificates. See Figure 2 for an illustration of the tree

structure, and certified and dangling certificates.

π1
1 π1

n
·· · π1

n2−n+1π
1
n2

·· · π1
n2+1π

1
n2+n

·· · π1
n2+n+1 π1

n2+2n−1
·· ·

π2
n π2

n2 π2
n2+n

·· ·

π3
n2

Figure 2. An illustration of the tree structure for generating P-
certificates. Nodes that are not circled are “certified” certificates;
nodes that are circled are “dangling” certificates.

Note that since the number of messages in the inter-

action with V ∗ is polynomially bounded, we only have

a polynomial-number of level-1 certificates, and thus,

the above higher-level certification process does not go

beyond a constant number of levels (at each level we

need a factor of n less certificates). Finally, note that

the total number of “dangling” (uncertified) certificates

is bounded by the number of levels times n (and is thus

bounded by, say, n2.) This means that all the dangling

certificates may be provided as a “short” input σ to the

committed program, and all the certified certificates can

be provided as a “long” (but certified deterministically

generated) input λ.

Let us explain this idea more closely using

only second-level certificates; this still only gives

us bounded-concurrency, but we may now handle

O(m(n)n) sessions (instead of just m(n)). (More gen-

erally, if we use k-levels of certification, we can handle

m(n)nk sessions.) We now change Stage 2 of the

protocol to require P to use a WIUA to prove that either

x is true, or

• commitment consistency: c is a commitment to

programs M1,M2, and

• input certification: there exists

– a vector of ”certified level-1 certificates” λ1 =
((1, π1), (2, π2), . . . , (an, πan)),

– a ”small” number of ”dangling level-1 certifi-

cates” σ1 = (σ1
1 , σ

1
2 , . . . , σ

1
j′), where j′ < n

and for each j ≤ j′, σ1
j ∈ {0, 1}n,

– a ≤ m(n) level-2 certificates σ2 =
(σ2

n, σ
2
2n, . . . , σ

2
an) where for each j ≤ a,

σ2
jn ∈ {0, 1}n,

such that,

– σ2
an certifies that M2(σ

2
<an) generates the

certificates λ1,

and

• prediction correctness: there exists a P-certificate

π of length n demonstrating that M1(λ
1, σ1, σ2) =

r.

Soundness of this protocol follows since the total length

of “arbitrary” (not deterministic) input is bounded by

(m(n) + n)n � m(n)n2. m(n)n-bounded concurrent

zero-knowledge on the other hand, roughly speaking,

follows by letting M1 be as above (i.e., S̃1) and M2

be a variant of the simulator S2 that outputs all the

certificates generated by S2. We then define a simulator

S3 responsible for generating second-level certificates

for S2, and finally outputs its full view of the interaction.

The final simulator S runs S3 and outputs the view of

V ∗ in the interaction. See Figure 3 for an illustration of

the communication patterns of S1, S2, S3 and V ∗.

S3 S2 S1 V ∗

·· ·

·· ·

·· ·

·· ·

·· ·

·· ·

·· ·

π1
1·· ·

π1
n

π1
n+1

·· ·
π1
2n

π1
n2+1

·· ·
π1
n2+n

π1
n2+n+1

·· ·
π1
n2+2n

π1
n2+2n+1

π2
n

π2
2n

π2
n2+n

π2
n2+2n

·· ·

Figure 3. Simulation using second-level P-certificates.

Note that as long as there are less than m(n)n
message in the interaction with V ∗, the number of first-

level certificates is bounded by m(n)n, and thus we

have enough “spots” for second-level certificates (in σ2)

to perform the simulation.

56

In the final protocol, we instead have the simulator

commit to a sequence M1,M2, . . . of machine; roughly

speaking, M1 will be as above, M2 is responsible for

generating first-level certificates (while receiving level

k > 1 certificates externally), M3 will be responsible

for generating second-level certificates (while receiving

level k > 2 certificates externally), etc. Note that

although there is a (potentially) exponential blow-up

in the time needed to generate higher-level certificates,

since we only have a constant-number of levels, simu-

lation can be performed in polynomial-time.

III. RELATED WORK

We provide a discussion of some other related

works. As mentioned in the introduction, constant-

round concurrent zero-knowledge protocols with super-
polynomial-time simulators have been constructed in

the plain model [Pas03a], [PV08]. For the protocol

of [Pas03a], the only super-polynomial-time “advan-

tages” needed by the simulator is to find a pre-image

x′ = f−1(y) to any point y output by the malicious

verifier V ∗, as long as y actually is in the range of

some one-way function f . If we assume that the only

way for V ∗ to output some y in the range of f is by

applying f to an input x that it explicitly knows, then

the protocol of [Pas03a] is concurrent zero-knowledge.

As we elaborate upon in the full version, this can be for-

malized as a “concurrent” extractability assumption of

the “knowledge-of-exponent”-type [Dam91]. (As shown

in [Pas03b], any sufficiently length-expanding random

oracle satisfies exactly such an concurrent extractability

assumption—this was used in [Pas03a] to construct a

concurrent ZK protocol in the “non-programmable”

random oracle model.)

A very recent work by Gupta and Sahai [GS12]

independent of the current work presents an alternative

“non-concurrent” (but more structured) extractability as-

sumption under which constant-round concurrent zero-

knowledge can be achieved. One important difference

between the above approaches and our work is that we

here provide an explicit concurrent ZK simulator. The

above-mentioned approaches simply assume that such a

simulator exists; and, even if the assumption is true, it

is not clear, how to find it. In particular, for the purpose

of deniability (see e.g., [DNS04], [Pas03b]) it is not

clear whether the approach based on “extractability”

assumptions provides sufficient guarantees (unless an

explicit simulator strategy is found).

Barak, Lindell and Vadhan [BLV06] show that under

the assumptions that 1) DTIME(nω(1)) ⊆ NP and 2)

NP proofs for statements in DTIME(t) can be found

in time polynomial in t, 2-round proof exists that are

zero-knowledge for uniform verifiers that do not receive

any auxiliary input. Their zero-knowledge simulator

is non-black-box. As mentioned in the introduction,

the above-mentioned assumptions imply the existence

of statistical strong P-certificates. We note that the

protocol of [BLV06] is not known to be concurrent (or

even sequential) zero-knowledge, even with respect to

uniform malicious verifiers.

Contemporary work by Canetti, Lin and Paneth

[CLP13] constructs a public-coin concurrent zero-

knowledge protocol using non-black-box simulation

techniques9. As shown by Pass, Tseng and Wikstrom

[PTW11], public-coin concurrent (and in fact even par-

allel) zero-knowledge protocols require non-black-box

simulation, no matter what the round-complexity is. The

protocol of [CLP13] is in the “non-programmable” CRS

model of [Pas03a] but as showed in [Pas03a] black-

box separation of the Goldreich-Krawczyk [GK96] type

(and, in particular, the [PTW11] one, falls into this

category) extend also to zero-knowledge in the non-

programmable CRS model; thus non-black-box simula-

tion is necessary also for their result. In contrast to our

protocol, theirs, however, requires O(log1+ε n) number

of rounds for arbitrarily small constant ε, but instead

only relies on the existence of families of collision-

resistant hash functions. On a technical level, both our

work and theirs provide methods for overcoming the ex-

ponential blow-up in the simulation time when dealing

with non-black-box simulations, but the actual details of

the methods are very different: [CLP13] increases the

round-complexity to tackle this blow-up, and relies on

ideas from the literature on concurrent zero-knowledge

with black-box simulation [RK99], [KP01], [PRS02]; as

a result, their techniques only apply in the context of

super-logarithmic round protocols. In contrast, we rely

on P-certificates to overcome the blow-up and obtain a

constant-round protocol.

A recent work by Bitansky, Canetti, Chiessa, Tromer

[BCCT13] present techniques for composing SNARKs

(succinct non-interactive arguments of knowledge) for

NP; roughly speaking, [BCCT13] shows that if for

some sufficiently large c, any non-deterministic nc

computation can be proved using an “argument of

knowledge” of length n that can be verified in time

n2, then for any d, every non-deterministic nd-time

computation can be also be proved (using a SNARK

of length n that can be verified in time n2). This is

achieved by having the prover first generate a SNARK

for each subcomputation of nc steps, and then for each

“chunk” of n SNARKs, having the prover prove that

it knows SNARKs that are accepted for all these sub-

computations, and so on in a tree-like fashion. Finally,

the prover only provides the verifier with a “top-level”

9Our results and theirs were developed in parallel.

57

SNARK that it knows lower-level SNARKs that proves

that it knows even lower-level SNARKs etc. This type of

proof composition was previously also used by Valiant

[Val08]. To prove that this type of composition works

it is crucial to work with languages in NP (since we

are proving statements about the existence of some

SNARKs); additionally, it is crucial that we are dealing

with arguments of knowledge—SNARKs of false state-

ments may exists, so to guarantee soundness, the prover

needs to show that not only appropriate SNARKs exists,

but also that it “knows” them. At a superficial level, our

simulator strategy also uses a tree of “proofs”. However,

rather than proving knowledge of lower-level “proofs”

etc, in our approach, higher-level P-certificates are only

used to demonstrate that lower-level P-certificates have

been deterministically generated. As a consequence, we

do not need to certify non-deterministic computations;

additionally, we do not need the certificates to satisfy

an argument of knowledge property. Indeed, this is

what allows us to base P-certificates on a falsifiable

assumption.

A. Acknowledgements

We are very grateful to Ran Canetti, Johan Håstad

Omer Paneth, and Alon Rosen for many discussions

about concurrent zero-knowledge and non-black-box

simulation. We are especially grateful to both Alon

Rosen and Omer Paneth for very insightful discussions

about how to formalize non-black-box simulations that

“commit to their own code”; additionally, as we mention

in the paper, several obstacles to using non-black-box

simulation to obtain constant-round concurrent zero-

knowledge were noticed in an unpublished manuscript

with Alon dating back to 2003 [PR03a]. Thanks a lot!

REFERENCES

[Bar01] Boaz Barak. How to go beyond the black-box
simulation barrier. In FOCS, volume 0, pages
106–115, 2001.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa,
and Eran Tromer. Recursive composition and
bootstrapping for snarks and proof-carrying data.
In STOC, pages 111–120, 2013.

[BCPT12] Eleanor Birrell, Kai-Min Chung, Rafael Pass,
and Sidharth Telang. Randomness-dependent
message security. Unpublished Manuscript, 2012.

[BG08] Boaz Barak and Oded Goldreich. Universal argu-
ments and their applications. SIAM J. Comput.,
38(5):1661–1694, 2008.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser,
and Yehuda Lindell. Resettably-sound zero-
knowledge and its applications. In FOCS, pages
116–125, 2001.

[BLV06] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan.
Lower bounds for non-black-box zero knowl-
edge. J. Comput. Syst. Sci., 72(2):321–391, 2006.

[BOV07] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan.
Derandomization in cryptography. SIAM J. Com-
put., 37(2):380–400, 2007.

[BP04] Mihir Bellare and Adriana Palacio. Towards
plaintext-aware public-key encryption without
random oracles. In ASIACRYPT, pages 48–62,
2004.

[BP12] Nir Bitansky and Omer Paneth. From the impos-
sibility of obfuscation to a new non-black-box
simulation technique. In FOCS, pages 223–232,
2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random
oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning,
Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, ACM Conference on
Computer and Communications Security, pages
62–73. ACM, 1993.

[BS05] Boaz Barak and Amit Sahai. How to play
almost any mental game over the net - concurrent
composition via super-polynomial simulation. In
FOCS, pages 543–552, 2005.

[BY03] Mihir Bellare and Bennet S. Yee. Forward-
security in private-key cryptography. In Marc
Joye, editor, CT-RSA, volume 2612 of Lec-
ture Notes in Computer Science, pages 1–18.
Springer, 2003.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser,
and Silvio Micali. Resettable zero-knowledge
(extended abstract). In STOC, pages 235–244,
2000.

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon
Rosen. Black-box concurrent zero-knowledge
requires ω̃(log n) rounds. In STOC, pages 570–
579, 2001.

[CLP12] Kai-Min Chung, Huijia Lin, and Rafael Pass.
Constant-round concurrent zero knowledge from
falsifiable assumptions. Cryptology ePrint
Archive, Report 2012/563, 2012. http://eprint.
iacr.org/.

[CLP13] Ran Canetti, Huijia Lin, and Omer Paneth.
Public-coin concurrent zero-knowledge in the
global hash model. In TCC, pages 80–99, 2013.

[Dam91] Ivan Damgård. Towards practical public key
systems secure against chosen ciphertext attacks.
In CRYPTO, pages 445–456, 1991.

[Dam00] Ivan Damgård. Efficient concurrent zero-
knowledge in the auxiliary string model. In
EUROCRYPT, pages 418–430, 2000.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Re-
solving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. In
FOCS, pages 251–260, 2009.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai.
Concurrent zero-knowledge. J. ACM, 51(6):851–
898, 2004.

[DS98] Cynthia Dwork and Amit Sahai. Concurrent
zero-knowledge: Reducing the need for timing
constraints. In CRYPTO, pages 177–190, 1998.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio
Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and
Mariana Raykova. Quadratic span programs and

58

succinct nizks without pcps. In EUROCRYPT,
pages 626–645, 2013.

[GJ10] Vipul Goyal and Abhishek Jain. On the round
complexity of covert computation. In STOC,
pages 191–200, 2010.

[GJO+12] Vipul Goyal, Abhishek Jain, Rafail Ostrovsky,
Silas Richelson, and Ivan Visconti. Concurrent
zero knowledge in the bounded player model.
Cryptology ePrint Archive, Report 2012/279,
2012. http://eprint.iacr.org/.

[GK96] Oded Goldreich and Hugo Krawczyk. On the
composition of zero-knowledge proof systems.
SIAM Journal on Computing, 25(1):169–192,
1996.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On
the (in)security of the fiat-shamir paradigm. In
FOCS, pages 102–, 2003.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles
Rackoff. The knowledge complexity of interac-
tive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989.

[Gol93] Oded Goldreich. A uniform-complexity treat-
ment of encryption and zero-knowledge. J. Cryp-
tology, 6(1):21–53, 1993.

[Gol02] Oded Goldreich. Concurrent zero-knowledge
with timing, revisited. In STOC, pages 332–340,
2002.

[Gro10] Jens Groth. Short pairing-based non-interactive
zero-knowledge arguments. In ASIACRYPT,
pages 321–340, 2010.

[GS12] Divya Gupta and Amit Sahai. On constant-round
concurrent zero-knowledge from a knowledge
assumption. Cryptology ePrint Archive, Report
2012/572, 2012. http://eprint.iacr.org/.

[GW11] Craig Gentry and Daniel Wichs. Separating
succinct non-interactive arguments from all fal-
sifiable assumptions. In STOC, pages 99–108,
2011.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the ex-
istence of 3-round zero-knowledge protocols. In
Hugo Krawczyk, editor, CRYPTO, volume 1462
of Lecture Notes in Computer Science, pages
408–423. Springer, 1998.

[KP01] Joe Kilian and Erez Petrank. Concurrent and
resettable zero-knowledge in poly-loalgorithm
rounds. In STOC, pages 560–569, 2001.

[KPR98] Joe Kilian, Erez Petrank, and Charles Rackoff.
Lower bounds for zero knowledge on the internet.
In FOCS, pages 484–492, 1998.

[Lin03] Yehuda Lindell. Bounded-concurrent secure two-
party computation without setup assumptions. In
STOC, pages 683–692, 2003.

[Lip12] Helger Lipmaa. Progression-free sets and sublin-
ear pairing-based non-interactive zero-knowledge
arguments. In TCC, pages 169–189, 2012.

[Mic00] Silvio Micali. Computationally sound proofs.
SIAM J. Comput., 30(4):1253–1298, 2000.

[Nao03] Moni Naor. On cryptographic assumptions and
challenges. In Dan Boneh, editor, CRYPTO, vol-
ume 2729 of Lecture Notes in Computer Science,
pages 96–109. Springer, 2003.

[Pas03a] Rafael Pass. On deniability in the common
reference string and random oracle model. In
CRYPTO, pages 316–337, 2003.

[Pas03b] Rafael Pass. Simulation in quasi-polynomial
time, and its application to protocol composition.
In EUROCRYPT, pages 160–176, 2003.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-
party computation with a dishonest majority. In
STOC, pages 232–241, New York, NY, USA,
2004. ACM.

[Pop63] Karl Popper. Conjectures and Refutations: The
Growth of Scientific Knowledge. Routledge,
1963.

[PR03a] Rafael Pass and Alon Rosen. Bounded-
concurrent secure two-party computation in a
constant number of rounds. In FOCS, pages 404–
, 2003.

[PR03b] Rafael Pass and Alon Rosen. How to simulate
using a computer virus. Unpublished manuscript,
2003.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sa-
hai. Concurrent zero knowledge with logarithmic
round-complexity. In FOCS, pages 366–375,
2002.

[PRT11] Rafael Pass, Alon Rosen, and Wei-Lung Dustin
Tseng. Public-coin parallel zero-knowledge for
np. J. Cryptology, 2011.

[PTV12] Rafael Pass, Wei-Lung Dustin Tseng, and Muthu-
ramakrishnan Venkitasubramaniam. Concur-
rent zero-knowledge, revisited. Unpublished
manuscript, 2012.

[PTW11] Rafael Pass, Wei-Lung Dustin Tseng, and Dou-
glas Wikström. On the composition of public-
coin zero-knowledge protocols. SIAM J. Com-
put., 40(6):1529–1553, 2011.

[PV08] Rafael Pass and Muthuramakrishnan Venkitasub-
ramaniam. On constant-round concurrent zero-
knowledge. In TCC, pages 553–570, 2008.

[PV10] Rafael Pass and Muthuramakrishan Venkitasub-
ramaniam. Private coins versus public coins in
zero-knowledge proofs. To appear in TCC 2010,
2010.

[RK99] Ransom Richardson and Joe Kilian. On the con-
current composition of zero-knowledge proofs. In
Eurocrypt, pages 415–432, 1999.

[Rog06] Phillip Rogaway. Formalizing human ignorance.
In VIETCRYPT, pages 211–228, 2006.

[Ros00] Alon Rosen. A note on the round-complexity of
concurrent zero-knowledge. In CRYPTO, pages
451–468, 2000.

[Sch91] Claus-Peter Schnorr. Efficient signature genera-
tion by smart cards. J. Cryptology, 4(3):161–174,
1991.

[Val08] Paul Valiant. Incrementally verifiable computa-
tion or proofs of knowledge imply time/space
efficiency. In Ran Canetti, editor, TCC, volume
4948 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2008.

59

