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Abstract—We present a 6-approximation algorithm for the
minimum-cost k-node connected spanning subgraph problem,
assuming that the number of nodes is at least k3(k − 1) + k.
We apply a combinatorial preprocessing, based on the Frank-
Tardos algorithm for k-outconnectivity, to transform any input
into an instance such that the iterative rounding method gives
a 2-approximation guarantee. This is the first constant-factor
approximation algorithm even in the asymptotic setting of the
problem, that is, the restriction to instances where the number
of nodes is lower bounded by a function of k.

Keywords-Approximation algorithms, Graph connectivity,
Iterative rounding, Linear Programming

I. INTRODUCTION

A basic problem in network design is to find a minimum-

cost sub-network H of a given network G such that H
satisfies some prespecified connectivity requirements. Most

of these problems are NP-hard, hence, research has focused

on the design and analysis of approximation algorithms.

The area flourished in the 1990s, and there were a num-

ber of landmark results pertaining to problems with edge-

connectivity requirements. This line of research culminated

with a result of Jain that gives a 2-approximation algorithm

for a general problem called the survivable network design
problem, abbreviated as SNDP.1 Progress has been much

slower on similar problems with node-connectivity require-

ments, despite more than a decade of active research.
Our focus is on undirected graphs throughout. For a

positive integer k, a graph is called k-node-connected (ab-

breviated k-connected) if it has at least k + 1 nodes, and

the deletion of any set of k − 1 nodes leaves a connected

graph. In the minimum-cost k-connected spanning subgraph
problem, we are given a graph with nonnegative costs on the

edges; the goal is to find a k-connected spanning subgraph

of minimum cost. Throughout, we use k to denote the

connectivity parameter, and n = |V | to denote the number

of nodes; both are integers with 1 ≤ k < n.

Supported by NSERC grant No. OGP0138432.
1In the SNDP, we are given an undirected graph with non-negative costs

on the edges, and for every unordered pair of nodes i, j, we are given a
number ρi,j ; the goal is to find a subgraph of minimum cost that has at
least ρi,j edge-disjoint paths between i and j for every pair of nodes i, j.

A. Previous results

A well-studied related problem is k-outconnectivity in

directed graphs: given a root node r, find a minimum cost

subset of arcs containing k internally disjoint directed paths

from r to every other node. Frank and Tardos [1] (discussed

in Section III-A) gave a polynomial time algorithm for this

problem. Their algorithm is a crucial subroutine in most

results on k-node-connected subgraphs mentioned below, as

well as in our paper.

Finding a minimum cost k-node-connected subgraph is

the same as finding a minimum cost spanning tree for k = 1;

however, it is NP-hard for every fixed value k ≥ 2. Using the

above mentioned result [1] on k-outconnectivity augmenta-

tion, it is easy to obtain an approximation guarantee of 2k;

this is discussed in [2]. This approximation guarantee was

improved to k by Kortsarz and Nutov [3].

In the asymptotic setting of the problem, we restrict

ourselves to instances where the number of nodes is lower

bounded by a function of k. Results in the asymptotic

setting address the issue of approximability as a function

of the single parameter k (for all sufficiently large n). In

[4], an O(log k) approximation guarantee was given for the

asymptotic setting, assuming that n ≥ 6k2.

Most research efforts subsequent to [4] focused on finding

near-logarithmic approximation guarantees for all possible

ranges of n and k, and on extending the results to the

more general setting of directed graphs. Kortsarz and Nutov

[5] presented an algorithm with an approximation guar-

antee of O(log k · min{√k, n
n−k log k}). The paper by

Fakcharoenphol and Laekhanukit [6] gave an O(log2 k)-
approximation algorithm. The approximation guarantee was

further improved by Nutov [7] to O(log k log n
n−k ). The

results of [5], [6], [7] apply to both undirected graphs and

directed graphs. The approximability for k = n−o(n) seems

to raise combinatorial difficulties such that even a decade

after the O(log k) approximation guarantee was proved in

the asymptotic setting, it is still not clear whether the same

guarantee holds for all k and n.

Even the following fundamental question has been open:
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Does there exist an o(log k) approximation algorithm for

the problem on undirected graphs in the asymptotic setting,

or is it possible to prove a superconstant hardness-of-

approximation threshold? Our result resolves this question

by giving a constant factor approximation in the assymptotic

setting (see Theorem I.1).

Whereas no constant factor approximation was given

previously for this problem, such results were already known

for similar problems with edge-connectivity requirements.

A fundamental tool here is the iterative rounding method
(see Figure 1 as adapted for our setting), introduced by

Jain [8] for the edge-connectivity SNDP. Jain’s pivotal result

asserts that every basic feasible solution to the standard

linear programming (LP) relaxation has at least one edge of

value at least 1
2 . A 2-approximation is obtained by iteratively

adding such an edge to the graph and solving the LP

relaxation again.

As tempting as it might be to apply iterative round-

ing for SNDP with node-connectivity requirements, un-

fortunately the standard LP relaxation for this problem

might have basic feasible solutions with small fractional

values on every edge. Such examples were presented in

[9], [10], [11]. Recently, [12] improved on these previous

constructions2 by exhibiting an example of the min-cost k-

connected spanning subgraph problem with a basic feasible

solution that has value O(1/
√
k) on every edge. Still,

iterative rounding has been applied to problems with node-

connectivity requirements: Fleischer, Jain and Williamson

[11] gave a 2-approximation for a special class of demand

functions, called “very weakly two-supermodular”. This

includes node-connectivity SNDP with maximum require-

ment 2, and also element-connectivity SNDP, a problem

lying between edge- and node-connectivity.3 Chuzoy and

Khanna [13] gave an O(k3 log n)-approximation algorithm

for node-connectivity SNDP, based on an elegant random-

ized reduction to element-connecitivity SNDP, where the 2-

approximation of Fleischer et al. [11] is applicable. Here

k denotes the maximum connectivity requirement value. A

different application of iterative rounding was recently given

by Nutov [14], and Fukunaga and Ravi [15], for degree-

bounded variants of node-connectivity SNDP.

We also remark that the general node-connectivity SNDP

is substantially harder than the edge- or element-connectivity

variant. One might not hope for a constant factor approx-

imation, as the problem is kε-hard for every k > k0, for

fixed positive constants k0 and ε, as shown by Chakraborty

2The construction in [12] applies to our problem, whereas the negative
implications of the constructions predating [12] apply to more general
problems (e.g., node-connectivity SNDP) but not to our setting.

3The element-connectivity SNDP is similar to (edge-connectivity) SNDP;
we are given a set of terminals T ⊆ V ; each edge and each nonterminal
node is called an element; for each unordered pair i, j ∈ T , there is a
connectivity requirement for ρij element-disjoint paths between i and j.
Similarly, in the node-connectivity SNDP the requirement is to have ρij
internally node-disjoint paths between any nodes i and j.

et al. [16]; previous bounds were given by Kortsarz et al.

[17].

B. Our result and the main ideas

Our main result is the following.

Theorem I.1. There exists a polynomial-time 6-
approximation algorithm for the following problem:
given an undirected graph G = (V,E) with nonnegative
costs on the edges, and a positive integer k, such that G is
k-connected and |V | ≥ k3(k − 1) + k, find a k-connected
spanning subgraph of minimum cost.

In what follows, we describe the main ideas of our result.

Our new insight is that whereas iterative rounding fails to

give constant factor approximations for arbitrary instances,

we can isolate a class of graphs, called “independence-free
graphs”, where it does give a 2-approximation; and more-

over, we are able to transform an arbitrary input instance

to a new instance from this class. The 2-approximation for

independence-free graphs follows from the result of Fleis-

cher et al. [11]. Section I-B1 describes these graphs, whereas

Section I-B2 gives an overview of the initial transformation

of the input. The precise definitions and detailed arguments

will be given in Section II and the subsequent sections.

1) Independence-free graphs: There is an equivalent for-

mulation of our problem that we prefer to use within this

paper: For a set V , let
(
V
2

)
denote the edge set of the

complete graph on the node set V . In the minimum-cost
k-connectivity augmentation problem, we are given a graph

G = (V,E) and nonnegative edge costs c :
(
V
2

) → R+,

and the task is to find a minimum cost set F ⊆ (
V
2

)
of

edges such that G+ F is k-connected.4 Let opt(G) denote

the cost of an optimal augmenting edge set. Our reason

for switching problems is the formal convenience of the

connectivity augmentation framework for the presentation

of iterative rounding as the second part of our algorithm;

the standard analysis of iterative rounding is “memoryless”

in that the analysis holds regardless of the “starting graph”,

whereas our analysis of iterative rounding exploits properties

of this graph.

We show that the failure of the iterative rounding method

for node-connectivity requirements can be attributed to a

specific structure, that we now informally describe; Sec-

tion II contains the definitions and details. Frank and

Jordán [18] introduced the framework of set-pairs for node-

connectivity problems; the LP relaxation is also based on this

4Let us quickly verify the equivalence of the two problems. Given an
instance (V, Ê), ĉ : Ê → R+ of the subgraph problem, we can reduce it to

the augmentation problem with G = (V, ∅), ce = ĉe if e ∈ Ê and ce =∞
if e ∈ (V

2

)−Ê. In the other direction, given an instance G = (V,E),

c :
(V
2

) → R+ of the augmentation problem, we can reduce it to the

subgraph problem on the complete graph, with ĉe = ce if e ∈ (V
2

)−E
and ĉe = 0 if e ∈ E. Note that parallel edges are not relevant in both
problems, that is, any solution subgraph can be assumed to be a simple
graph.
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notion. By a set-pair, we mean a pair of nonempty disjoint

sets of nodes, not connected by any edge of the graph; the

two sets are called pieces. If the union of the two pieces

has size > n− k, then the set-pair is called deficient, since

it corresponds to the two sides of a node cut of size < k.

Clearly, a k-connected graph must not contain any deficient

set-pairs. A new edge has to cover every deficient set-pair,

that is, an edge whose endpoints lie in the two different

pieces. Two set-pairs are called dependent, if they can be

simultaneously covered by an edge (of the complete graph),

otherwise, the two set-pairs are called independent. It can

be seen that the two set-pairs are independent if and only

if one of them has a piece disjoint from both pieces of the

other set-pair.

A graph is called independence-free if any two deficient

set-pairs are dependent. We observed that bad examples for

iterative rounding (such as the one in [12]) always contain

independent deficient set-pairs. We show that this is the

only possible obstruction: in independence-free graphs, the

analog of Jain’s theorem holds, that is, every basic feasible

solution to the LP relaxation has an edge with value at least
1
2 ; see Theorem II.2 in Section II.

Theorem II.2 can be derived from a general result by

Fleischer et al. [11, Theorems 3.5, 3.13], asserting that iter-

ative rounding gives a 2-approximation for covering “very

weakly two-supermodular” functions. This is an extension

of Jain’s notion of weakly supermodular (requirement) func-

tions to the framework of set-pairs. A more concise proof

using a fractional token argument was given by Nagarajan

et al. [19]. The full version of our paper includes direct,

simplified proofs for the independence-free case.

The notion of independence-free graphs was introduced

by Jackson and Jordán [20] in the context of minimum

cardinality k-connectivity augmentation (the special case of

our problem where each edge in
(
V
2

)−E has cost 1). They

gave a polynomial-time algorithm for this problem for fixed

k. They first solve the problem for independence-free graphs

and then show how the general case can be reduced to such

instances. At a high level, we follow a similar approach, but

there is very little in common between the details of their

algorithm and ours; they have to use an elaborate analysis to

get an optimal solution to an unweighted problem, whereas

we use simple methods (based on powerful algorithmic

tools) to approximately solve the weighted problem. The first

phase of our algorithm uses “combinatorial methods” to add

a set of edges of cost ≤ 4opt(G) to obtain an independence-

free graph. The second phase of our algorithm then applies

iterative rounding to add a set of edges of cost ≤ 2opt(G)
to obtain an augmented graph that is k-connected.

2) Overview of the first phase: In the first phase, we shall

guarantee a property stronger than independence-freeness.

For this purpose, let us consider deficient sets instead of

deficient set-pairs. A set of nodes U is called deficient, if

it has less than k neighbours, and moreover, the union of

U and its neighbour-set is a proper subset of V (in other

words, the neighbours of U form a node cut of size < k).

There is a one-to-one correspondence between deficient sets

and pieces of deficient set-pairs. By a rogue set we mean a

deficient set U with |U | < k. We call a graph rogue-free if

it does not contain any rogue-sets; or equivalently, if every

deficient set is of size at least k. It is easy to see that a

rogue-free graph must also be independence-free.

Next, we give an algorithmic overview of the first phase

by showing that an arbitrary graph G with at least k3(k −
1) + k nodes can be made rogue-free by two applications

of the Frank-Tardos algorithm [1] for k-outconnectivity.

(Section III-A discusses this algorithm in sufficient detail;

it is a standard tool in the area, and has been used in [2],

[4], [5], [6], [7], etc.) First, we pick a set R0 of k arbitrary

nodes of G and connect them (temporarily) to a new root

node r̂. Then we apply the Frank-Tardos algorithm with root

r̂; after recording the output, we remove r̂ and its incident

edges. The algorithm outputs a set of edges F ′ of cost

≤ 2opt(G) such that in the augmented graph G′ = G+F ′,
every surviving deficient set contains some node of R0.

Theorem II.5 below asserts that the union of all rogue sets

of G′ has size ≤ k3(k − 1). In Section V, assuming that

n ≥ k3(k−1)+k, we describe a polynomial-time algorithm

for finding (a superset of) the union of rogue sets. Hence,

we can choose a second set of nodes R1 of size k, disjoint

from all rogue sets, and apply the Frank-Tardos algorithm

again to find a set of edges F ′′ of cost ≤ 2opt(G) such that

in the augmented graph G′′ = G′ + F ′′ = G + F ′ + F ′′,
every surviving deficient set contains some node of R1. The

key point is that the graph G′′ resulting from the second

application has no rogue sets (any rogue set of G′′ must be

a rogue set of G′ = G′′−F ′, and moreover, it must contain

a node of R1, but we chose R1 to be disjoint from all rogue

sets of G′). Thus, we make the graph independence-free by

adding a set of edges of total cost ≤ 4opt(G).
We restate our main result in the setting of the min-cost

k-connectivity augmentation problem.

Theorem I.2. There exists a polynomial-time 6-
approximation algorithm for the following problem:
given an undirected graph G = (V,E), a nonnegative cost
function c :

(
V
2

) → R+, and a positive integer k such that
|V | ≥ k3(k− 1)+ k, find an edge set F ⊆ (

V
2

)
of minimum

cost such that G+ F is k-connected.

The rest of the paper is organized as follows. Section II

precisely defines the notion of set-pairs, the LP relaxation,

independence-free and rogue-free graphs, and formulates the

two main theorems of the two parts of the proof. Section III

bounds the size of the union of the rogue sets after the

first application of the Frank-Tardos algorithm. Section IV

analyses the iterative rounding method on independence-free

graphs. The arguments of these sections do not rely on each

other. Section V shows how the structural results shown
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in the above sections can be implemented in a polynomial

time algorithm. Finally, Section VI discusses some related

problems and open questions.

II. SET-PAIRS, LP RELAXATION, AND INDEPENDENCE

For a graph G = (V,E) and a set of edges F ⊆ (
V
2

)
,

let G + F denote the graph (V,E ∪ F ). For a set U ⊆ V ,

we use N(U) to denote the set of neighbours of U , namely,

{w ∈ V − U | ∃uw ∈ E, u ∈ U}, and we use n(U) to

denote |N(U)|. Let U∗ = V−(U ∪ N(U)). By a deficient
set U we mean a set of nodes U such that n(U) < k and U
and U∗ are both nonempty. Clearly, a graph is k-connected

if and only if there are no deficient sets in it.

A more abstract yet more convenient characterization of

k-connectivity can be given in terms of set-pairs. Note that

set-pairs are usually defined in a directed sense, see [18],

[4]. Since our focus is on undirected graphs, our set-pairs

are defined as unordered pairs.

For two disjoint nonempty sets of nodes U0 and U1, the

unordered pair U = (U0, U1) is called a set-pair if there is

no edge with one end in U0 and the other end in U1. U0 and

U1 are called the pieces of U. We use Γ(U) = Γ(U0, U1) to

denote V−(U0 ∪ U1). Let us define the deficiency function

p(U) = p(U0, U1) = max{0, k − |Γ(U)|} =
max{0, k − |V−(U0 ∪ U1)|}. (1)

The set-pair is called deficient if p(U) > 0. It is easy to

see that a graph is k-connected if and only if there are no

deficient set-pairs, that is, p ≡ 0. Furthermore, if the set

U is deficient, then the set-pair (U,U∗) is also deficient

with N(U) = Γ(U,U∗) and p(U,U∗) = k − n(U) > 0.

Conversely, if (U0, U1) is a deficient set-pair, then both U0

and U1 are deficient sets with U0 ⊆ U∗1 and U1 ⊆ U∗0 .

We say that an edge e = uv ∈ (
V
2

)
covers the set-pair

U = (U0, U1), if one of its endpoints lies in U0 and the

other one lies in U1. For an edge set F ⊆ (
V
2

)
, let dF (U) =

dF (U0, U1) denote the number of edges in F covering U.

Clearly, the following statement holds: G+F is k-connected

if and only if dF (U) ≥ p(U) for every set-pair U.

Let S denote the family of all set-pairs in G, and for a

set-pair U, let δ(U) ⊆ (
V
2

)
denote the set of edges covering

U. For a vector x : E → R and a set-pair U, let x(δ(U)) =∑
e∈δ(U) xe. The following is a well-known LP relaxation

of the minimum cost k-connectivity augmentation problem.

minimize
∑
e∈E

ce xe

subject to x(δ(U)) ≥ p(U), ∀U ∈ S
xe ≥ 0, ∀ e ∈

(
V

2

) (LP-VC)

Requiring integrality of the variables xe we get the integer

programming formulation of the problem. Notice that an

optimal integral solution contains neither any edge of the

original graph G nor any parallel edges.

We say that two set-pairs U = (U0, U1) and W =
(W0,W1) are independent if there is no edge in

(
V
2

)
covering both of them.

Claim II.1. U and W are independent if and only if either
U has a piece disjoint from both pieces of W, or W has a
piece disjoint from both pieces of U.

The graph G = (V,E) is called independence-free if

it does not have two set-pairs that are deficient and inde-

pendent; in other words, for every two deficient set-pairs

U = (U0, U1) and W = (W0,W1), there exists i ∈ {0, 1}
such that U0 intersects Wi and U1 intersects W1−i.

The following theorem is a consequence of Fleischer et

al. [11], Theorems 3.5/3.13 and the arguments used in their

proofs. We explain the correspondence in Section IV; the

full version of our paper contains a simpler proof.

Theorem II.2. Let G = (V,E) be an independence-free
graph and let k be a positive integer. Then every basic
feasible solution x to (LP-VC) with x �= 0 has an edge
e with xe ≥ 1/2.

Iterative rounding was introduced by Jain [8] for sur-

vivable network design; we refer the reader to the recent

book [21] on this method. It can be naturally adapted to

our problem of min-cost k-connectivity augmentation, as

outlined in Figure 1. The next corollary follows directly

from Theorem II.2, using the standard argument from [8];

observe that adding new edges to an independence-free

graph preserves this property. Here and in the following,

opt(G) will always denote the minimum cost of an edge set

whose addition makes G k-connected.

Corollary II.3. The iterative rounding algorithm in Figure 1
returns an edge set of cost ≤ 2opt(G).

Input: An independence-free graph G = (V,E), costs c :(
V
2

)→ R+ and k ∈ Z+.

Output: An edge set F ⊆ (
V
2

)
such that (V,E ∪ F ) is k-

connected.

1) E′ ← E.

2) While (V,E′) is not k-connected

a) Solve (LP-VC) for the graph (V,E′).
b) Let x be a basic optimal solution.

c) If x ≡ 0 then terminate.

d) Pick e ∈ (
V
2

)
such that xe ≥ 1

2 .

e) E′ ← E′ ∪ {e}.
3) Return F = E′−E.

Figure 1. Iterative rounding algorithm

We call a deficient set U with |U | < k a rogue set.
A graph is called rogue-free if there are no rogue sets
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in it, that is, every deficient set is of cardinality ≥ k.

Whenever we have two set-pairs (U0, U1) and (W0,W1)
that are independent, then at least one of the four pieces,

U0, U1,W0,W1 must be a rogue set. We state this for later

use.

Fact II.4. If a graph has two deficient set-pairs that are
independent, then it has a rogue set. Equivalently, if a graph
is rogue-free, then it is independence-free.

Our main structural result on rogue sets follows. This

result is the key to our first algorithmic goal, namely, given

the input graph G = (V,E), find an edge set F0 such that

G+ F0 is independence-free and c(F0) ≤ 4opt.

Theorem II.5. Assume that there exists a set R ⊆ V such
that every rogue set has a nonempty intersection with R.
Then the union of all rogue sets has size ≤ |R|k2(k − 1).

III. MAKING A GRAPH ROGUE-FREE

In this section, we first describe our main algorithmic tool,

the Frank-Tardos algorithm, and its use in the first phase

of our algorithm. Section III-B is devoted to the proof of

Theorem II.5.

A. The Frank-Tardos algorithm for k-outconnectivity

Let D = (V,E) be a directed graph, let r be a node of D,

and let k be a positive integer; D is called k-outconnected
from r (or, k-outconnected with root r) if it has k internally

disjoint dipaths from r to v, for each node v ∈ V − {r}.
Frank and Tardos [1] gave a polynomial-time algorithm for

finding an optimal solution to the following problem: Given

a directed graph D with costs on the edges, a root node r,

and a positive integer k, find a min-cost subgraph of D that

is k-outconnected from r. (See also Frank [22] for a simpler

algorithm.)

We shall apply this algorithm in the following special

way. In the graph G = (V,E), pick a set of nodes R ⊆ V ,

with |R| = k. By a terminal we mean a node of R. We

(temporarily) add a new node r̂ to the graph, and construct

the following complete directed graph D̂ on the node set

V ∪ {r̂} with cost function ĉ. We set ĉuv = 0 for every

u, v ∈ V , (u, v) ∈ E, and ĉuv = c(u,v) if u, v ∈ V , (u, v) /∈
E; thus we obtain equal edge costs on oppositely directed

pairs of edges inside V . Further, let us set cr̂v = 0 if v ∈ R
and ĉr̂v = ∞ if v ∈ V−R; the cost of arcs from V to r̂
is also set to ∞. We apply the Frank-Tardos algorithm to

find a minimum cost k-outconnected subgraph F̂ from r̂ in

Ĝ. Finally, we remove the root r̂ and all arcs incident to it,

and from the underlying undirected edges of F̂ we return

the set F ′ of those that are not contained in E. We refer to

this procedure as R-outconnectivity augmentation, and we

denote it as subroutine ROOTED(G,R) (see Figure 2).

The following well-known result describes a key property

of the graph resulting from an application of this subroutine,

see [2]; we include a proof for the sake of completeness.

Input: Undirected graph G = (V,E), costs c :
(
V
2

) → R+,

k ∈ Z+, and node set R ⊆ V , |R| = k.

Output: An edge set F ′ ⊆ (
V
2

)
.

1) Construct complete directed graph D̂ on node set V ∪
{r̂}, with cost ĉ defined as ĉuv = 0 if u, v ∈ V ,

(u, v) ∈ E, ĉuv = c(u,v) if u, v ∈ V , (u, v) /∈ E,

ĉr̂v = 0 if v ∈ R and ĉuv =∞ for all other arcs.

2) Apply the Frank-Tardos algorithm to find a minimum

cost k-outconnected directed subgraph F̂ from r̂ in

(D̂, ĉ).
3) Let F ⊆ (

V
2

)
be the underlying undirected graph of

the arcs in F̂ not incident to r̂.

4) Return F ′ = F−E.

Figure 2. The subroutine ROOTED(G,R)

Proposition III.1. Let R ⊆ V be a subset of nodes with
|R| = k, and let the subroutine ROOTED(G,R) return the
edge set F ′. Then c(F ′) ≤ opt(G). Further, let (U0, U1) be a
deficient set-pair in G+F ′. Then (U0, U1) is also a deficient
set-pair in G. Moreover, R ∩ U0 �= ∅ and R ∩ U1 �= ∅.

Proof: First, let us verify c(F ′) ≤ opt(G). Let F ∗

denote a minimum cost edge set such that G + F ∗ is k-

connected. It is easy to see that bidirecting every edge

in E ∪ F ∗ and adding k arcs from r̂ to the nodes in R
gives a k-outconnected digraph from r̂. This shows c(F ′) ≤
c(F ∗) = opt(G). It is obvious that every deficient set-pair

in G + F ′ is also deficient in G. Consider the last claim.

For a contradiction, assume that there is a deficient set-pair

(U0, U1) in G+ F ′ with U0 ∩R = ∅. Pick a node v ∈ U0.

The k internally disjoint paths from v to r̂ in the (rooted)

graph Ĝ+ F ′ give k internally disjoint paths from v to the

k terminals in G+F ′. Consider the first node on each path

not in U0. Each of these k distinct nodes is in V−(U0∪U1)
because U0 ∩ R = ∅, by assumption, and there are no

edges between U0 and U1, by the definition of set-pair.

This gives p(U0, U1) = max{0, k− |V−(U0 ∪U1)|} = 0, a

contradiction to the deficiency of the set-pair.

We apply the following simple corollary to obtain a rogue-

free graph.

Corollary III.2. Let G = (V,E) be a graph, let R0 be a
set of k arbitrary nodes of G, and let F ′ be the edge set
returned by the subroutine ROOTED(G,R0). Let R1 be a set
of k nodes that is disjoint from every rogue set of G+ F ′.
Let the subroutine ROOTED(G+F ′, R1) return an edge set
F ′′. Then (V,E ∪ F ∪ F ′′) is a rogue-free graph.

B. Bounding the union of the rogue sets

In this section, we focus on a graph that has

been pre-processed by one application of the subroutine

ROOTED(G,R). For simplicity, let us denote the resulting

graph also by G. We prove Theorem II.5, namely, the union
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of all rogue sets is of size ≤ |R|k2(k − 1), assuming that

every rogue set has a nonempty intersection with R. We first

need some elementary properties of the function n(.).

Fact III.3. For all U,W ⊆ V , we have

n(U) + n(W ) ≥n(U ∩W ) + n(U ∪W ) and

n(U) + n(W ) ≥n(U∗ ∩W ) + n(U ∩W ∗).

Lemma III.4. Let w1, w2 be two nodes. Let W1 and W2 be
inclusion-wise minimal deficient sets such that w1 ∈ W1 −
W2, and w2 ∈W2−W1 (in other words, for i ∈ {1, 2} and
any proper subset of Wi, either the subset is not deficient,
or the subset does not contain wi). Suppose that W1 ∩W2

is nonempty. Then, either w1 ∈ N(W2) or w2 ∈ N(W1).

Proof: We argue by contradiction. Suppose that w1 �∈
N(W2); then w1 ∈ W ∗

2 . Similarly, if w2 �∈ N(w1), then

w2 ∈ W ∗
1 . Thus, w1 ∈ W1 ∩W ∗

2 , and w2 ∈ W2 ∩W ∗
1 . We

apply the submodularity of n(.) to get

2(k−1) ≥ n(W1)+n(W2) ≥ n(W1∩W ∗
2 )+n(W2∩W ∗

1 ).

But W1 ∩W ∗
2 is a proper subset of W1 that contains w1 (it

is a proper subset because W1∩W2 is nonempty), hence, by

the inclusion-minimal choice of W1, we must have n(W1 ∩
W ∗

2 ) ≥ k. Similarly, we must have n(W2 ∩W ∗
1 ) ≥ k. This

gives a contradiction.

We are now ready to prove Theorem II.5. For a positive

integer � we denote the set of integers {1, 2, . . . , �} by [�].
Proof of Theorem II.5: Let U1, U2, . . . , U� be a smallest

family of rogue sets whose union contains every rogue set.

Since � is minimum, for each i ∈ [�], the set Ui must

contain a “witness node” wi that is not in any set Uj , j �= i;
in other words, Ui−

⋃{Uj | j ∈ [�]−{i}} is nonempty and

we take wi to be any node of this set.

Next, for each set Ui, i ∈ [�], we define Wi to be an

inclusion-wise minimal deficient subset of Ui that contains

wi. Thus, no proper subset of Wi may contain wi and be

deficient at the same time; the existence of Wi is guaranteed

since Ui satisfies both requirements. Let W denote the

family of sets Wi: thus, W = {W1, . . . ,W�}.
Each set Wi is also a rogue set, so it must contain a node

of R by the condition of the theorem. Consider a fixed but

arbitrary node r ∈ R, and focus on all the sets Wi ∈ W
that contain r; let us denote their family by W(r) = {Wi |
i ∈ [�] and r ∈ Wi}. Below, we show that |W(r)| ≤ k2.

The same upper bound applies for each node in R, yielding

|W| ≤∑
r∈R |W(r)| ≤ |R|k2.

We bound the size of W(r) by constructing a sequence

of sets such that for each set Wi ∈ W(r), either Wi is in

the sequence, or else wi (the “witness node” of Wi) is in the

neighborhood of some set in the sequence. More formally,

consider a sequence of sets from W(r), that is obtained as

follows: we start with α1 as the smallest index i such that

Wi ∈ W(r); assume that the sets Wα1
, . . . ,Wαj

have been

defined; we choose αj+1 to be the smallest index i such that

Wi ∈ W(r) and wi �∈ N(Wα1)∪N(Wα2)∪· · ·∪N(Wαj )∪
{wα1 , wα2 , . . . , wαj}; we stop if there is no such index i.

Let �̂(r) denote the length of this sequence of sets; the last

set in the sequence is Wα�̂(r)
.

Claim III.5. �̂(r) ≤ k.

Proof: Within this proof, let W = Wα�̂(r)
. Pick an

arbitrary i ∈ [�̂(r) − 1], and apply Lemma III.4 to the sets

Wαi and W . Their intersection is nonempty as it contains r.

Clearly, wα�̂(r)
(the “witness node” of W ) is not in N(Wαi

),
according to the choice of the sets in the sequence. Then,

by Lemma III.4, we have wαi
∈ N(W ), and we have

|N(W )| ≤ k − 1. The conclusion follows: the total number

of “witness nodes” of the sets in the sequence is ≤ k.

Finally, observe that for each set Wj ∈ W(r) that is not
in the sequence, we have wj ∈ N(Wα1)∪· · ·∪N(Wα�̂(r)

).

It follows that |W(r)| ≤ �̂(r) + �̂(r) · (k − 1) ≤ k2.

Applying the same upper bound for each node r ∈ R, we

have � ≤ |R|k2. It follows that
⋃
i∈[�]

Ui has size ≤ |R|k2(k−

1), since each set Ui has size ≤ k − 1.

The proof of the previous theorem relies on two proper-

ties, namely, every rogue set is a deficient set, and every

rogue set contains a node of the terminal set R; but, the

bound on the size of rogue sets is used only once, at the

end. There is an immediate extension to deficient sets of G
of size ≤ s.

Theorem III.6. Assume that there exists a set R ⊆ V
such that every deficient set of size ≤ s has a nonempty
intersection with R. Then the union of all deficient sets of
size ≤ s has size ≤ |R|k2s.

IV. ITERATIVE ROUNDING IN INDEPENDENCE-FREE

GRAPHS

In this section, we explain how Theorem II.2 can be de-

rived from the results in Fleischer et al. [11]. As opposed to

our unordered definition of set pairs, they consider demand

function on ordered disjoint subsets of V , called two-sets.

Consider a two set-function f , that is, a function whose

domain is the set of two-sets. We assume that f(S, S′) = 0
whenever S = ∅ or S′ = ∅. f is called weakly two-
supermodular if for arbitrary pair of two-sets (S, S′) and

(T, T ′), we have

f(S, S′) + f(T, T ′) ≤
max{f(S ∪ T, S′ ∩ T ′) + f(S ∩ T, S′ ∪ T ′),

f(S ∪ T ′, S′ ∩ T ) + f(S ∩ T ′, S′ ∪ T )}.
(2)

Theorem 3.5 in [11] shows that for a weakly two-

supermodular demand function, every basic solution of the

corresponding LP has an edge of fractional value ≥ 1
2 . Let us

define the two-set function p as in (1) (the original definition
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was for set-pairs; for two-sets, this gives a symmetric two-

function, i.e. p(S, S′) = p(S′, S)). This function does not
satisfy (2) in general, however, it does hold for pairs with

p(S, S′), p(T, T ′) > 0. Indeed, since set-pairs with positive

deficiency cannot be independent, we must have either

S ∩ T, S′ ∩ T ′ �= ∅ or S ∩ T ′, S′ ∩ T �= ∅; the inequality

must hold for the corresponding case.

Section 5.1 of [11] introduces the class of very weakly
two-supermodular functions; this requires (2) only for pairs

with p(S, S′), p(T, T ′) > 0, and furthermore the maximum

on the right hand side contains further terms. The proof of

Theorem 3.13. essentially shows that iterative rounding gives

a 2-approximation for such demand functions as well. The

full version of our paper contains a simpler, direct proof.

V. ALGORITHMIC ASPECTS

Our algorithm starts by applying the subroutine

ROOTED(G,R0), for an arbitrary subset R0 ⊆ V of size k.

Let G0 denote the resulting graph; thus, G0 contains all of

the edges added by ROOTED(G,R0). By Corollary III.2 and

Theorem II.5, if n ≥ k3(k−1)+k, then there exists a set of

nodes R1, |R1| = k disjoint from every rogue set of G0, and

the application of subroutine ROOTED(G0, R1) results in a

rogue-free graph G1. Clearly, G1 is also independence-free

(by Fact II.4). Hence, by Theorem II.2, iterative rounding

can be applied to find an augmenting edge set of cost

≤ 2opt(G1) ≤ 2opt(G0) ≤ 2opt(G).
Whereas the existence of an appropriate set R1 is guaran-

teed if n ≥ k3(k− 1)+ k, it is a nontrivial algorithmic task

to find one. If k3(k− 1)+ k ≤ n < k4(k− 1)+ k, then we

apply a brute-force method described in Section V-A that is

based on a stronger version of Theorem II.2. This method

works for larger values of n as well, but in Section V-B,

we present a different and more efficient algorithm that is

based on submodular function minimization for the case of

n ≥ k4(k − 1) + k.

A. Small values of n

In this part, we assume that k3(k − 1) + k ≤ n <
k4(k − 1) + k. Our method is based on the following

strengthening of Theorem II.2 that allows the input graph

to contain deficient set-pairs that are independent.

Theorem V.1. Let G = (V,E) be an arbitrary graph, and
let x be a basic feasible solution to (LP-VC). Then either
there exists an edge e with xe ≥ 1/2, or we can find a rogue
set in polynomial time.

Proof: The key point is to show that a rogue set can be

found efficiently, if xe < 1/2 for each edge e, where x is

a basic feasible solution of (LP-VC). This is based on the

following claim.

Claim V.2. If xe < 1/2 for each edge e, then there exist
two independent deficient set-pairs U and W with p(U) =
x(δ(U)), p(W) = x(δ(W)).

This claim can be derived from the proof of Theorem II.2

(see full version of the paper). One can show that either there

exists an edge e with xe ≥ 1
2 , or the “cross-free” family in

the argument must contain two independent deficient set-

pairs.
Let us add every e ∈ (

V
2

)
as a fractional edge of value xe

to G. The resulting (fractional) graph is k-connected, and its

minimum node cuts correspond to tight set-pairs (set-pairs

satisfying x(δ(W)) = p(W)).
Using standard network-flow techniques (bidirect every

edge and replace every node by a capacitated directed edge)

we can compute a minimum node cut separating any two

nodes u,w ∈ V by a max-flow min-cut computation. More-

over, the computation also finds the unique inclusionwise-

minimal one among the minimum u,w cuts. Let us compute

the inclusionwise-minimal minimum u,w cut for every pair

u,w ∈ V . In Claim V.2, at least one piece of U or W is

a rogue set, and consequently, one of these inclusionwise-

minimal sets found by network-flow techniques must be a

rogue set.

Input: An undirected graph G = (V,E), costs c :
(
V
2

)→ R+

and k ∈ Z+.

Output: An edge set F ∗ ⊆ (
V
2

)
such that (V,E ∪ F ∗) is

k-connected.

1) Pick an arbitrary R0 ⊆ V , |R0| = k.

2) Run the subroutine ROOTED(G,R0); let F ′ denote the

set of edges returned.

3) Set S ← R0.

4) Repeat

a) Pick an arbitrary R1 ⊆ V−S, |R1| = k.

b) Run the subroutine ROOTED(G+F ′, R1); let F ′′

denote the set of edges returned.

c) Run the Iterative Rounding Algorithm on Fig-

ure 1 with the input graph (V,E ∪ F ′ ∪ F ′′).
d) If it terminates with a k-connected graph (V,E′),

then return F ∗ = E′−E and terminate.

e) If x �= 0 and xe < 1
2 for every edge, then find

a rogue set X in the current graph (V,E′) as in

Theorem V.1. Set S ← S ∪X , and go to Step 4.

5) Return F ∗ = E′−E.

Figure 3. The Connectivity augmentation algorithm

The algorithm is shown on Figure 3. It starts by applying

ROOTED(G,R0) for an arbitrary set R0 ⊆ V of size k to

obtain the edge set F ′. The set S denotes the “forbidden

set” for the second root set R1, initialized as S = R0. We

repeat the following steps, that we call a major cycle of

the algorithm. Pick a subset R1 disjoint from S, run the

subroutine ROOTED(G+F ′, R1) returning the edge set F ′′,
and apply the iterative rounding algorithm in (V,E ∪ F ′ ∪
F ′′). Once the iterative rounding fails as it cannot find any

edge with xe ≥ 1
2 , we identify a rouge set X in the current
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graph as in Theorem V.1. Clearly X must have been a rouge

set already in (V,E ∪F ′). Thus we move back to the graph

(V,E ∪ F ′), update S to S ∪ X , and start the next major

cycle with a new root set R1; all arcs added in the previous

major cycle are removed.

Note that the size of S increases by at least one in every

major cycle, since R1 ∩ S = ∅, and R1 ∩ X �= ∅ by

Proposition III.1. Since the union of all rogue sets in G+F ′

has size ≤ k3(k−1), the number of major cycles is bounded

by k3(k − 1) − k. Also note that if the iterative rounding

algorithm successfully finds an augmenting edge set, then it

has cost ≤ 2opt(G+ F ′) ≤ 2opt(G).

B. Large values of n

In this part, we focus on the case k4(k−1)+k ≤ n. Our

plan is to identify a set B ⊆ V such that |B| ≤ k4(k − 1)
and B contains every rogue set. After that, we can easily

find an appropriate set of k terminals R1 that is disjoint from

B.

Let us define the function h : 2V → R+ by h(X) =
|X|+(k− 1)n(X). The following claim is straightforward.

Claim V.3. (i) For every rogue set X , h(X) ≤ k(k − 1).
(ii) If h(X) ≤ k(k − 1) for a set ∅ �= X ⊆ V , then X is a
deficient set and |X| ≤ k(k − 1).

We define B to be the union of all sets X with h(X) ≤
k(k−1). By part (i) of the claim, B contains all rogue sets.

By part (ii) and Theorem III.6, we get |B| ≤ k4(k − 1).
To find B, observe that h is a fully submodular function.

Indeed, n(X) is submodular (see Fact III.3), and |X| is a

modular function. Consequently, for every v ∈ V , we can

find the minimal value of h(X) over all sets X containing v
in strongly polynomial time, see [23], [24]. These algorithms

can also be used to find the unique largest set X containing

v that achieves the above minimum value of h(.).
The subroutine for finding B proceeds as follows. We start

with A,B = ∅. In each step, we take a node v ∈ V−(A∪B),
and apply the subroutine for submodular function minimiza-

tion. If the minimum value is greater than k(k−1), then we

add v to the set A. Otherwise, let X be the minimizer set

that has the largest size. Replace B by B ∪X and proceed

to the next node in V−(A ∪B). The subroutine terminates

once A ∪B = V is attained.

Hence the algorithm for minimum cost k-connectivity

augmentation first performs ROOTED(G,R0) for an arbitrary

subset R0 ⊆ V of size k, returning the edge set F ′. Then we

apply the above subroutine for finding the set B in G+F ′,
and then we choose an arbitrary R1 ⊆ V−B, |R1| = k, and

perform ROOTED(G + F ′, R1) returning F ′′. Finally, we

apply iterative rounding in the resulting independence-free

graph (V,E ∪ F ′ ∪ F ′′).

Remark V.4. If we apply the algorithm in Figure 3 for n ≥
k4(k−1)+k with the set R1 being randomly sampled, then

with probability at least (1− 1
k )

k, R1 will be disjoint from
every rouge set. Hence with a high probability we terminate
within a constant number of major cycles.

VI. DISCUSSION

In this paper, we only cover the assymptotic setting of

k-connectivity augmentation, for the case n ≥ k3(k − 1) +
k, leaving the case of all values of n open. An immediate

way to improve the result is to replace the bound k3(k− 1)
on the union of rogue sets in Theorem II.5 by a smaller

function of k. By the time of the submission, this has already

been improved by Nutov [25], giving a simple proof of the

stronger bound (k − 1)3 − k.

Also, note that the first set of terminals is chosen arbi-

trarily; further improvement might be possible by a clever

choice. Yet it seems difficult to obtain an O(1) approxima-

tion guarantee for all values of n using these tools only, and

substantial new insights may be needed to resolve this, e.g.,

as in [5], [6], [7], as compared to [4]. Note that if n < 2k,

then our method is entirely void: making a graph rogue-

free is equivalent to the original connectivity augmentation

problem.

An important special case of our problem is the min-cost

augmentation-by-one problem, i.e., when the input graph

is already (k − 1)-connected. The paper [4] gave a 6-

approximation for the asymptotic setting by applying the

Frank-Tardos algorithm 3 times based on a result of Mader

[26] on 3-critical graphs. Our methods do not seem to give

any improvement on 6-approximation for augmentation-by-

one in the asymptotic setting, but Nutov [7] gives a 5-

approximation.

Our result only concerns undirected graphs and does not

apply for directed graphs. This is in contrast with most of the

literature (see [5], [6], [7]), where the undirected problem is

essentially solved via a reduction to the more general setting

of directed graphs. However, it seems that undirected set-

pairs have certain advantageous properties not shared by

their directed counterparts. In particular, the right notion

of independence-freeness for directed graphs is not clear;

forbidding all independence in the directed sense seems

too restrictive. A good candidate for the notion of rogue

sets could be the sets of size less than k that are both in-

deficient and out-deficient. Yet we were not able to prove any

analogue of Theorem II.2 even assuming rogue-free directed

graphs in this sense. Also, bounding the size of the union

of such rogue sets seems more challenging.

Our results give an O(1) approximation algorithm in the

FPT (Fixed Parameter Tractable) setting, where the goal

is to design an algorithm that runs in time O(f(k)nO(1)),
that is, polynomial in n = |V | while the dependence on k
could be arbitrary; note that the approximation guarantee is

required to be constant, independent of k. Ideally, an FPT

algorithm should find an optimal solution. However, even
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for k = 2, finding an optimal solution in time O(f(k)nO(1))
would give a polynomial-time algorithm for the Hamiltonian

cycle problem. Thus, an O(1) approximation guarantee is

the best one can achieve with this bound on the running

time. The O(1) approximation is obtained as follows: If

n ≥ k3(k − 1) + k, then we get a 6-approximation in

time polynomial in n by Theorem I.1. Otherwise, we guess

each possible edge set of size ≤ kn of E(G) and if the

associated graph is k-connected, then we record the cost

of the edge set (note that an edge-minimal k-connected

graph has ≤ kn edges); the edge set with the smallest

recorded cost gives an optimal solution; the running time

is O(
(
n2

kn

)
nO(1)) = O(f(k)nO(1)), where f(k) =

(
k8

k5

)
.

Our algorithm first applies a combinatorial pre-processing,

and then it solves a continuous relaxation (namely, an

LP relaxation) and rounds the fractional solution to get

an integer solution. Neither method by itself is known to

achieve good approximation guarantees (not even polylog

in k), but the combined method achieves a constant ap-

proximation guarantee in the asymptotic setting. Analogous

schemes are applied by Karger, Motwani and Sudan [27]

for coloring 3-colorable graphs with Õ(n1/3) colors, and

by Li and Svensson [28] for the metric k-median problem.

For the coloring problem, a randomized rounding of a

semidefinite programming relaxation (SDP) is an efficient

tool, however, it performs much better for graphs with low

maximum degree. The approximation guarantee of Karger,

Motwani and Sudan [27] for coloring 3-colorable graphs is

obtained by first eliminating the high degree nodes using

a combinatorial preprocessing based on Widgerson’s [29]

algorithm. For the k-median problem, Li and Svensson [28]

show that an α-approximation algorithm for k-median can

be obtained via a pseudo-approximation algorithm that finds

an α-approximate solution by opening k + O(1) facilities;

this is based on pre-processing the input. Using this result,

[28] present a 1 +
√
3 + ε approximation algorithm for k-

median, thus improving on the best previous guarantee of

3 + ε.
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