
Approximating Bin Packing within O(logOPT · log logOPT) bins

Thomas Rothvoß
Department of Mathematics

MIT
Cambridge, USA

Email: rothvoss@math.mit.edu

Abstract—For bin packing, the input consists of n items
with sizes between 0 and 1, which have to be assigned to a
minimum number of bins of size 1. The seminal Karmarkar-
Karp algorithm from ’82 produces a solution with at most
OPT +O(log2 OPT) bins.

We provide the first improvement in now 3 decades and
show that one can find a solution of cost OPT +O(logOPT ·

log logOPT) in polynomial time. This is achieved by rounding
a fractional solution to the Gilmore-Gomory LP relaxation
using the Entropy Method from discrepancy theory. The result
is constructive via algorithms of Bansal and Lovett-Meka.

Keywords-bin packing; approximation algorithms; discrep-
ancy theory

I. INTRODUCTION

Bin Packing is one of the very classical combinatorial
optimization problems studied in computer science and
operations research. It’s study dates back at least to the
1950’s [Eis57] and it appeared as one of the prototypi-
cal NP-hard problems in the book of Garey and John-
son [GJ79]. For a detailed account, we refer to the survey
of [CGJ84]. Bin Packing is also a good case study to
demonstrate the development of techniques in approximation
algorithms. The earliest ones are simple greedy algorithms
such as the First Fit algorithm, analyzed by Johnson [Joh73]
which requires at most 1.7 · OPT + 1 bins and First
Fit Decreasing [JDU+74], which yields a solution with at
most 11

9 OPT + 4 bins. Later, Fernandez de la Vega and
Luecker [FdlVL81] developed an asymptotic PTAS by intro-
ducing an item grouping technique that reduces the number
of different item types and has been reused in numerous
papers for related problems. De la Vega and Luecker were
able to find a solution of cost at most (1+ ε)OPT +O(1

ε2)
for Bin Packing and the running time is either of the form
O(nf(ε)) if one uses dynamic programming or of the form
O(n · f(ε)) if one applies linear programming techniques.

A big leap forward in approximating bin packing was
done by Karmarkar and Karp in 1982 [KK82], who provided
an iterative rounding approach for the mentioned linear
programming formulation which produces a solution with
at most OPT + O(log2 OPT) bins in polynomial time,
corresponding to an asymptotic FPTAS.

Both papers [FdlVL81], [KK82] used the Gilmore-

Gomory LP relaxation (see e.g. [Eis57], [GG61])

min
{
1
Tx | Ax = 1, x ≥ 0

}
(1)

where A is the pattern matrix that consists of all column
vectors {p ∈ Zn

≥0 | pT s ≤ 1}. Each such column p is called
a (valid) pattern and corresponds to a feasible multiset of
items that can be assigned to a single bin. Note that it would
be perfectly possible to consider a stronger variant in which
only patterns p ∈ {0, 1}n are admitted. In this case, the LP
(1) could also be interpreted as the standard (UNWEIGHTED)
SET COVER relaxation

min
{∑

S∈S
xS |

∑
S∈S:i∈S

xS ≥ 1 ∀i ∈ [n];xS ≥ 0 ∀S ∈ S
}
(2)

for the set system S := {S ⊆ [n] |∑i∈S si ≤ 1}. However,
the additive gap between both versions is at most O(log n)
anyway, thus we stick to the matrix-based formulation as
this is more suitable for our technique1.

Let OPT and OPTf be the value of the best integer
and fractional solution for (1) respectively. Although (1)
has an exponential number of variables, one can compute a
basic solution x with 1

Tx ≤ OPTf + δ in time polynomial
in n and 1/δ [KK82] using the Grötschel-Lovász-Schrijver
variant of the Ellipsoid method [GLS81]. Alternatively, one
can also use the Plotkin-Shmoys-Tardos framework [PST95]
or the multiplicative weight update method (see e.g. the
survey of [AHK12]) to achieve the same guarantee.

The Karmarkar-Karp algorithm operates in log n itera-
tions in which one first groups the items such that only
1
2

∑
i∈[n] si many different item sizes remain; then one com-

putes a basic solution x and buys �xp� times pattern p and
continues with the residual instance. The analysis provides
a O(log2 OPT) upper bound on the additive integrality gap
of (1). In fact, it is even conjectured in [ST97] that (1)
has the Modified Integer Roundup Property, i.e. OPT ≤

1For example, if the input consists of a single item of size 1

k
, then the

optimum value of (2) is 1, while the optimum value of (1) is 1

k
. But the

additive gap can be upper bounded as follows: Take a solution x to (1)
and apply a single grouping via Lemma 5 with parameter β = 1. This
costs O(logn) and results in a solution to (2) for some general right hand
side vector b ∈ Zn

≥0
. With the usual cloning argument, this can be easily

converted into the form with right hand side 1.

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.11

20

	OPTf
+ 1 (and up to date, there is no known counterex-
ample; the conjecture is known to be true for instances that
contain at most 7 different item sizes [SS09]). Recently,
[EPR11] found a connection between coloring permutations
and bin packing which shows that Beck’s Three Permutations
Conjecture (any 3 permutations can be bi-colored with
constant discrepancy) would imply a constant integrality
gap at least for instances with all item sizes bigger than 1

4 .
Note that the gap bound of the Karmarkar-Karp algorithm is
actually of the form O(logOPTf · log(maxi,j{ si

sj
})), which

is O(log n) for such instances. But very recently Newman
and Nikolov [NNN12] found a counterexample to Beck’s
conjecture.

Considering the gap that still remains between upper and
lower bound on the additive integrality gap, one might be
tempted to try to modify the Karmarkar-Karp algorithm
in order to improve the approximation guarantee. From an
abstract point of view, [KK82] buy only patterns that already
appear in the initial basic solution x and then map every item
to the slot of a single larger item. Unfortunately, combining
the insights from [NNN12] and [EPR11], one can show that
no algorithm with this abstract property can yield a o(log2 n)
gap, which establishes a barrier for a fairly large class of
algorithms [EPR13].

A simple operation that does not fall into this class is the
following:

Gluing: Whenever we have a pattern p with xp >
0 that has many copies of the same item, glue these
items together and consider them as a single item.

In fact, iterating between gluing and grouping, results in a
mapping of several small input items into the slot of a single
large item – the barrier of [EPR13] does not hold for such
a rounding procedure.

But the huge problem is: there is no reason why in
the worst case, a fractional bin packing solution x should
contain patterns with many items of the same type. Also
the Karmarkar-Karp rounding procedure does not seem
to benefit from that case either. However, there is an
alternative algorithm of the author [Rot12] to achieve a
O(log2 OPT) upper bound, which is based on Beck’s en-
tropy method [Bec81], [Bec88], [Spe85] (or partial coloring
lemma) from discrepancy theory. This is a subfield of com-
binatorics which deals with the following type of questions:
given a set system S1, . . . , Sn ⊆ [m], find a coloring of the
elements 1, . . . ,m with red and blue, such that for each set
Si the difference between the red and blue elements (called
the discrepancy) is as small as possible.

II. OUTLINE OF THE TECHNIQUE

The partial coloring method is a very flexible technique
to color at least half of the elements in a set system with
a small discrepancy, but the technique is based on the pi-
geonhole principle — with exponentially many pigeons and

pigeonholes — and is hence non-constructive in nature2. But
recently Bansal [Ban10] and later Lovett and Meka [LM12]
provided polynomial time algorithms to find those colorings.
In fact, it turns out that our proofs are even simpler using
the Lovett-Meka algorithm than using the classical non-
constructive version, thus we directly use the constructive
method.

The constructive partial coloring lemma

The Lovett-Meka algorithm provides the following guar-
antee:

Lemma 1 (Constructive partial coloring lemma [LM12]).
Let x ∈ [0, 1]m be a starting point, δ > 0 an arbitrary error
parameter, v1, . . . , vn ∈ Qm vectors and λ1, . . . , λn ≥ 0
parameters with

n∑
i=1

e−λ2
i /16 ≤ m

16
. (3)

Then there is a randomized algorithm with expected running
time O((m+n)3

δ2 log(nmδ)) to compute a vector y ∈ [0, 1]m

with

• yj ∈ [0, δ] ∪ [1 − δ, 1] for at least half of the indices
j ∈ {1, . . . ,m}

• |viy − vix| ≤ λi · ‖vi‖2 for each i ∈ {1, . . . , n}.
If we end up with an almost integral Bin Packing solution

y, we can remove all entries with yj ≤ 1
n and roundup those

with yj ∈ [1− 1
n , 1] paying only an additional constant term.

Thus we feel free to ignore the δ term and assume that half
of the entries are yj ∈ {0, 1}.

The algorithm in [LM12] is based on a simulated Brown-
ian motion in the hypercube [0, 1]m starting at x. Whenever
the Brownian motion hits either the boundary planes yj = 0
or yj = 1 or one of the hyperplanes vi(x− y) = ±λi‖vi‖2,
the Brownian motion continues the walk in that subspace. By
standard concentration bounds, the probability that the walk
ever hits the ith hyperplane is upperbounded by e−Ω(λ2

i).
In other words, condition (3) says that the expected number
of hyperplanes vi(x − y) = ±λi‖vi‖2 that ever get hit is
bounded by m

16 , from which one can argue that a linear
number of boundary constraints must get tight.

Readers that are more familiar with approximation al-
gorithm techniques than with discrepancy theory, should
observe the following: In the special case that λi = 0 for all
i, one can easily prove Lemma 1 by choosing y as any basic
solution of {y | viy = vix ∀i ∈ [n]; 0 ≤ y ≤ 1}. In other

2The claim of the Partial coloring lemma is as follows: Given any vectors
v1, . . . , vn ∈ Rm with a parameters λ1, . . . , λn > 0 satisfying

n∑
i=1

G (λi) ≤
m

5
, for G(λ) :=

{
9e−λ2/5 if λ ≥ 2

log2(32 + 64

λ
) if λ < 2

Then there is a partial coloring χ : [m] → {0,±1} with |supp(χ)| ≥ m
2

and |viχ| ≤ λi‖vi‖2 for all vectors i = 1, . . . , n.

21

words, Lemma 1 is somewhat an extension of the concept
of basic solutions. Considering that a significant fraction of
approximation algorithms is based on the sparse support of
basic solutions, one should expect many more applications
of [LM12].

The rounding procedure

Let x be a fractional solution for the Gilmore-Gomory LP
(1), say with |supp(x)| = m ≤ n and let A be the constraint
matrix reduced to patterns in the support of x.

Assume for the sake of simplicity that all items have size
between 1

k and 2
k for some k. We now want to discuss how

Lemma 1 can be applied in order to replace x with another
vector y that has half of the entries integral and is still almost
feasible. Then repeating this procedure for log(m) iterations
will lead to a completely integral solution. For the sake of
comparison: the Karmarkar-Karp algorithm is able to find
another fractional y that has at most half the support of x
and is at most an additive O(1) term more costly. So let us
argue how to do better.

Let us sort the items according to their sizes (i.e. 2
k ≥

s1 ≥ . . . ≥ sn ≥ 1
k) and partition the items into groups

I1, . . . , It such that the number of incidences in A is of
order 100k for each group. In other words, if we abbreviate
vIj :=

∑
i∈Ij Ai as the sum of the row vectors in Ij , then

‖vIj‖1 ≈ 100k. Since each column of A sums up to at most
k and each group consums 100k incidences, we have only
t ≤ m

100 many groups. Now, we can obtain a suitable y
with at most half the fractional entries by either computing
a basic solution to the system

vIj (x− y) = 0 ∀j ∈ [t], 1
T y = 1

Tx, 0 ≤ y ≤ 1

or by applying the Constructive Partial Coloring Lemma to
vI1 , . . . , vIt and vobj := (1, . . . , 1) with a uniform parameter
of λ := 0. In fact, since (t + 1) · e−02/16 ≤ m

100 + 1 ≤ m
16 ,

condition (3) is even satisfied with a generous slack. The
meaning of the constraint vI(x − y) = 0 is that y still
contains the right number of slots for items in group I . But
the constraint does not distinguish between different items
within I; so maybe y covers the smaller items in I more
often than needed and leaves the larger ones uncovered.
However, it is not hard to argue that after discarding 100k
items, y can be turned into a feasible solution, so the increase
in the objective function is again O(1) as for Karmarkar-
Karp.

Now we are going to refine our arguments and use the
power of the entropy method. The intuition is that we
want to impose stronger conditions on the coverage of
items within groups. Consider a group I := Ij and create
growing subgroups G1 ⊆ G2 ⊆ . . . ⊆ G1/ε = I such
that the number of incidences grows by ε · 100k from
subgroup to subgroup, for some ε > 0 (later ε := 1

log2 n
will turn out to be a good choice; see Figure 1). In other
words, ‖vGj+1\Gj

‖1 ≈ ε · 100k. We augment the input for

An rows

m columns

I1

I =

Ij

It

G1 . . .
G 1

ε

subgroupsgroups

Figure 1. Visualization of groups and subgroups

Lemma 1 by the vectors vG for all subgroups equipped with

parameter λG := 4
√

ln(1ε). Observe that condition (3) is

still satisfied as each of the t
ε many subgroups G contributes

only e−λ2
G/16 ≤ ε. So, we can get a better vector y that

also satisfies |vG(x − y)| ≤ 4
√

ln(1ε) · ‖vG‖2 for any
subgroup. In order to improve over our previous approach
we need to argue that ‖vG‖2 � k. But we remember that
by definition ‖vG‖1 ≤ 100k, thus we obtain ‖vG‖2 ≤√
‖vG‖1 · ‖vG‖∞ ≤ 100k ·

√
‖vG‖∞/‖vG‖1. In other

words, the only situation in which we do not immediately
improve over Karmarkar-Karp is if ‖vG‖∞ ≥ Ω(‖vG‖1),
i.e. if there is some pattern such that a large fraction of it is
filled with items of the same subgroup G.

The gluing

At this point our gluing operation comes into play. After
a simple pre-rounding step which costs us a o(1) term, we
can assume that all entries in x are multiples of 1

q := 1
log4 n

.
Recall that initially we have a single copy from each item.
We group consecutive items together into groups of size
β = 1

log4 n
and round their sizes to the smallest one in the

group. By standard arguments this incurs a negligible cost of
O(1

log4 n
). Now we can assume that we have a sufficiently

large number of copies for every item. Suppose that after
this agglomeration we find an item i and a pattern p in the
support such that indeed pi is large, say pisi ≥ 1

log8 n
. The

crucial observation is that this pattern p alone covers w :=
�pi

q � many copies of item i in the input since xp · pi ≥ w.
Next, take w many copies of item i in p and glue them
together to obtain a new, bigger item i′ of size si′ = w ·
si. The pattern p has enough items to do this q times, see
Figure 2. In other words, the modified pattern now contains
q copies of a new artificial item i′. The reason why we want
q copies of this new item is that the modified pattern p alone
covers q · xp = 1 copies of i′. Thus, in a finally obtained
integral solution we would have a slot for the artificial item
i′, which we can then replace with the copies of the original
item i.

Observe that the size of this newly obtained item type is

22

⇒w · q items q items
si

w · si

pattern p
xp = r

q

pattern p′
x′p′ = r

q

Figure 2. Visualization of the gluing procedure.

si′ = w ·si ≥ 1
log12 n

. So we call items above that size large
and below that size small. The interesting effect is that if
we apply this gluing procedure to all small items whenever
possible, the penalty that we pay for rounding the remaining
small items is so small that the overall cost is completely
dominated by the contribution of the large items (i.e. those
items that were either large from the beginning or that were
created during the gluing process). In other words, we obtain
the same approximation guarantee as if the instance would
only contain items of size at least 1

log12 n
from the beginning

on; for those instances already [KK82] produces a solution
with at most OPTf +O(log n · log log n) bins, so this is our
final approximation guarantee for all instances.

Contribution

Our main contribution is the following theorem:

Theorem 2. For any Bin Packing instance s1, . . . , sn ∈
[0, 1], one can compute a solution with at most OPTf +
O(logOPTf · log logOPTf) bins in expected time
O(n6 log5(n)), where OPTf denotes the optimum value of
the Gilmore-Gomory LP relaxation.

This partly solves problem #3 in the list of 10 open
problems in approximation algorithms stated by Williamson
and Shmoys [WS11] (they asked for a constant integrality
gap).

III. RELATED WORK

The classical application of the partial coloring lemma
is to find a coloring χ : [m] → {±1} for m elements
such that for a given set system S1, . . . , Sn

3 the discrep-
ancy maxi∈[n] |

∑
j∈Si

χ(j)| is minimized. For example, one
can obtain Spencer’s bound [Spe85] on the discrepancy of
arbitrary set systems, by applying logm times Lemma 1
starting with x := (12 , . . . ,

1
2) and a uniform bound of

λ := C
√

log 2n
m where vi ∈ {0, 1}m is the characteristic

vector of Si. This results in a coloring χ : [m]→ {±1} with

|χ(S)| ≤ O(
√

m log 2n
m). Note that e.g. for n ≤ O(m), this

is a O(
√
m) coloring, while a pure random coloring would

be no better than O(
√
m · logm).

Other applications of this method give a O(
√
t logm)

bound if no element is in more than t sets [Sri97]

3The standard notation in discrepancy theory is to have n as number of
elements and m as the number of sets. However, that conflicts with the
standard notation for Bin Packing, where n is the number of items which
is essentially the number of v-vectors.

and a O(
√
k logm) bound for the discrepancy of k

permutations [SST]. For the first quantity, alternative
proof techniques give bounds of 2t − 1 [BF81] and
O(
√
t · logm) [Ban98].

In fact, we could use those classical techniques and extend
[Rot12] to obtain a OPTf + O(logOPTf · log logOPTf)
integrality gap result. It might appear surprising that one
can bound integrality gaps by coloring matrices, but this
is actually a well known fact, which is expressed by the
Lovász-Spencer-Vesztergombi Theorem [LSV86]: Given a
matrix A and a vector x ∈ [0, 1]m such that any submatrix
of A admits a discrepancy α coloring. Then there is a y ∈
{0, 1}m with ‖Ax−Ay‖∞ ≤ α. For a more detailed account
on discrepancy theory, we recommend Chapter 4 in the book
of Matoušek [Mat99].

IV. PRELIMINARIES

In the Bin Packing literature, it is well known that it
suffices to show bounds as in Theorem 2 with an n instead
of OPTf and that one can also assume that items are not
too tiny, e.g. si ≥ 1

n . Though the following arguments are
quite standard (see e.g. [KK82]), we present them for the
sake of completeness.

Lemma 3. Assume for a monotone function f , there is
a poly(m)-time OPTf + f(n) algorithm for Bin Packing
instances s ∈ [0, 1]m with |{si | i ∈ [m]}| ≤ n many
different item sizes and min{si | i ∈ [m]} ≥ 1

n . Then there
is a polynomial time algorithm that finds a solution with at
most OPTf + f(OPTf) +O(logOPTf) bins.

Proof: Let s ∈ [0, 1]m be any bin packing instance
and define σ :=

∑m
i=1 si as their size. First, split items

into large ones L := {i ∈ [m] | si ≥ 1
σ} and small ones

S := {i ∈ [m] | si < 1
σ}.

We perform the grouping procedure from [KK82] (or from
Lemma 5) to large items L and produce an instance with
sizes s′ such that each size s′i that appears has

∑
j:s′j=s′i

s′i ≥
1. Moreover, after discarding items of total size at most
O(log 1

min{si|i∈L}) ≤ O(log σ) one has OPT ′f ≤ OPTf .
Thus the number of different item sizes in s′ is bounded by
σ. We run the assumed algorithm to assign items in L to
at most OPT ′f + f(σ) ≤ OPTf + f(OPTf) bins (using
that OPTf ≥ σ and f is monotone). Adding the discarded
items increases the objective function by at most another
O(logOPTf) term. Now we assign the small items greedily
over those bins. If no new bin needs to be opened, we are

23

done. Otherwise, we know that the solution consists of k
bins such that k−1 bins are at least 1− 1

σ full. This implies
σ ≥ (k − 1) · (1 − 1

σ), and hence k ≤ σ + 3 ≤ OPTf + 3
assuming σ ≥ 2.

From now on, we have the implicit assumption si ≥ 1
n . In

an alternative Bin Packing definition, also called the cutting
stock problem, the input consists of a pair (s, b) such that
bi ∈ Z≥0 gives the number of copies of si. The Karmarkar
Karp bound of O(log2 n) on the additive integrality gap still
holds true in this general setting, where n is the number of
item types. Note that the time to solve the LP (1) up to an
additive constant is polynomial in

∑n
i=1 bi. In this paper,

we will work with a more general formulation in which any
b ∈ cone{p ∈ Zn

≥0 | sT p ≤ 1} may serve as vector of
multiplicities (note that such a vector might have fractional
entries). From our starting solution x, we can immediately
remove the integral parts �xp� and assume that 0 ≤ x < 1,
which has the consequence that

∑n
i=1 sibi < n.

It will be useful to reformulate bin packing as follows:
consider a size vector s ∈ [0, 1]n (s1 ≥ . . . ≥ sn) with
pattern matrix A and a given vector x ∈ Rm

≥0 as input and
aim to solve the following problem

min1T y (4)∑
j≤i

Ajy ≥
∑
j≤i

Ajx ∀i ∈ [n]

y ∈ Zm
≥0

We write y � x if
∑

j≤i Ajy ≥
∑

j≤i Ajx for all i ∈ [n].
In words: we have a fractional solution x to LP (1) for an
instance with Aix many items of type i in the input and
aim to find an integral solution y that reserves

∑
j≤i Ajy

many slots for items of type 1, . . . , i. The condition y � x
guarantees that y can be easily transformed into a feasible
solution by simply assigning items to slots of larger items.
We make the following observation:

Observation 1. Consider any instance 1 ≥ s1 ≥ . . . ≥
sn > 0 with pattern matrix A and vector x ∈ Rm

≥0 such that
Ax = 1. Then the value of the optimum integral solution to
(4) and (1) coincide.

However, (4) has the advantage that we can split the
solution x = x′ + x′′ and then separately consider x′ and
x′′ while the vector b′ = Ax′ might be fractional, which
is somewhat unintuitive when speaking about classical bin
packing. When Ax ∈ Zn

≥0 and y with y � x is integral,
then it is clear that y defines a solution in which each item
represented by multiplicity vector Ax can be mapped to one
slot in the patterns of y.

Notation

To fix some notation, p denotes a pattern which we
interpret either as a multi-set of items or as a vector where
pi ∈ Z≥0 denotes the number of copies of item i contained
in p. The matrix formed by all possible patterns is denoted

by A. Moreover Ai is the ith row of A and by a slight
abuse of notation, sometimes we interpret p as a column
index for pattern p and write Ap as the pth column. As
usual [n] = {1, . . . , n} and 1 denotes the all-ones vector
of suitable dimension. For a subset I ⊆ [n], we write
s(I) :=

∑
i∈I si. For any k that is a power of 2, we denote

the subset of items {i ∈ [n] | 1
k ≤ si <

2
k} as one size class.

The quantity m will usually refer to the number of patterns
in A.

V. OPERATIONS ON FRACTIONAL SOLUTIONS

We introduce two useful operations that we can apply to
a fractional solution: the classical item grouping procedure
similar to [FdlVL81], [KK82] and a novel item gluing
operation. Finally, we show how they can be combined to
obtain a well spread instance in which no pattern contains
a significant fraction of copies of a single item.

In order to keep the maintained solution feasible in these
procedures it will be necessary to add some additional
patterns. In the classical literature [FdlVL81], [KK82] this
would be done with the phrase “discard the following set of
items. . . ” meaning that those items are assigned to separate
bins in a greedy manner. We choose to handle this slightly
differently. We allow additional columns in A – for each
i ∈ [n], we add a waste pattern {i}, which can be bought
in arbitrary fractional quantities at cost 2si per copy. For a
vector x ∈ Rm

≥0 representing a fractional solution, we write

(1, 2s)Tx =
∑

p regular pattern

xp +
∑

{i} waste pattern

2six{i}

as objective function. During our rounding algorithm, we
do not make any attempt to round entries x{i} belonging to
waste patterns to integral values. This can be easily done at
the very end as follows:

Lemma 4. Let x ∈ Rm
≥0 and suppose that all patterns p ∈

supp(x) contain only one item, i.e. ‖p‖1 = 1. Then there is
an integral y � x with

∑n
i=1 siy{i} ≤

∑n
i=1 six{i} + 1.

Proof: By adding dummy copies, we may assume that
xp = 1

q for all p (for some large number q). Sort the patterns
p1, . . . , pQ such that the item sizes in those patterns are non-
increasing. Buy each qth pattern starting with pq plus one
copy of p1.

Finally, any set of Bin Packing items S ⊆ [n] can be
assigned to at most 2

∑
i∈S si + 1 bins using a First Fit

assignment, which is the reason for the penalty factor of 2
for waste patterns.

A. Grouping

The operation of grouping items is already defined by
de la Vega and Luecker in their asymptotic PTAS for Bin
Packing [FdlVL81]. For some parameter k, they form groups
of k input items each and round up the item sizes to the size
of the largest item in that group. This essentially reduces the

24

number of different item types by a factor of k. In contrast,
we will replace items in the fractional solution x with
smaller items. The reason for our different approach is that
we measure progress in our algorithm in terms of |supp(x)|,
while e.g. Karmarkar-Karp measure the progress in terms of
the total size of remaining input items. As a consequence
we have to be careful that no operation increases |supp(x)|.
Lemma 5 (Grouping Lemma). Let x ∈ Rm

≥0 be a vector,
β > 0 any parameter and S ⊆ [n] be a subset of items.
Then there is an x′ � x with identical fractionality as x
(except of waste patterns) with (1, 2s)Tx′ ≤ (1, 2s)Tx +
O(β ·log(2maxi,j∈S{ si

sj
}), and for any i ∈ S, either Aix

′ =
0 or siAix

′ ≥ β.

Proof: It suffices to consider the case in which α ≤
si ≤ 2α for all i ∈ S and show that the increase in the
objective function is bounded by O(β). The general case
follows by applying the lemma to all size classes S ∩ {i ∈
[n] | (12)�+1 < si ≤ (12)

�}. We also remove those items that
have already siAix ≥ β from S since there is nothing to do
for them.

In the following, we assume that items are sorted accord-
ing to their sizes. We consider the index set I := {(i, p) |
i ∈ S, p ∈ supp(x)}. For any subset G ⊆ I , we define the
weight as w(G) :=

∑
(i,p)∈G sipixp. Note that any single

index has weight w({(i, p)}) = sipixp ≤ siAix ≤ β by
assumption. Hence we can partition I = G1∪̇ . . . ∪̇Gr such
that
• w(Gk) ∈ [2β, 4β] ∀k = 1, . . . , r − 1
• w(Gr) ≤ 2β
• (i, p) ∈ Gk, (i

′, p′) ∈ Gk+1 ⇒ i ≤ i′

Now, for each k ∈ {1, . . . , r − 1} and each index (i, p) ∈
Gk, we replace items of type i in p with the smallest item
type that appears in Gk. Furthermore, for indices (i, p) ∈
Gr, we remove items of type i from p. Finally, we add
4β
α many copies of the largest item in I to the waste (note

that the number 4β
α can be fractional and even 4β

α � 1 is
meaningful). Let x′ denote the emerging solution. Clearly,
x′ only uses patterns that have size at most 1. Moreover,
(1T , 2s)x′ − (1T , 2s)x ≤ 4β

α · 2max{si | i ∈ S} ≤ 16β.
It remains to argue that x′ � x. Consider any item i ∈

[n] and the difference
∑

j≤i Ajx
′ −∑

j≤i Ajx. There is at
most one group Gk whose items were (partly) larger than
i in x and then smaller in x′. The weight of that group is
w(Gk) ≤ 4β, thus their “number” is

∑
(i,p)∈Gk

pixp ≤ 4β
α .

We add at least this “number” of items to the waste, thus∑
j≤i

Ajx
′ −

∑
j≤i

Ajx ≥ 4β

α
−

∑
(i,p)∈Gk

pixp ≥ 0

B. Gluing

We now formally introduce our novel item gluing method.
Assume we would a priori know some set of items which

in an optimal integral solution is assigned to the same bin.
Then there would be no harm in gluing these items together
to make sure they will end up in the same bin. The crucial
point is that this is still possible with copies of an item i
appearing in the same pattern in a fractional solution as
long as the contribution xp · pi to the multiplicity vector is
integral, see again Figure 2.

Lemma 6 (Gluing Lemma). Suppose that there is a pair of
pattern p and item i with xp = r

q and pi ≥ w·q (r, q, w ∈ N)
as well as a size si′ = w · si. Modify x such that w · q items
of type i in pattern p are replaced by q items of type i′ and
call the emerging solution x′. Then the following holds:

a) The patterns in x′ have still size at most one and
1
Tx = 1

Tx′.
b) Any integral solution y′ � x′ can be transformed into

an integral solution y � x of the same cost.

Proof: The first claim is clear as q · si′ = wq · si. Now,
let y′ � x′ be an integral solution. Recall that Ai′x

′ ≥ r
q ·q =

r ∈ Z>0. Select the r smallest slots of size at least si′ that
are contained in Ay′. Substitute each such slot with w items
of type i and call the emerging solution y. Note that y is
integral with y � x.

Any sequence of grouping and gluing produces a solution
which dominates the original instance in the sense that any
integral solution for the transformed instance implies an
integral solution for the original one.

Corollary 7. Let s ∈ [0, 1]m and x ∈ Rm
≥0 be any instance

for (4). Suppose there is a sequence x = x(0), . . . , x(T) with
x(T) ∈ Zm

≥0 such that for each t ∈ {1, . . . , T}, at least one
of the cases is true:

• (i) x(t) � x(t−1)

• (ii) x(t) emerges from x(t−1) by gluing items via
Lemma 6.

Then one can construct an integral solution y ∈ Zm
≥0 with

y � x and 1
T y ≤ 1

Tx(T) in polynomial time.

Proof: Follows by induction over T , the definition of
“�” and Lemma 6.b).

C. Obtaining a well-spread instance

As already argued in the introduction, a rounding pro-
cedure based on the partial coloring method would beat
[KK82] if the patterns in p ∈ supp(x) would satisfy Aip ≤
δ ·Aix for all i with si ≤ ε, for suitable parameters ε, δ > 0.
We call this property δ-well-spread w.r.t. ε-small items. A
crucial lemma is to show that we can combine grouping
and gluing to obtain a 1

polylog(n) -well-spread solution while
loosing a negligible additive 1

polylog(n) term in the objective
function.

To simplify notation, let us assume that the vector s
contains already all sizes k · si for i = 1, . . . , n and k ∈ N

(even if x does not contain any item of that size).

25

Lemma 8. Let 1 ≥ s1 ≥ . . . ≥ sn ≥ 1
n and x ∈ [0, 1]m

be given such that for some q ∈ Z>0 one has xp ∈ Z≥0

q for
all p ∈ supp(x) and |supp(x)| ≤ n. Choose any parameters
δ, β > 0 and call items of size at least ε := δ β

2q large
and small otherwise. Then one can apply Grouping and
Gluing to obtain a solution x̃ with (1, 2s)T x̃ ≤ (1, 2s)Tx+
O(β log2 n) and the property that pi ≤ δ ·Aix̃ for all small
items i and all p ∈ supp(x̃).

Proof: First apply grouping with parameter β to the
small items to obtain a vector x′ � x with (1, 2s)Tx′ ≤
(1, 2s)Tx + O(β · log n) such that si · Aix

′ ≥ β whenever
Aix

′ > 0. Now apply gluing for each i and p ∈ supp(x′),
wherever siAip ≥ 2δ · β with maximal possible w. In fact,
that means w ≥ � 2δβqsi

� ≥ δβ
qsi

since δβ
qsi
≥ δβ

qε ≥ 1. The size
of the items emerging from the gluing process is at least
w · si ≥ δβ

q , thus they are large by definition. We have at
most q items of type i remaining in the pattern and their
total size is q · si ≤ q · ε ≤ δβ

2 . Let x′′ be the new solution.
If after gluing, we still have siAix

′′ ≥ β
2 , then we say i

is well-covered. If indeed all small items are well-covered,
then we are done because siAip ≤ siq ≤ δβ

2 ≤ δ · siAix
′′

for all small i and p ∈ supp(x′′).
Thus, let S := {i small | i not well-covered} be the set of

those items whose number has decreased to less than half
due to gluing. We apply again grouping (Lemma 5) to S
(note that we do not touch the well-covered items). Then
we apply again gluing where ever possible and repeat the
procedure until all small items are well-covered. Note that
once an item is well-covered it stays well-covered as it is
neither affected by grouping nor by gluing.

In each iteration the waste increases by O(β · log n), thus
it suffices to argue that the procedure stops after at most
O(log n) iterations. Note that the total size of not well-
covered items

∑
i not well-covered siAix decreases by at least

a factor of 1
2 in each iteration. Moreover at the beginning

we had
∑n

i=1 siAix < n and we can stop the procedure
when

∑
i not well-covered siAix ≤ 1

n2
4, which shows the claim.

VI. THE ALGORITHM

In this section, we present the actual rounding algorithm,
which can be informally stated as follows (we give a more
formal definition later):

(1) FOR log n iterations DO

(2) round x s.t. xp ∈ Z≥0

polylog(n) for all p
(3) make x 1

polylog(n) -well spread
(4) run the constructive partial coloring lemma to

make half of the variables integral

4In fact, whenever we have a pattern p with xp ≤ 1

n
we can just move

it to the waste. In total over all iterations this does not cost us more than an
extra 1 term. Then we always have the trivial lower bound siAix ≥ 1

n2

as si ≥
1

n
.

For the sake of comparison note that the Karmarkar-Karp
algorithm [KK82] consists of step (1) + (4), just that the
application of the constructive partial coloring lemma is
replaced with grouping + computing a basic solution.

A. Finding a partial coloring

The next step is to show how Lemma 1 can be applied
to make at least half of the variables integral. As this is
the crucial core procedure in our algorithm, we present it
as a stand-alone theorem and list all the properties that we
need for matrix A. Later, we will apply Theorem 9 to the
matrix of patterns p that have 0 < xp < 1, after making the
solution well-spread. Mathematically speaking, the point is
that any matrix A that is column-sparse and has well-spread
rows admits good colorings via the entropy method.

Theorem 9. Let x ∈ [0, 1]m be a vector and δ, ε be
parameters with 0 < ε ≤ δ2 ≤ 1 and let A ∈ Zn×m

≥0

(with m ≥ 100 log(mini{ 2
si
})) be any matrix with numbers

1 ≥ s1 ≥ . . . ≥ sn > 0. Suppose that for any column
p ∈ [m], one has Aps =

∑n
i=1 Aipsi ≤ 1 and for any row i

with si ≤ ε one has ‖Ai‖∞ ≤ δ ·‖Ai‖1. Then there is a ran-
domized algorithm with expected polynomial running time to
compute a y ∈ [0, 1]m with |{p ∈ [m] | yp ∈ {0, 1}}| ≥ m

2 ,
1
T y = 1

Tx and for all i ∈ [n]

∣∣∣∑
j≤i

Aj(y − x)
∣∣∣ ≤

⎧⎨
⎩
O(1

si
) si > ε

O(
√

ln(2δ) · δ · 1
si
) si ≤ ε

Proof: First of all, it will be convenient for our argu-
ments if each individual row has a small norm. Consider a
row Ai belonging to a large index (i.e. si > ε) and replace it
with ‖Ai‖1 many rows that sum up to Ai, each having unit
‖ · ‖1-norm. Note that any y that satisfies the claim for the
modified matrix does so for the original matrix A. Similarly,
consider any index i belonging to a small item (i.e. si ≤ ε).
Then we know that ‖Ai‖∞ ≤ δ ·‖Ai‖1. Thus we can replace
Ai by non-negative integral row vectors that sum up to Ai,
each of which has ‖·‖∞-norm 1 and ‖·‖1-norm between 1

2δ
and 1

δ . After this replacement we can assume that each index
i with si ≤ ε satisfies 1

2δ ≤ ‖Ai‖1 ≤ 1
δ and ‖Ai‖∞ = 1.

In the following let C > 0 be a large enough constant
that we determine later. We will prove the claim via a single
application of Lemma 1. In particular we need to make a
choice of vectors vi and parameters λi. First, we partition
the items into groups [n] = I1∪̇ . . . ∪̇It such that each group
I consists of consecutive items and is chosen maximally
such that

∑
i∈I ‖Ai‖1si ≤ C and so that I contains only

items from one size class. In other words, apart from the
log(mini{ 2

si
}) many groups that contain the last items from

some size class, we will have that
∑

i∈I ‖Ai‖1si ≥ C − 1.
For each group I , whether complete or not, we define a
vector vI :=

∑
i∈I Ai with parameter λI := 0.

Now consider a group I that belongs to small items,
say the items i ∈ I have size 1

k ≤ si ≤ 2
k for some

26

k. We form subgroups G1 ⊆ G2 ⊆ . . . ⊆ Gt(I) = I

such that ‖vGj+1\Gj
‖1 ∈ [C

√
δk, 2C

√
δk] (this works out

since ‖Ai‖1 ≤ 1
δ =

√
δ

δ3/2
≤

√
δ
ε ≤ √

δk; again the last
subgroup Gt(I) might be smaller). For each subgroup G, we
add the vector vG to our list, equipped with error parameter

λG := 4
√
ln(2δ).

To control the objective function, we also add the all-
ones vector vobj := (1, . . . , 1) with λobj := 0. Now we
want to argue that Lemma 1, applied to all the vectors
vI , vG, vobj defined above, provides a solution y that satisfies
the claim. The first step is to verify that indeed the “entropy
condition” (3) is satisfied. As the item sizes for each column
sum up to most one, we know that

∑
i∈[n] ‖Ai‖1si ≤ m,

where m is the number of columns. Each complete group
has

∑
i∈I ‖Ai‖1si ≥ C − 1, thus the number of groups is

t ≤ m
C−1 + log(mini{ 2

si
}) ≤ m

50 for C large enough and

each group I contributes e−λ2
I/16 = 1 to (3).

Next, consider any group I and let us calculate the
contribution just of its subgroups G1, . . . , Gt(I) to (3). The
number of I’s subgroups is t(I) ≤ 1√

δ
+ 1 ≤ 2√

δ
and

each subgroup G contributes e−λ2
G/16 = δ

2 , thus their total
contribution is bounded by 2√

δ
· δ2 ≤ 1. In other words, the

total contribution of all subgroups is bounded from above by
m
100 as well and (3) indeed holds and we can apply Lemma 1.
The algorithm returns a vector y such that |vI(x− y)| = 0

for each group I and |vG(x − y)| ≤ 4
√

ln(2δ) · ‖vG‖2 for

each subgroup G (and of course 1
Tx = 1

T y).

Finally, consider any item i and suppose it is small with
1
k ≤ si ≤ 2

k . It remains to show that |∑j≤i Aj(x − y)| ≤
O(

√
δ ln(2δ)·k). Now we use that the interval {1, . . . , i} can

be written as disjoint union of a couple of groups + a single
subgroup + a small rest. So let t′ be the index with i ∈ It′ .
Moreover, let G be the (unique) maximal subgroup such that
G ⊆ {1, . . . , i}\⋃t′′<t′ It′′ and let R := {1, . . . , i}\(G ∪⋃

t′′<t′ It′′) be the remaining row indices. The error that our
rounding produces w.r.t. i is

∣∣∣∑
j≤i

Aj(x− y)
∣∣∣

=
∣∣∣ ∑
t′′<t′

vIt′′ (x− y)︸ ︷︷ ︸
=0

+vG(x− y) + vR(x− y)
∣∣∣

≤ 4

√
ln

(
2

δ

)
· ‖vG‖2 + ‖vR‖1︸ ︷︷ ︸

≤2C
√
δk

It remains to bound ‖vG‖2. At this point, we crucially
rely on the assumption ‖Ai‖∞ ≤ 2δ · ‖Ai‖1. Using this
together with Hölder’s inequality and the triangle inequality

we obtain

‖vG‖2 ≤
√
‖vG‖1 · ‖vG‖∞ ≤

√
‖vG‖1 ·

∑
i∈G

‖Ai‖∞

≤
√
‖vG‖1 · 2δ

∑
i∈G

‖Ai‖1

=
√
2δ ‖vG‖1︸ ︷︷ ︸

≤O(k)

= O(
√
δk)

Hence the claim is proven for small items. On the other
hand for large items i we do not even need to use the
subgroups. Let t′ be the group with i ∈ It′ and denote
R := {1, . . . , i}\⋃t′′<t′ It′′ as the remaining interval. Then
we directly obtain |∑j≤i Aj(x − y)| = |∑t′′<t′ vIt′′ (x −
y) + vR(x− y)| ≤ ‖vR‖1 ≤ O(1

si
).

One can alternatively prove Theorem 9 by combining the
classical partial coloring lemma and the Lovász-Spencer-
Vesztergombi Theorem [LSV86]. Note that the bound of the
classical partial coloring lemma involves an extra O(log 1

λ)
term for λ ≤ 2. However, using the parametrization as
in [SST] one could avoid loosing a super constant factor.
Moreover, instead of just 2 different group types (“groups”
and “subgroups”), we could use an unbounded number to

save the
√

ln(2δ) factor. However, this would not improve
on the overall approximation ratio.

Recall that for the gluing procedure in Lemma 8 we need
the property that the entries in xp are not too tiny – say at
least 1

polylog(n) . But this is easy to achieve (in fact, the next
lemma also follows from [KK82] or [Rot12]).

Lemma 10. Given any instance 1 ≥ s1 ≥ . . . ≥ sn ≥ 1
n ,

x ∈ Rm
≥0 and parameter γ > 0. Then one can compute

a y � x in expected polynomial time such that all yp are
multiples of γ and (1, 2s)T y ≤ (1, 2s)Tx+O(γ · log2 n).

Proof: After replacing x with a basic solution, we may
assume that |supp(x)| ≤ n. We write x = γx′ + γz with
z ∈ Zm

≥0 and 0 ≤ x′ ≤ 1. Now apply log n times Theorem 9
with δ = 1 to x′ to obtain y′ ∈ {0, 1}m with 1

T y′ ≤
1
Tx′ and |∑j≤i Aj(x − y)| ≤ O(log n · 1

si
) (if at the end

of the rounding process, the fractional support goes below
100 log(n), we can stop and remove the remaining fractional
patterns). Let i� be the largest item in size class
. Then for

 = 0, . . . , log n, we add O(log n · 2�) copies of item i� to
the waste of y′. Now (1, 2s)T y′ ≤ (1, 2s)Tx′ + O(log2 n)
and y′ � x′. Eventually define y := γy′ + γz and observe
that y � x, all entries yp are multiples of γ and (1, 2s)T y ≤
(1, 2s)Tx+O(γ log2 n).

Observe that just applying Lemma 10 with γ = 1 yields
an integral solution with cost OPTf +O(log2 n).

B. Proof of the main theorem

It remains to put all ingredients together and show that
each of the log n applications of the partial coloring lemma

27

increases the objective function by at most O(log log n).

Theorem 11. Let 1 ≥ s1 ≥ . . . ≥ sn ≥ 1
n with and x ∈

Rm
≥0 be given. Then there is an expected polynomial time

algorithm to compute y � x with 1
T y ≤ 1

Tx + O(log n ·
log log n).

Proof: We choose δ := β := γ := 1
�log4 n	 and

ε := 1
4 log12 n

≤ 1
2γβδ. After moving to a basic solution and

buying integral parts of x, we may assume that x ∈ [0, 1]m

and |supp(x)| ≤ n. Recall that i� = argmax{i | 2−(�+1) <
si ≤ 2−�}. We perform the following algorithm:

(1) FOR t = 1 TO log n DO
(2) Apply Lemma 10 to have all xp being multiples

of γ.
(3) Apply Lemma 8 to make x δ-well spread for

items of size at most ε.
(4) Apply Theorem 9 to x to halve the number of

fractional entries5 (if |supp(x)| ≤ 100 log(n),
just set xp := 1 for all patterns in the support).

(5) FOR each size class
, add O(2�) items of i� to

the waste if si� ≥ ε and O(
√

δ ln(2δ) · 2�) items
if si� < ε.

(6) Resubstitute glued items in x and replace waste pat-
terns via a greedy assignment to obtain y.

Let x(t) be the value of x at the end of the tth while
loop. Let x(t,2) be the solution x at the end of step (2) in
the tth iteration. We define x(t,3), x(t,4), x(t,5) analogously.
Furthermore, x(t,1) be x at the beginning of the while loop.

First of all, observe that x(t,2) satisfies x(t,2) � x(t,1) and
x
(t,2)
p ∈ γZ≥0 for all p, by the properties of Lemma 10. The

vector x(t,3) emerges from x(t,2) by grouping and gluing
and according to Lemma 8, it satisfies Aip ≤ δ ·Aix

(t,3) ≤
δ ·∑p̃∈supp(x(t,3)) p̃i for all p ∈ supp(x(t,3)) and all i with
si ≤ ε ≤ 1

2γβδ. Finally, the conditions of Theorem 9 are
satisfied by parameters δ and ε, thus the extra items bought
in step (5) are enough to have x(t,5) � x(t,3). Note that
none of the steps (2),(3),(5) increases the number of regular
patterns in the support, but |{p | x(t,4)

p /∈ {0, 1}}| ≤ 1
2 |{p |

x
(t,3)
p /∈ {0, 1}}|, thus x(logn) is indeed integral.
Hence, by Corollary 7 we know that y will be a feasible

solution to the original bin packing instance of cost at most
(1, 2s)Tx(logn) + 1. It remains to account for the increase
in the objective function. Each application of (2) increases
the objective function by at most O(γ log2 n). (3) costs us
O(β log2 n) and (4) + (5) increases the objective function

by O(log 1
ε +

√
δ ln(2δ) log n). In total over log n iterations,

1
T y − 1

Tx ≤ O(γ log3 n) +O(β log3 n) +

O(log n · log 1
ε) +O(

√
δ ln(2δ) log

2 n)

≤ O(log n · log log n)
5To be precise, we apply Theorem 9 for the submatrix of A correspond-

ing to the columns in supp(x).

plugging in the choices for δ, β, γ, ε.
Together with the remark from Lemma 3, the approxi-

mation guarantee for our main result, Theorem 2 follows.
Let us conclude with a quick estimate on the running time.
Given a Bin Packing instance s1, . . . , sn (with one copy
of each item, so n is the total number of items), one can
compute a fractional solution x of cost 1Tx ≤ (1+ε)OPTf

in time O((n
2

ε4 + 1
ε6) log

5(nε)) with |supp(x)| ≤ n (see
Theorem 5.11 in [PST95]). We set ε := 1

n and obtain an
x with 1

Tx ≤ OPTf +1 in time O(n6 log5(n)). It suffices
to run the Constructive Partial Coloring Lemma with error
parameter δ := 1

n , which takes time O(ñ
3

δ2 log ñm̃
δ) = Õ(n5)

where ñ ≤ n · polylog(n) is the number of vectors and
m̃ ≤ n is the dimension of x. In other words, the running
time is dominated by the computation of the fractional solu-
tion. Finally we obtain a vector y with yp ∈ [0, 1

n]∪[1− 1
n , 1]

and |supp(y)| ≤ n. We move those entries with yp ≤ 1
n

to the waste, increasing the objective function by at most
n · 1

n = 1 and we roundup those entries with yp ≥ 1− 1
n .

VII. REMARKS

An interesting observation concerning the application of
the Constructive Partial Coloring Lemma is the following:
recall that we gave vectors vI for groups and vectors vG
for all subgroups as input to Lemma 1. But the solution
y returned by that lemma is the end point of a Brownian
motion and satisfies Pr[|v(x − y)| ≤ λ‖v‖2] ≤ e−Ω(λ2) for
every λ ≥ 0 and v ∈ Rm regardless whether v is known to
the algorithm or not. If we choose λG := log n (and δ, γ, ε
slightly more generous), then the guarantee |vG(x − y)| ≤
λG‖vG‖ is satisfied for all subgroups with high probability
anyway and there is no need to include them in the input.

Moreover, we are not even using the full power of the
constructive partial coloring lemma. Suppose we had only a
weaker Lemma 1 which needs the stronger assumption that
for example

∑
i(1+λi)

−10 ≤ m
16 instead of the exponential

decay in λ. We would still obtain the same asymptotic
bound of O(log n · log log n), thus a simple fine tuning of
parameters is not going to give any improvement.

The obvious question is, how tight is our analysis? In fact,
it is plausible that a slightly changed algorithm with a more
careful analysis can reduce the gap from O(log n · log log n)
to O(log n). On the other hand, consider the seemingly
simple 3-Partition case in which all n items have size
1
4 < si < 1

2 . Both, the approaches of Karmarkar and
Karp [KK82] and ours provide a O(log n) upper bound
on the integrality gap. The construction of Newman and
Nikolov [NNN12] of 3 badly colorable permutations can be
used to define a 3-Partition instance with an optimum frac-
tional solution x ∈ {0, 1

2}m such that any integral solution
y ∈ Zm

≥0 with supp(y) ⊆ supp(x) and 1
T y−1Tx ≤ o(log n)

satisfies maxi∈[n]{
∑

j≤i(Ajx − Ajy)} ≥ Ω(log n). This
suggests that either the log n bound is best possible for 3-

28

Partition or some fundamentally new ideas are needed to
make progress.

Acknowledgements: The author is grateful to Michel X.
Goemans for helpful discussions and support and to Nikhil
Bansal for reading a preliminary version.

REFERENCES

[AHK12] S. Arora, E. Hazan, and S. Kale. The multiplicative
weights update method: a meta-algorithm and applica-
tions. Theory of Computing, 8(6):121–164, 2012.

[Ban98] W. Banaszczyk. Balancing vectors and Gaussian
measures of n-dimensional convex bodies. Random
Structures Algorithms, 12(4):351–360, 1998.

[Ban10] N. Bansal. Constructive algorithms for discrepancy
minimization. In FOCS, pages 3–10, 2010.

[Bec81] J. Beck. Roth’s estimate of the discrepancy of integer
sequences is nearly sharp. Combinatorica, 1(4):319–
325, 1981.

[Bec88] J. Beck. Irregularities of distribution ii. Proc. London
Math. Soc. (3), 56:1?50, 1988.

[BF81] J. Beck and T. Fiala. “Integer-making” theorems.
Discrete Appl. Math., 3(1):1–8, 1981.

[CGJ84] E. G. Coffman, Jr., M. R. Garey, and D. S. John-
son. Approximation algorithms for bin-packing—an
updated survey. In Algorithm design for computer
system design, volume 284 of CISM Courses and
Lectures, pages 49–106. Springer, Vienna, 1984.

[Eis57] K. Eisemann. The trim problem. Management Science,
3(3):279–284, 1957.

[EPR11] F. Eisenbrand, D. Pálvölgyi, and T. Rothvoß. Bin
packing via discrepancy of permutations. In SODA,
pages 476–481, 2011.

[EPR13] F. Eisenbrand, D. Pálvölgyi, and T. Rothvoß. Bin
packing via discrepancy of permutations. In Accepted
to Transactions on Algorithms (Special Issue for SODA
2011), 2013.

[FdlVL81] W. Fernandez de la Vega and G. S. Lueker. Bin
packing can be solved within 1 + ε in linear time.
Combinatorica, 1(4):349–355, 1981.

[GG61] P. C. Gilmore and R. E. Gomory. A linear program-
ming approach to the cutting-stock problem. Opera-
tions Research, 9:849–859, 1961.

[GJ79] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, New
York, New York, 1979.

[GLS81] M. Grötschel, L. Lovász, and A. Schrijver. The
ellipsoid method and its consequences in combinatorial
optimization. Combinatorica, 1(2):169–197, 1981.

[JDU+74] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey,
and R. L. Graham. Worst-case performance bounds
for simple one-dimensional packing algorithms. SIAM
Journal on Computing, 3(4):299–325, 1974.

[Joh73] D. S. Johnson. Near-optimal bin packing algorithms.
PhD thesis, MIT, Cambridge, MA, 1973.

[KK82] N. Karmarkar and R. M. Karp. An efficient approx-
imation scheme for the one-dimensional bin-packing
problem. In 23rd annual symposium on foundations of
computer science (Chicago, Ill., 1982), pages 312–320.
IEEE, New York, 1982.

[LM12] S. Lovett and R. Meka. Constructive discrepancy
minimization by walking on the edges. In FOCS, pages
61–67, 2012.

[LSV86] L. Lovász, J. Spencer, and K. Vesztergombi. Dis-
crepancy of set-systems and matrices. European J.
Combin., 7(2):151–160, 1986.

[Mat99] J. Matoušek. Geometric discrepancy, volume 18 of Al-
gorithms and Combinatorics. Springer-Verlag, Berlin,
1999. An illustrated guide.

[NNN12] A. Newman, O. Neiman, and A. Nikolov. Beck’s three
permutations conjecture: A counterexample and some
consequences. In FOCS, pages 253–262, 2012.

[PST95] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast
approximation algorithms for fractional packing and
covering problems. Math. Oper. Res., 20(2):257–301,
1995.

[Rot12] T. Rothvoß. The entropy rounding method in approx-
imation algorithms. In SODA, pages 356–372, 2012.

[Spe85] J. Spencer. Six standard deviations suffice. Trans-
actions of the American Mathematical Society,
289(2):679–706, 1985.

[Sri97] A. Srinivasan. Improving the discrepancy bound for
sparse matrices: Better approximations for sparse lat-
tice approximation problems. In SODA’97, pages 692–
701. SIAM, 1997.

[SS09] A. Sebő and G. Shmonin. Proof of the modified integer
round-up conjecture for bin packing in dimension 7.
Personal communication, 2009.

[SST] J. H. Spencer, A. Srinivasan, and P. Tetali. The discrep-
ancy of permutation families. Unpublished manuscript.

[ST97] G. Scheithauer and J. Terno. Theoretical investigations
on the modified integer round-up property for the
one-dimensional cutting stock problem. Operations
Research Letters, 20(2):93 – 100, 1997.

[WS11] D. P. Williamson and D. B. Shmoys. The Design
of Approximation Algorithms. Cambridge University
Press, 2011.

29

