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Abstract—The weightedk-server problem is a generalization
of the k-server problem in which the cost of moving a server
of weight 3; through a distance d is 3; - d. The weighted
server problem on uniform spaces models caching where cache
have different write costs. We prove tight bounds on the
performance of randomized memoryless algorithms for this
problem on uniform metric spaces. We prove that there is an
ay, competitive memoryless algorithm for this problem, where
ar = a2_, +3a,_1 + 1, a; = 1. On the other hand, we
also prove a lower bound result, which is a strong evidence to
our conjecture, that no randomized memoryless algorithm ca
have competitive ratio better than «,.

To prove the upper bound of o, we develop a framework
to bound from above the competitive ratio of any randomized
memoryless algorithm for this problem. The key technical
contribution is a method for working with potential functio ns
defined implicitly as the solution of a linear system. The resit
is robust in the sense that a small change in the probabilitie
used by the algorithm results in a small change in the upper
bound on the competitive ratio. The above result has two
important implications. Firstly this yields an «aj-competitive
memoryless algorithm for the weighted k-server problem on
uniform spaces. This is the first competitive algorithm fork > 2
which is memoryless. Fork = 2, our algorithm agrees with the
one given by Chrobak and Sgall [1]. Secondly, this helps us
prove that the Harmonic algorithm, which chooses probabilties
in inverse proportion to weights, has a competitive ratio ofkay.

The only known competitive algorithm for every k before this
work is a carefully crafted deterministic algorithm due to Fiat
and Ricklin [2]. Their algorithm uses memory crucially and

their bound on competitive ratio more than 24" our algorithm
is not only memoryless, but also has a considerably improved
competitive ratio of ay < 1.6% . Further, the derandomization
technique by Ben-David et al. [3] implies that there exists a
deterministic algorithm for this problem with competitive ratio

2 ok
ai < 2.56%.
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An adversary presents a sequence of requests, each of
which is a point in the metric space. To serve the current
request, the algorithm has to move one of the servers to
the requested point, incurring a cost equal to the distance
traveled by the server. In the online model, an algorithm
has to serve the current request before the next request is
revealed. A (randomized) online algorithm is said tode
competitiveagainst an adversary if it produces a solution,
whose (expected) cost is at masttimes the cost of the
solution produced by the adversary.

A generalization of thek-server problem proposed by
Fiat and Ricklin [2], called the weighteklserver problem,
associates a weight with each server. The cost incurred in
moving a server is equal to the product of its weight and the
distance traveled. Introducing weights adds a new dimensio
to thek-server problem and presents new challenges. While
a (2k — 1)-competitive algorithm is known for the-server
problem [6], the only competitive algorithms known for
the weightedk-server problem are for uniform spaces [2],
and for k = 2 [7]. On uniform spaces, this problem
models caching with different types of caches, each having
a different write cost. Fiat and Ricklin [2] point out the
practical significance of such caches, in order to optimize
both the overall write time as well as the chip area occupied
by the cache.

A randomized algorithm for the weightddserver prob-
lem is said to benemorylessif its behaviour on getting a
request is completely determined by the pairwise distances
between thek points occupied by its servers and the
requested point. In other words, a memoryless algorithm
for the weightedk-server problem with a given set of
weights is specified by a function, which maps tﬁ“@l)
distances to a probability distribution on the servers. In
particular, on uniform metric spaces a memoryless algorith
is completely specified by a probability distributignon

The k-server problem of Manasse et al. [4] is, arguably,in€ servers, where; is the probability by which the™
the most extensively studied problem in the online set-S€rveris shlfte_d to the requested point, if that pomt |s.n0t
ting. The large body of research around this problem is{:\lready occupied by some server. The Harmonic aIgorlthm
summarized in the beautiful survey by Koutsoupias [5]. IniS @ memoryless algorithm, which moves the servers with
this problem,k servers occupy points in a metric Space_probab|I|t|es inversely proportional to their weights.
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For online problems modeling certain practical prob-
lems like caching, it is imperative that decisions are taken
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instantaneously. Ideally, we would like the algorithm to argument.
be memoryless. For thé-server problem, the Harmonic = We conjecture that the ratiq; is the best possible for a
algorithm is known to b& (k2" )-competitive on any metric memoryless algorithm against an online adaptive adversary
space [8], [9]. Additionally, Coppersmith et al. [10] prave Towards proving this conjecture, we prove that the upper
that onresistivemetric spaces there existskacompetitive  bound ofa(3, p) is tight. Specifically, we prove that if the
memoryless algorithm, in which the probabilities of moving separationmin; 3;11/0; between the weights is sufficiently
the servers are determined by thesistive inverseof the  large, then there exists an online adaptive adversary which
metric space. It hence came as a surprise when Chrobd&rces the algorithm using the probability distributipnto
and Sgall [1] proved that no memoryless algorithm with aperform almosta(3, p) times worse than itself. (Theorem
finite competitive ratio exists, even for the weightederver 3 in Section IV.) It is interesting to note that we leverage
problem on the line metric (which is resistive). Among otherthe machinery to prove the upper bound, to prove this lower
nice results in the same paper, Chrobak and Sgall [1] give thbound; we use the same potentials in a different avatar. We
only known competitive memoryless algorithm for uniform believe that with a suitable choice of weight®f arbitrarily
spaces: &-competitive algorithm for2 servers, and they large separation(s, p) can be forced to be arbitrarily close
also prove that this is optimally competitive. We generliz to «y.
this result and prove the following theorem.
Theorem 1:For everyk, there exists anv,-competitive IIl. PRELIMINARIES AND TECHNIQUES
memoryless algorithm for the weightéeserver problem on Let 3 = (B1,...,0x) be the weights of the servers,
uniform metric spaces against an online adaptive adversarify an instance of the weighteserver problem. Consider
wherea; = 1 anday, = 0‘%—1 +3ap_1+1fork>1. a memoryless algorithm that, in response to a request on
In order to establish Theorem 1, we prove a more generad point not already occupied by a server, moves the
result. Given server weight8 = (31,...,3), and a prob-  server with probability;. We derive an upper bound on the
ability distributionp on the servers used by an algorithm, we competitive ratio as a function ¢f andp = (p1,..., pk).
derive an upper bound(3, p) on the competitive ratio, as a Note that whenever a point not occupied by the algorithm’s
function of 3 andp. Given 3, we use this result to identify Servers is reguested, the expected cost incurred by the
a probability distributiorp such that the competitive ratio is algorithm is> ., p;5;.
at mostay. As a by-product of this more general result, we

: . ) " A. Potential functions
also see that the Harmonic algorithm(isa, )-competitive

for any 3 against an online adaptive adversary. Foe 2 Ip this paper we focus on competitive ratios against.an
we getas = 5 and our result matches that of Chrobak andonline adaptive adversary [3], who observes the behaviour
Sgall [1]. of the algorithm on the previous requests, generates thie nex

The main difficulty in analyzing algorithms for this prob- request, and immediately serves it. The traditional metbod
lem stems from the inability to describe suitable potential@n@lyze an online algorithm is to associatpaientialwith
functions explicitly. Analogous to [11], we formulate a set €achstate determined by the positions of the adversary’s
of linear inequalities that the potentials must satisfyeveh ~and algorithm’s servers, such that
the co-efficients involved in the inequalities depend on the 1) When the adversary moves, the increase in the poten-

probabilities and the weights. We then show that the point, tial is at mosta times the cost incurred by it.

at which a certain subset of the linear inequalities is tight 2) When the algorithm moves, the decrease in the poten-
feasible. Our work indicates that the potentials given by th tial is at least as much as the cost incurred by the
point are complicated rational functions of the probaietit algorithm.

and weights, and describing them seems hopeless, even fafe think of each request being first served by the adversary
k = 4. Our key technical contribution is a framework and then by the algorithm. A standard telescoping argument
to work with potential functions defined implicitly, as the implies that the competitive ratio is then bounded from abov
solution of a linear system. by a.

Theorem 1 also has the following consequence. Together In our case, we define the states as follows. At any
with the derandomization result by Ben-David et al. [3], point of time, leta; (resp.s;) denote the position of the
it implies the existence of a deterministic algorithm for adversary’s (resp. algorithm’s)" server. We identify our
the weightedk-server problem on uniform spaces, with state with the setS = {i | a; = s;} C [k]. We denote
competitive ration?. It can be easily proved that, < 1.6>° by ¢ the potential we associate with stae We assume,
and thus, we have an upper bound20562", significantly  without loss of generality, that the adversary never retgues
better than the earlier bound on the deterministic conmipetit a point occupied by one of algorithm’s servers, and that the
ratio by Fiat and Ricklin [2], which was more thad". The adversary moves its servers only to serve requests. Suppose
best lower bound known ik + 1)!/2, also due to [2], and that at some point of time the stateds and the adversary
this can be improved tdk + 1)! — 1, by a more careful moves thei" server, incurring a cost;. If i ¢ S the state
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does not change, while ife S the state changes 19\ {i}.
In order to proven-competitiveness, it is sufficient to have
potentials satisfying

bs\piy —¢s < Pi-aforeverySandie S (1)

Now suppose that the state $sand it is the algorithm'’s
turn to serve the request. The request must.béor some
1 ¢ S. If the algorithm moves itg" server, the new state is
S U{i}. This happens with probability;, and the decrease
in potential isps — ¢su(4y- Else, if the algorithm moves its
j™ server for somej € S, the new state isS' \ {j}. This
happens with probability;, and the decrease in potential is
bs —ds\ (53~ Finally, if the algorithm moves itg" server for
somej ¢ S andj # i, there is no change if, and hence

the potential. We want the expected decrease in potential to
be at least the expected cost incurred by the algorithm. Thus

we need,

pi(ds — dsugiy) — ij(¢5\{j} — s
jeSs

k
) > Zpgﬂj 2)
j=1

for every S andi ¢ S.

B. A Linear Program and a choice of an Extreme Point

Among the set of potentialss for eachS C [k] satisfying
(2), we wish to pick one to minimize. The conditions (2)
define a polyhedron iiR2". Note that the right hand side of
each constraint in (2) is constant. We assume thatthe
potential of the empty set, 8.

To simplify calculations and to facilitate an inductive
approach, with foresight, we introduce a change of var@able
Let us replace the variable§s)sciy by the variables
(¢s)sciy) such thatgs —(Zf:lpjﬁj)gas. With this
substitution, we have the following optimization problem.

Minimize « subject to

For everyS andi € S:

k
PS — PS\{i
> piB T\{} <a 3)
j=1 !
For everyS andi ¢ S
pi (osuqy —@s) = Y _pi (ps —es\yy) =1 (4)
JjES
g =0 (5)

Note that the objective value of this problem does not chang
when all thep,'s are scaled by a positive constant, and
the feasible space gets merely scaled by the inverse of th

constant. Henceforward, for the convenience of discussion

we will relax the conditionZ;?:lpj = 1. We will assume
thatpy, ..., pr are some numbers chosen by the algorithm
as functions of3, .. ., Bk, and that the algorithm moves the
i™ server with probabilitwi/(zg?zlpj).

Our task is to establish the existence of one feasible
point of the linear program given by (3), (4), (5) with the
required bound on the competitive ratio. Recall that the
linear programming theory says that the optimum must occur
at an extreme point. We guess a subseRvflinearly in-
dependent constraints among (4) which will be satisfied with
equality. This forms the implicit description of the potiafg.
Assume without loss of generality, that > --- > py. Let
vs = ps(p) for all S, be the solution of the following linear
system of equations.

pi (psugy —#s) — Y _pj (ps —es\yy) =1 (6)
jes
for every S # [k] andi: smallest integer not i, and
¢p =0 )

and let a(p) (Z?:l pjﬂj) maxg ;cg
need to prove that the poirftos(p))s is feasible, that is,

it satisfies all the remaining constraints in (4). We will the
prove an upper bound on the value of the objective function
at this point.

C. Checking Feasibility: The Gauss-Seidel Trick

The straightforward way to check feasibility is to find
explicitly what eachpg(+) is, substitute, and check whether
the constraints (4) are satisfied for everyHowever, these
functions tend to be more and more complicated gsows,
and it is hopeless to find the closed form expressions, even
when k = 4. We therefore resort to the following indirect
way.

Suppose we want to prove that the solutische R™ of
the systemAz = b satisfiesc' z* < d. The Gauss-Seidel
iterative procedure in numerical computation to comptite
is as follows. WriteA as L, + U where L, consists of the
diagonal and the lower triangular part 4f andU consists
of the upper triangular part. Choose an initial paifit and
for i going from1 to co calculater’ = L;1(b—Uz'~1). In
other words, in every iteration th& coordinate is computed
using thej™ equality in the systemdz = b, and the latest
values of other coordinates. The coordinates are computed
in a fixed order in all iterations. Under certain sufficiency
conditions onA (which imply that L* is invertible), the
sequencéx?) converges tar*.

Our technique to prove'z* < d is as follows. With
suitable choice of:°, we prove thate"2° < d, and that
for all 4, ¢"2'~! < d implies ¢"2* < d. This proves that
the entire sequencger’) satisfies the constraint’z < d.
Eurther, since the constraint defines a closed subs&t*of

rt1e limit pointz* also satisfies the constraint. We will call

is trick the Gauss-Seidel trick of feasibility checking.

Two sufficient conditions for the Gauss-Seidel iterations
to converge are that the system be strictly diagonally dom-
inated, or irreducibly diagonally dominatédn our case the

PS—Ps\{i} We
Bi '

http://en.wikipedia.org/wiki/Gauss-Seidehethod



system given by (6) and (7) is diagonally dominated, butygs, for eachS C [k] containingk, is k as promised. Note

it is neither strictly diagonally dominated, nor irredugib

thatlg\{k} (p) = fs(p). Further, fori € S, i < k we have

diagonally dominated. Hence the Gauss-Seidel trick does no

apply directly. To deal with this and other minor technical

issues we will defineps inductively, using certain other
functions fs of the probabilities. For a fixed probability
distribution, these functiongs will be the solutions of a

strictly diagonally dominated linear system. We will use
the Gauss-Seidel trick to prove certain properties of these

functions, which imply the conditions (4).

M.
A. Defining the Potentials

We now formally define the functiops : (R-o)! — R,
for each finite subset C N, with arity ¢t equal to the
largest element present $. Throughout this paper, if is
a function of arityt andz is a (possibly infinite) sequence
of positive real numbers with more tharelements, we use
g(z) to denoteg applied to the first numbers inz, that
is, g(z1,...,x:). For this sectionp will be a sequence of
positive real numbers. For a finit¢ C N andi € S we
denote the quantity:(¢s(p) — ws iy (p) by 15" (p).
Throughout this paper we will imagine that givem,aps(p)
is the electric potential applied &, S and S \ {}} are
connected by the conductangg and therefords\{
the current flowing fromS to S\ {i}.2 Note that the arlty
of the functionI S\ is same as that apg, that is, equal
to the largest element ig.

We definepgs by induction on the largest element §
vp(p) = 0 for all p. Having definedpgs with arity at most
k — 1 for eachS C [k — 1], we define

Isp) ®)
Pk

for S C [k] such thatt € S, where the functiongs satisfy

(pi + Zm) fs(p) = pifsugiy(p) +

jES

PROOFSKETCH FOR THEUPPERBOUND

vs(p) = ps\(ry (P) +

> pifsun ()
jes\{k}
9

for S # [k] wherei < k is the smallest element not if;
and

k—1
e
fa@) =1+ > 1 )

j=1

(10)

Note that the system given by the equations (9) and (10) i
strictly diagonally dominant. This guarantees not onlyttha
the system has a unique solution, but also that the Gauss-
Seidel procedure converges to that solution when started

from any point.
By definition, fs(p) depends only orpy,...
fi(p) depends only oy, ..., pr_1.

, Pk, and
Hence the arity of

2Note that the potentials and currents satisfy the KircHaofbltage law
but not the current law.

pi (fsug(p) —

L) = pilesl %05\{}( )
- of{rin 22
s
= z(‘tOS\{k}() ©s\(ik1 (D))
+§—; (fs(p) — fs\iy ()
Thus,
5 0) =T8T 0) 4 (fsp) ~ Fsva @) (1)

Note that for any constant > 0, ps(cp) = ws(p)/c.
whereaslg\{i} (p) remains invariant under scaling pf for
any S andi € S.

We begin by proving that the potentials; (p) satisfy the
relations given by (6).

Lemma 1:For anyp, any finite S C N let i be the
smallest element not i§. Then

) =1+ pj(es(p) -

JES

pi (psugir(p) — ws(p) es\53(P))

or equivalently

ISU{ 4 (p) = =1+ ZIS\“}
JES
Proof: If S = [k — 1] for somek theni = k and we

havels, , (p) = fin(p) = 1+Z k 1\{7}( ). Here
the second equality is exactly equat|0n (1&)) We now induct
on the largest elemeritin S. The previous case covers the
base case of = (). Now for the inductive step we can
assumeS # [k] and hence < k. We have from equation

(11)

S\(k)

ISu{ }( )= Su{i }\{k}( p)+ Z]j_li (fSu{z‘} (p) — fs(P)) (12)

But i is also the smallest element not i\ {k}, and by

induction hypothesis we have

S\(k}

S\,
o ® =1+ > Igpy

jeS\{k}

Further, from equation (9) we have

> i (fsp) = fs\y(p)

JES\{k}
+prfs(p)

fs(p) =



Substituting in equation (12) and again using equation (11€. Bounding the Objective Function

we get We need to bound the quantity
s 9\H Zf 1pjﬁj) maxs,ics w from  above.
ISU{i}(p) = 1+ Z [ S\{k}
owards this end, the key property we need is that as a

JES\{k} set-functionypg(p) is supermodular.

+&(fs(p) _ fS\{j}(p)):| + fs(p) . I__emma 5.($upermodularity)$or every non-increasing
Pk finite S andi,j ¢ S, we have

= 1+ Z I () | + 13V (p) esufit(P) + @sugjy(p) < @sutigy(p) + ©s(p)
jes\{k} Thus, for any fixed, the function mapping a sétto ¢ 5 (p)
= 1+ ZIE\{J}(p) is supermodular, and we have
jes ,
’ Lom®) = pi(psu () — s (p))

|
IN

pi (psugy(P) —9s()) = T5u1 ()

Towards proving Theorem 1, our first goal is to prove thatwheneverS’ C S andi ¢ 5. . .

the potentials satisfy the constraints given by (4). We prov We defer the proof to the full version [12]. This lemma

this by first proving suitable inequalities involving; and enables us to prove that each current is bounded from_above

then using induction and (11). The inequalities involvifig by a constant independent pf These constants are defined
as follows.

that we need are given by the following claim. L - .
Lemma 2: Supposey is a non-increasing sequence. Then Definition 1: For each finiteS C N the constanCy is
: ' defined as followsCy = 1 and if S # () thenCs = 1 +

for any setS C [k] such thatk € S and fori,7/ ¢ S, . .
i<l i k, we Ea\[/e] © g 22.7-63 Cs\{j}u[j_l}.. Foieacrk € N, oy, is defined asy;, =
o +3ap_1+1; a9 = 0.
, _ _ < 1o , _ Consider the following order on finite subsetsNfwhich
pilfou (®) = Js(p)) < pi (fsugny () = f5(0) we call the co-lex order. We say that a setprecedesl’
Here we use the Gauss-Seidel trick, where we provdn this order if there exists € 7'\ S such thatS and T
that the claim is true after every iteration of the Gauss-2gree on membership of integers greater tha¥ote that the
Seidel procedure, when started from an appropriately choseconstant€’’s have been defined by induction sraccording
point. This claim enables us to prove the following currentto this order. We will also use this order to induct on the

B. Proving Feasibility

monotonicity property. finite subsets oN, in the subsequent proofs.

Lemma 3 (Monotonicity of currentsSuppose p is a The bounds on the currents are given by the following
non-increasing sequence. Then for any fifteC N and  lemma. o
fori,j ¢ S, i < j, we have Lemma 6 (Boundedness of current§))r every finite set

S C N and for all non-increasing, I SU{ }( p) < Cg, where
1 is the smallest element not ifh.
Proof: We prove by induction on the position &f in
We defer the proofs of the above two claims to the fullthe co-lex order. For the base case, witea: () andi = 1,
version [12]. The following feasibility lemma, which state we haveI{l}( p) = fuy(p) = 1 = G for all p, by equation
that the constraints (4) are satisfied, is immediate fron(10).

Igu{i} (p) < Iiu{j} (p)

Lemmas 1 and 3. For the inductive case, assume that the claim holds for all
Lemma 4 (Feasibility):Suppose is a non-increasing se- finite subsets oN which precede a set in the co-lex order.
guence. Then for any finit¢ C N andi ¢ S Let i be the smallest element not 51 Then by Lemma 4
Z we have
pi (sugiy(®) — 0s(p)) =1+ pj (s(p) — es\(;1 () S\{
jes Ko@) = 1+ 1Y)
JjES
or equivalent! S\{5}uls 1]
a Y < 14D I
j s
o) = 1+ Y 15 (p) <
jes < 1+) Cagpup-u
JjES

with equality if 7 is the smallest element not ifi. = Cg



where the first inequality is due to supermodularity (LemmaThis proves part (2). Finally, for any< j < k we have
5), and the second is by induction hypothesis, since the

smallest element not 5 \ {j} U [j — 1] is 5. Note that Congy = (14 2)Cl-n\(a)
S\ {j} U[j — 1] precedesS in the co-lex order, for all > (ap—1 + 2)Cl—1)\{5}
jeSs. = = O\

Our final ingredient in the proof of Theorem 1 is the . o . . :
following lemma relating the quantities from Definition 1. Where the inequality is by part (3) of induction hypothesis.

Lemma 7:The following hold for everyk € N. Further,
1) If k is the largest element if C N, then Cingy = (-1 +2)Cp-np\ (5
Cs = (ar-1 +2)Cs\ (1} et
. = Cp-y
2) ar =351 Cpgyy = Cy — 1. = Cupw

3) Cupngy > Oy > - > Cinge-13 > Cli ey _
Proof: We prove the claims by induction dn and then  This proves (3). [
(for part (1)) induction on the position af in the co-lex

order. Parts (2) and (3) are easily verified foe= 1, and so D. Proof of Theorem 1 .
is part (1) forS = {1}. We now show how the above lemmas imply Theorem 1.

Let & > 1. The first set in the co-lex order havirlg First, we prove an upper bound on the competitive ratio
as the largest element ifk:}. For § = {k} we have from @achieved by the probability distributiop = (pi,...,px)

Definition 1 and part (2) of induction hypothesis when the weights args, .. ., G _
Theorem 2:Consider an instance of the weightéd
Ciey =1+ Cl—1) =2+ a1 = (-1 +2)Cy server problem with weights, ..., 8, and a randomized

memoryless algorithm which moves thé server with a
probability p;, wherep; > --- > pi. Then the competitive
ratio of this algorithm against an adaptive online adversar

For an arbitraryS havingk as the largest element, we have
from Definition 1 and part (2) of induction hypothesis

Cs = 1+ ZCS\{J'}UU—H is at mosta(g3, p), where
e k TN ()
= 1 Osmusnt D Ooviupy a(B.9) = [ opsf | max L
JES\{k} P i€lk]  pifi
By part (2) of induction hypothesis Proof: Lemma 4 assures that the constraints (4) hold.

Cs\ (k1] = Clee) = a1 + 1 To satisfy the set of constraints given by (3), we choose

. . k
Furthermore, sincé \ {;} U[j — 1] precedesS in the co-lex - ps(p) — ps\{i} ()
order, we have “= z;pjﬁj sgrf}c%)fes Bs
iz
Cs\ui-11 = (k-1 +2)Co\j,kpup-1) Due to the supermodularity property from Lemma 5, it is
Thus, sufficient to take the maximum with = [k] and over alli.
Thus we have
Cs = 24 ap1+ (-1+2) Z Cs\{j,k}ulj—1] . ) )
jes\{k} _ A. PEI\P) — PR} \P
SR PPLLb
= (w1 +2) [1+ D Cs\muop-u " K\ (i)
jES\{k} = (S| max L, ()
= (-1 +2)Cq\[i = L eRl pifi
This proves part (1). In particular, we have n
With Theorem 2 in place we are ready to prove Theorem

Cry = (ag—1 +2)Cpp—q 1

Again by part (2) of induction hypothesis and Definition 1 Proof of Theorem 1: Let (31,..., 0 be the weights

_ of the servers, and assumtg < --- < (3 without loss
Ch = (azk_l +2) (a1 +1) of generality. The required memoryless algorithm behaves
= o T3 +2 as follows. Letp; = Cp\qiy/6: for all i. On receiving a

= ap+1 request which is not covered by any server, the algorithm



serves it with thei" server, with probabilityp; /P, where
P= Zle p;. By part (3) of Lemma 7 and our assumption:

on uniform metric spaces. Consider a randomized memory-
less algorithm which moves th& server with probability

B < -+ < B, we havep; > ... > pi. Thus we can apply p; whenever there is no server on the requested point.
Theorem 2 and hence, the competitive ratio of our algorithnThen the competitive ratio of this algorithm is at least

is at most
K T ()
N k] b
a(f,p) = p;f; | max ————
(6,) ; T ) iER piBs
K TR\
p
= Clins) | max 72 o
1 i€[k] [kI\{4}

J

< ag

where the last inequality follows from part (2) of Lemma
7, and Lemma 6. Note that since the currents are invaria
under scaling ofp, so is a(8,p), and henceP can be
ignored. ]

Corollary 1 (to Theorem 2)The Harmonic algorithm
for the weightedk-server problem on uniform spaces has
a competitive ratio ok« against an online adaptive adver-
sary.

Proof: The probabilities for the Harmonic algorithm
are given byp;, = (1/@-)/2521(1/@-) and therefore
L(pifi) = Y5-4(1/8;) for all i, and 37 p;f; =
k/ Z?Zl(l/ﬁj). By Theorem 2, the competitive ratio is
given by

a = ipﬂ‘ maxw =k- maxl[k]\{i}(p)
e T e pifi ie[k] M
k
s FemaxChvy < k- > Clngiy = ke
i=1
| |

IV. ALOWERBOUND RESULT

a(B,p)/(1 + sa(B,p)), wheres = maxi<i<r i/ Bit1-

Proof: Consider the uniform metric space witbk
points. We may assume that at any point of time, the
algorithm’s servers occupy distinct points. We will also
ensure that the adversary’s servers occhlistinct points.

As before, let at any point of time, let (resp.s;) denote
the position of the adversary’s (resp. algorithm'&)server.
The adversary always ensures that# s; for any: < j.

In order to maintain this invariant, whenever tlie server
of the algorithm is shifted tai; for j > i, the adversary

n?hifts its ™ moves to a point not occupied by any other

adversary’s as well as algorithm’s) server.

The adversary generates the request sequence as follows.
If there exists an such thata; # s;, the adversary finds
the smallest such and requests;. By the choice ofi, for
all j < ¢ we havea; = s; and hencey; # s;. Further the
invariant ensures that # s; for any;j > . We already have
a; # s;. Thus,a; is not occupied by any of the algorithm’s
servers.

On the other hand, ifi; = s; for all 4, the adversary
behaves as follows. Suppose= t achieves the maximum
in the expression foé(3,p). That is,

k
IM\“} (p)

k
Oé(ﬁ,p) j;pjﬁj 0.5,
The adversary requests a point not occupied by any server,
and shifts itst" server to that point.

The adversary pays only in the following two cases -
when it shifts itsi™ server out of a point because thé
server of the algorithm arrives at the same point, for some
j > i, and when it shifts its™ server because; = s;
for all <. We will denote the total cost incurred in the

We believe that it is not possib|e to improve the upperformer case byADV/ and the total cost in the latter case

bound of o, on the competitive ratio of for randomized
memoryless algorithms for the weightédserver problem

by ADV. Suppose the total cost incurred by the algorithm
is ALG. In the former case, the algorithm incurs a cost of

on uniform spaces. This conjecture is formally stated ag?; just before the adversary pay, where3; > ;/s.

follows.
Conjecture 1:For any ¢

613"'

> 0 there exist weights

Thus ALG > ADV’/s. For the latter case, we prove
ALG > a(8,p)ADV (up to an additive constant).

.3, and an adversarial strategy which forces any As before, at any point of time lef = {i [ a; = s;} C

randomized memoryless algorithm to perform at leastk], andS will denote the state of the system. We will again

(1 — €)ay, times worse than the adversary.

assign a potential to each state, but this time we will ensure

As a first step towards proving Conjecture 1, we prove thathe following.
Theorem 2 is essentially tight. For an algorithm which uses 1) When the adversary moves #$ server, the increase

probabilitiesp; wherep = (p1,...,pr) when the weights
are 3 = (B1,...,0), we prove a lower bound on the
competitive ratio, which goes arbitrarily close &g, p) as
the separation between the weights grows unbounded.
Theorem 3:Let 5; < --- < (% be the weights of the
servers in an instance of the weightéeserver problem

in potential isat leasta(3,p) - G:.

2) When the algorithm is moves a server, the expected
decrease in potential iat most the expected cost
incurred by the algorithm.

Note that when the adversary moves its servers to ensure
a; # s; for all 7 < j, the state remains the same. Thus,



the above two statements impMLG > a&(8,p)ADV Conjecture 2:For anyk and anys > 0 there existss =
(up to an additive constant). Interestingly, the potestial (31,...,08k) with 51 < --- < (i such that for allp =

that we assign to the states here are same as those that,...,p;) we have
we assigned in the proof of the upper bound. That is, &(8,p)
bs = —(Zf:l p;Bi)s(p). Note however, that we have not HTM > (1—¢)ay

made any assumption about whetheis a non-decreasing
sequence. wheres = maxi<;<r 5i/Bi+1-
Consider the situation when the adversary incurs a cost of

(¢, due to shifting of the™ server because; = s; for all i, ) N
that is, the state i§]. The state after the move i8] \ {¢} We have proved that there exists a competitive memory-
and the change in potential is less algorithm for the weightedserver problem on uniform

metric spaces. This is in contrast with the line metric, Wwhic

V. CONCLUDING REMARKS

k does not admit a competitive memoryless algorithm, even
PNty — Plk] = ijﬁj (P1x] (p) — @[k]\{t}(l?)) with 2 servers. The competitive ratio, that we establish,
j=1 is given byay = aj_; + 3a;_1 + 1. We can boundy, as
k

- i 5 IH\“} (») follows.

B J‘:lp7 ’ Pt ak+2= (g1 +2)* —ag_1 — 1 < (ag-1 +2)°

= a(B,p)- B Therefore

k—t —t k

Now consider the algorithm’s move, in response to a ap+2 < (ar+2)*  =[(a;+2)* 7

request given while the system is in stefleC [k]. Let ¢
be the smalle_st element _not 6’1 A.S discussed before, the 1.6, and hencey;, < 1.62k, as promised in the introduction.
next request isy;, and this point is not occupied by any

f the algorithm’ H the algorith fi We believe thaty;, is the best possible competitive ratio
ot Ine algorithm's Servers. Hence e aigorithm must INCUL, pieyaple by memoryless algorithms for the weighted

L . .
a COSt.ZJ':.l p;%; In expectation. The expected change N server problem on uniform metric spaces. This is implied
potential will be by Conjecture 2. Furthermore, we can show that Conjecture
Di (¢Su{i} _ ¢s) + ij (¢5\{j} _ ¢s) 2 is true if Lem_ma 6 is tight for certain c_urrents. Provings_thi
seems to require a deeper understanding of the behaviour of
. currents as functions of probability distribution.
_ a . _ _ The immediate increment to our results would perhaps be
;pﬁ] pi (Psu1y () = 95 () to determine whether there exists a competitive memoryless
algorithm for the weighted server problem on star metrics.
This problem translates to having a weight for the "
- ZP;‘ (s(p) = @513 (P) cache location and a cost with each page; the overall
jes cost of replacing page by paget’ at thei™ cache location
k being 5;(c; + c). We believe that it should be possible to
- ijﬁj prove an unbounded lower bound for this problem, on the
J=1 lines of the lower bound proof by [1] fo2 servers on the
where the last equality is by Lemma 1. Thus we havdine metric.
proved ALG > a(3,p)ADV (up to an additive constant). ~ We improve the upper bound on the deterministic compet-
Therefore, the competitive ratio is at least itive ratio by [2] for the weighted server problem on uniform
metrics. However, our bound is still doubly exponential,

for anyt < k. Fort = 4 one can verify thato, +2)2 ' <

JjeES

_ALG - <A’J + ALV/) ' whereas the lower bound is only exponential in the number
ADV + ADV” ALG ~ ALG of servers. It would be interesting to reduce this gap. The
1 -1 prime candidate for improving the upper bound is perhaps
<m + 5) the (generalized_) work functio_q algorithm, WhiCh has been

&(3,p) proved to be optlmally co_mpet|t|ve for the v_velghtéd;erver
= HT(ﬁ,p) problem on uniform metrics [1], and which is the best known

algorithm for several other problems [6], [13].
_ _ ~ n The introduction of different costs for replacements at
Now proving Conjecture 1 reduces to proving thatgifferent cache locations seems to make the caching problem

%&'Q)) can be forced to be arbitrarily close ..  notoriously hard. This is certified by the fact that attentpts
Formally this is stated as follows. develop algorithms, better than the one by Fiat and Ricklin



[2], have given negligible success even with= 3. For

(11]

k = 2, Sitters [7] has shown that the generalized work

function algorithm is competitive for the generalized sgrv

problem on arbitrary metrics, which subsumes the weighted
2-server problem. He has also expressed a possibility of thg 2

non-existence of a competitive algorithm, for> 2. All

this is in a striking contrast with the problem of weighted

caching, where the pages (points) have costs instead
cache locations (servers). For the weighted caching pro

lem, k-competitive deterministic and(log k)-competitive

J’_Ia]

randomized algorithms have been discovered [14], [15],
[16], [17], [18], [19], even when the pages have different[14]

sizes, matching the respective lower bounds.
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