
On Randomized Memoryless Algorithms for the Weightedk-server Problem

Ashish Chiplunkar∗

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Mumbai, India
ashishc@cse.iitb.ac.in

Sundar Vishwanathan
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
Mumbai, India

sundar@cse.iitb.ac.in

Abstract—The weightedk-server problem is a generalization
of the k-server problem in which the cost of moving a server
of weight βi through a distance d is βi · d. The weighted
server problem on uniform spaces models caching where caches
have different write costs. We prove tight bounds on the
performance of randomized memoryless algorithms for this
problem on uniform metric spaces. We prove that there is an
αk competitive memoryless algorithm for this problem, where
αk = α2

k−1 + 3αk−1 + 1; α1 = 1. On the other hand, we
also prove a lower bound result, which is a strong evidence to
our conjecture, that no randomized memoryless algorithm can
have competitive ratio better than αk.

To prove the upper bound of αk, we develop a framework
to bound from above the competitive ratio of any randomized
memoryless algorithm for this problem. The key technical
contribution is a method for working with potential functio ns
defined implicitly as the solution of a linear system. The result
is robust in the sense that a small change in the probabilities
used by the algorithm results in a small change in the upper
bound on the competitive ratio. The above result has two
important implications. Firstly this yields an αk-competitive
memoryless algorithm for the weightedk-server problem on
uniform spaces. This is the first competitive algorithm fork > 2
which is memoryless. Fork = 2, our algorithm agrees with the
one given by Chrobak and Sgall [1]. Secondly, this helps us
prove that the Harmonic algorithm, which chooses probabilities
in inverse proportion to weights, has a competitive ratio ofkαk.

The only known competitive algorithm for every k before this
work is a carefully crafted deterministic algorithm due to Fiat
and Ricklin [2]. Their algorithm uses memory crucially and
their bound on competitive ratio more than 24

k

. Our algorithm
is not only memoryless, but also has a considerably improved
competitive ratio of αk < 1.62

k

. Further, the derandomization
technique by Ben-David et al. [3] implies that there exists a
deterministic algorithm for this problem with competitive ratio
α2

k < 2.562
k

.

Keywords-Weighted k-server; Memoryless Randomized Al-
gorithms; Competitive Ratio

I. I NTRODUCTION

The k-server problem of Manasse et al. [4] is, arguably,
the most extensively studied problem in the online set-
ting. The large body of research around this problem is
summarized in the beautiful survey by Koutsoupias [5]. In
this problem,k servers occupy points in a metric space.

∗Supported by Microsoft Research India Travel Grant

An adversary presents a sequence of requests, each of
which is a point in the metric space. To serve the current
request, the algorithm has to move one of the servers to
the requested point, incurring a cost equal to the distance
traveled by the server. In the online model, an algorithm
has to serve the current request before the next request is
revealed. A (randomized) online algorithm is said to bec-
competitiveagainst an adversary if it produces a solution,
whose (expected) cost is at mostc times the cost of the
solution produced by the adversary.

A generalization of thek-server problem proposed by
Fiat and Ricklin [2], called the weightedk-server problem,
associates a weight with each server. The cost incurred in
moving a server is equal to the product of its weight and the
distance traveled. Introducing weights adds a new dimension
to thek-server problem and presents new challenges. While
a (2k − 1)-competitive algorithm is known for thek-server
problem [6], the only competitive algorithms known for
the weightedk-server problem are for uniform spaces [2],
and for k = 2 [7]. On uniform spaces, this problem
models caching with different types of caches, each having
a different write cost. Fiat and Ricklin [2] point out the
practical significance of such caches, in order to optimize
both the overall write time as well as the chip area occupied
by the cache.

A randomized algorithm for the weightedk-server prob-
lem is said to bememoryless, if its behaviour on getting a
request is completely determined by the pairwise distances
between thek points occupied by its servers and the
requested point. In other words, a memoryless algorithm
for the weightedk-server problem with a given set of
weights is specified by a function, which maps the

(

k+1
2

)

distances to a probability distribution on the servers. In
particular, on uniform metric spaces a memoryless algorithm
is completely specified by a probability distributionp on
the servers, wherepi is the probability by which theith

server is shifted to the requested point, if that point is not
already occupied by some server. The Harmonic algorithm
is a memoryless algorithm, which moves the servers with
probabilities inversely proportional to their weights.

For online problems modeling certain practical prob-
lems like caching, it is imperative that decisions are taken

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.10

11

instantaneously. Ideally, we would like the algorithm to
be memoryless. For thek-server problem, the Harmonic
algorithm is known to beO(k2k)-competitive on any metric
space [8], [9]. Additionally, Coppersmith et al. [10] proved
that on resistivemetric spaces there exists ak-competitive
memoryless algorithm, in which the probabilities of moving
the servers are determined by theresistive inverseof the
metric space. It hence came as a surprise when Chrobak
and Sgall [1] proved that no memoryless algorithm with a
finite competitive ratio exists, even for the weighted2-server
problem on the line metric (which is resistive). Among other
nice results in the same paper, Chrobak and Sgall [1] give the
only known competitive memoryless algorithm for uniform
spaces: a5-competitive algorithm for2 servers, and they
also prove that this is optimally competitive. We generalize
this result and prove the following theorem.

Theorem 1:For everyk, there exists anαk-competitive
memoryless algorithm for the weightedk-server problem on
uniform metric spaces against an online adaptive adversary,
whereα1 = 1 andαk = α2

k−1 + 3αk−1 + 1 for k > 1.
In order to establish Theorem 1, we prove a more general

result. Given server weightsβ = (β1, . . . , βk), and a prob-
ability distributionp on the servers used by an algorithm, we
derive an upper bound̃α(β, p) on the competitive ratio, as a
function of β andp. Givenβ, we use this result to identify
a probability distributionp such that the competitive ratio is
at mostαk. As a by-product of this more general result, we
also see that the Harmonic algorithm is(kαk)-competitive
for any β against an online adaptive adversary. Fork = 2
we getα2 = 5 and our result matches that of Chrobak and
Sgall [1].

The main difficulty in analyzing algorithms for this prob-
lem stems from the inability to describe suitable potential
functions explicitly. Analogous to [11], we formulate a set
of linear inequalities that the potentials must satisfy, where
the co-efficients involved in the inequalities depend on the
probabilities and the weights. We then show that the point,
at which a certain subset of the linear inequalities is tight, is
feasible. Our work indicates that the potentials given by this
point are complicated rational functions of the probabilities
and weights, and describing them seems hopeless, even for
k = 4. Our key technical contribution is a framework
to work with potential functions defined implicitly, as the
solution of a linear system.

Theorem 1 also has the following consequence. Together
with the derandomization result by Ben-David et al. [3],
it implies the existence of a deterministic algorithm for
the weightedk-server problem on uniform spaces, with
competitive ratioα2

k. It can be easily proved thatαk < 1.62k

and thus, we have an upper bound of2.562k

, significantly
better than the earlier bound on the deterministic competitive
ratio by Fiat and Ricklin [2], which was more than24k

. The
best lower bound known is(k + 1)!/2, also due to [2], and
this can be improved to(k + 1)! − 1, by a more careful

argument.
We conjecture that the ratioαk is the best possible for a

memoryless algorithm against an online adaptive adversary.
Towards proving this conjecture, we prove that the upper
bound ofα̃(β, p) is tight. Specifically, we prove that if the
separationmini βi+1/βi between the weights is sufficiently
large, then there exists an online adaptive adversary which
forces the algorithm using the probability distributionp, to
perform almostα̃(β, p) times worse than itself. (Theorem
3 in Section IV.) It is interesting to note that we leverage
the machinery to prove the upper bound, to prove this lower
bound; we use the same potentials in a different avatar. We
believe that with a suitable choice of weightsβ of arbitrarily
large separatioñα(β, p) can be forced to be arbitrarily close
to αk.

II. PRELIMINARIES AND TECHNIQUES

Let β = (β1, . . . , βk) be the weights of the servers,
in an instance of the weightedk-server problem. Consider
a memoryless algorithm that, in response to a request on
a point not already occupied by a server, moves theith

server with probabilitypi. We derive an upper bound on the
competitive ratio as a function ofβ and p = (p1, . . . , pk).
Note that whenever a point not occupied by the algorithm’s
servers is requested, the expected cost incurred by the
algorithm is

∑k

j=1 pjβj .

A. Potential functions

In this paper we focus on competitive ratios against an
online adaptive adversary [3], who observes the behaviour
of the algorithm on the previous requests, generates the next
request, and immediately serves it. The traditional methodto
analyze an online algorithm is to associate apotentialwith
eachstate, determined by the positions of the adversary’s
and algorithm’s servers, such that

1) When the adversary moves, the increase in the poten-
tial is at mostα times the cost incurred by it.

2) When the algorithm moves, the decrease in the poten-
tial is at least as much as the cost incurred by the
algorithm.

We think of each request being first served by the adversary
and then by the algorithm. A standard telescoping argument
implies that the competitive ratio is then bounded from above
by α.

In our case, we define the states as follows. At any
point of time, letai (resp. si) denote the position of the
adversary’s (resp. algorithm’s)ith server. We identify our
state with the setS = {i | ai = si} ⊆ [k]. We denote
by φS the potential we associate with stateS. We assume,
without loss of generality, that the adversary never requests
a point occupied by one of algorithm’s servers, and that the
adversary moves its servers only to serve requests. Suppose
that at some point of time the state isS, and the adversary
moves theith server, incurring a costβi. If i /∈ S the state

12

does not change, while ifi ∈ S the state changes toS \{i}.
In order to proveα-competitiveness, it is sufficient to have
potentials satisfying

φS\{i} − φS ≤ βi · α for everyS and i ∈ S (1)

Now suppose that the state isS and it is the algorithm’s
turn to serve the request. The request must beai for some
i /∈ S. If the algorithm moves itsith server, the new state is
S ∪ {i}. This happens with probabilitypi, and the decrease
in potential isφS −φS∪{i}. Else, if the algorithm moves its
j th server for somej ∈ S, the new state isS \ {j}. This
happens with probabilitypj , and the decrease in potential is
φS−φS\{j}. Finally, if the algorithm moves itsj th server for
somej /∈ S and j 6= i, there is no change inS, and hence
the potential. We want the expected decrease in potential to
be at least the expected cost incurred by the algorithm. Thus
we need,

pi(φS − φS∪{i}) −
∑

j∈S

pj(φS\{j} − φS) ≥
k

∑

j=1

pjβj (2)

for everyS and i /∈ S.

B. A Linear Program and a choice of an Extreme Point

Among the set of potentialsφS for eachS ⊆ [k] satisfying
(2), we wish to pick one to minimizeα. The conditions (2)
define a polyhedron inR2k

. Note that the right hand side of
each constraint in (2) is constant. We assume thatφ∅, the
potential of the empty set, is0.

To simplify calculations and to facilitate an inductive
approach, with foresight, we introduce a change of variables.
Let us replace the variables(φS)S⊆[k] by the variables
(ϕS)S⊆[k] such thatφS = −(

∑k
j=1 pjβj)ϕS . With this

substitution, we have the following optimization problem.

Minimize α subject to

For everyS and i ∈ S:




k
∑

j=1

pjβj





ϕS − ϕS\{i}

βi

≤ α (3)

For everyS and i /∈ S

pi

(

ϕS∪{i} − ϕS

)

−
∑

j∈S

pj

(

ϕS − ϕS\{j}

)

≥ 1 (4)

ϕ∅ = 0 (5)

Note that the objective value of this problem does not change
when all thepj ’s are scaled by a positive constant, and
the feasible space gets merely scaled by the inverse of that
constant. Henceforward, for the convenience of discussion,
we will relax the condition

∑k
j=1 pj = 1. We will assume

that p1, . . . , pk are some numbers chosen by the algorithm,
as functions ofβ1, . . . , βk, and that the algorithm moves the
ith server with probabilitypi/(

∑k

j=1 pj).

Our task is to establish the existence of one feasible
point of the linear program given by (3), (4), (5) with the
required bound on the competitive ratio. Recall that the
linear programming theory says that the optimum must occur
at an extreme point. We guess a subset of2k linearly in-
dependent constraints among (4) which will be satisfied with
equality. This forms the implicit description of the potentials.
Assume without loss of generality, thatp1 ≥ · · · ≥ pk. Let
ϕS = ϕS(p) for all S, be the solution of the following linear
system of equations.

pi

(

ϕS∪{i} − ϕS

)

−
∑

j∈S

pj

(

ϕS − ϕS\{j}

)

= 1 (6)

for everyS 6= [k] and i: smallest integer not inS, and

ϕ∅ = 0 (7)

and let α(p) =
(

∑k

j=1 pjβj

)

maxS,i∈S
ϕS−ϕS\{i}

βi
. We

need to prove that the point(ϕS(p))S is feasible, that is,
it satisfies all the remaining constraints in (4). We will then
prove an upper bound on the value of the objective function
at this point.

C. Checking Feasibility: The Gauss-Seidel Trick

The straightforward way to check feasibility is to find
explicitly what eachϕS(·) is, substitute, and check whether
the constraints (4) are satisfied for everyp. However, these
functions tend to be more and more complicated ask grows,
and it is hopeless to find the closed form expressions, even
when k = 4. We therefore resort to the following indirect
way.

Suppose we want to prove that the solutionx∗ ∈ Rn of
the systemAx = b satisfiesc⊤x∗ ≤ d. The Gauss-Seidel
iterative procedure in numerical computation to computex∗

is as follows. WriteA asL∗ + U whereL∗ consists of the
diagonal and the lower triangular part ofA, andU consists
of the upper triangular part. Choose an initial pointx0, and
for i going from1 to ∞ calculatexi = L−1

∗ (b−Uxi−1). In
other words, in every iteration thej th coordinate is computed
using thej th equality in the systemAx = b, and the latest
values of other coordinates. The coordinates are computed
in a fixed order in all iterations. Under certain sufficiency
conditions onA (which imply that L∗ is invertible), the
sequence(xi) converges tox∗.

Our technique to provec⊤x∗ ≤ d is as follows. With
suitable choice ofx0, we prove thatc⊤x0 ≤ d, and that
for all i, c⊤xi−1 ≤ d implies c⊤xi ≤ d. This proves that
the entire sequence(xi) satisfies the constraintc⊤x ≤ d.
Further, since the constraint defines a closed subset ofRn,
the limit point x∗ also satisfies the constraint. We will call
this trick the Gauss-Seidel trick of feasibility checking.

Two sufficient conditions for the Gauss-Seidel iterations
to converge are that the system be strictly diagonally dom-
inated, or irreducibly diagonally dominated.1 In our case the

1http://en.wikipedia.org/wiki/Gauss-Seidelmethod

13

system given by (6) and (7) is diagonally dominated, but
it is neither strictly diagonally dominated, nor irreducibly
diagonally dominated. Hence the Gauss-Seidel trick does not
apply directly. To deal with this and other minor technical
issues we will defineϕS inductively, using certain other
functions fS of the probabilities. For a fixed probability
distribution, these functionsfS will be the solutions of a
strictly diagonally dominated linear system. We will use
the Gauss-Seidel trick to prove certain properties of these
functions, which imply the conditions (4).

III. PROOF SKETCH FOR THEUPPERBOUND

A. Defining the Potentials

We now formally define the functionϕS : (R>0)
t −→ R,

for each finite subsetS ⊆ N, with arity t equal to the
largest element present inS. Throughout this paper, ifg is
a function of arityt andx is a (possibly infinite) sequence
of positive real numbers with more thant elements, we use
g(x) to denoteg applied to the firstt numbers inx, that
is, g(x1, . . . , xt). For this section,p will be a sequence of
positive real numbers. For a finiteS ⊆ N and i ∈ S we
denote the quantitypi(ϕS(p) − ϕS\{i}(p)) by I

S\{i}
S (p).

Throughout this paper we will imagine that given ap, ϕS(p)
is the electric potential applied atS, S and S \ {i} are
connected by the conductancepi, and thereforeIS\{i}

S (p) is
the current flowing fromS to S \ {i}.2 Note that the arity
of the functionI

S\{i}
S is same as that ofϕS , that is, equal

to the largest element inS.
We defineϕS by induction on the largest element inS.

ϕ∅(p) = 0 for all p. Having definedϕS with arity at most
k − 1 for eachS ⊆ [k − 1], we define

ϕS(p) = ϕS\{k}(p) +
fS(p)

pk

(8)

for S ⊆ [k] such thatk ∈ S, where the functionsfS satisfy


pi +
∑

j∈S

pj



 fS(p) = pifS∪{i}(p) +
∑

j∈S\{k}

pjfS\{j}(p)

(9)
for S 6= [k] wherei < k is the smallest element not inS;
and

f[k](p) = 1 +

k−1
∑

j=1

I
[k−1]\{j}
[k−1] (p) (10)

Note that the system given by the equations (9) and (10) is
strictly diagonally dominant. This guarantees not only that
the system has a unique solution, but also that the Gauss-
Seidel procedure converges to that solution when started
from any point.

By definition, fS(p) depends only onp1, . . . , pk, and
f[k](p) depends only onp1, . . . , pk−1. Hence the arity of

2Note that the potentials and currents satisfy the Kirchhoff’s voltage law
but not the current law.

ϕS , for eachS ⊆ [k] containingk, is k as promised. Note
that IS\{k}

S (p) = fS(p). Further, fori ∈ S, i < k we have

I
S\{i}
S (p) = pi

(

ϕS(p) − ϕS\{i}(p)
)

= pi

{(

ϕS\{k}(p) +
fS(p)

pk

)

−

(

ϕS\{i,k}(p) +
fS\{i}(p)

pk

)}

= pi

(

ϕS\{k}(p) − ϕS\{i,k}(p)
)

+
pi

pk

(

fS(p) − fS\{i}(p)
)

Thus,

I
S\{i}
S (p) = I

S\{i,k}
S\{k} (p) +

pi

pk

(

fS(p) − fS\{i}(p)
)

(11)

Note that for any constantc > 0, ϕS(cp) = ϕS(p)/c,
whereasIS\{i}

S (p) remains invariant under scaling ofp, for
any S and i ∈ S.

We begin by proving that the potentialsϕS(p) satisfy the
relations given by (6).

Lemma 1:For any p, any finite S ⊆ N let i be the
smallest element not inS. Then

pi

(

ϕS∪{i}(p) − ϕS(p)
)

= 1 +
∑

j∈S

pj

(

ϕS(p) − ϕS\{j}(p)
)

or equivalently

I
S
S∪{i}(p) = 1 +

∑

j∈S

I
S\{j}
S (p)

Proof: If S = [k − 1] for somek, then i = k and we
haveI

S
S∪{i}(p) = f[k](p) = 1 +

∑k−1
j=1 I

[k−1]\{j}
[k−1] (p). Here

the second equality is exactly equation (10). We now induct
on the largest elementk in S. The previous case covers the
base case ofS = ∅. Now for the inductive step we can
assumeS 6= [k] and hencei < k. We have from equation
(11)

I
S
S∪{i}(p) = I

S\{k}
S∪{i}\{k}(p)+

pi

pk

(

fS∪{i}(p) − fS(p)
)

(12)

But i is also the smallest element not inS \ {k}, and by
induction hypothesis we have

I
S\{k}
S∪{i}\{k}(p) = 1 +

∑

j∈S\{k}

I
S\{j,k}
S\{k} (p)

Further, from equation (9) we have

pi

(

fS∪{i}(p) − fS(p)
)

=
∑

j∈S\{k}

pj

(

fS(p) − fS\{j}(p)
)

+pkfS(p)

14

Substituting in equation (12) and again using equation (11)
we get

I
S
S∪{i}(p) = 1 +

∑

j∈S\{k}

[

I
S\{j,k}
S\{k} (p)

+
pj

pk

(fS(p) − fS\{j}(p))

]

+ fS(p)

= 1 +





∑

j∈S\{k}

I
S\{j}
S (p)



 + I
S\{k}
S (p)

= 1 +
∑

j∈S

I
S\{j}
S (p)

B. Proving Feasibility

Towards proving Theorem 1, our first goal is to prove that
the potentials satisfy the constraints given by (4). We prove
this by first proving suitable inequalities involvingfS and
then using induction and (11). The inequalities involvingfS

that we need are given by the following claim.
Lemma 2:Supposep is a non-increasing sequence. Then

for any setS ⊆ [k] such thatk ∈ S and for i, i′ /∈ S,
i < i′ < k, we have

pi

(

fS∪{i}(p) − fS(p)
)

≤ pi′
(

fS∪{i′}(p) − fS(p)
)

Here we use the Gauss-Seidel trick, where we prove
that the claim is true after every iteration of the Gauss-
Seidel procedure, when started from an appropriately chosen
point. This claim enables us to prove the following current
monotonicity property.

Lemma 3 (Monotonicity of currents):Suppose p is a
non-increasing sequence. Then for any finiteS ⊆ N and
for i, j /∈ S, i ≤ j, we have

I
S
S∪{i}(p) ≤ I

S
S∪{j}(p)

We defer the proofs of the above two claims to the full
version [12]. The following feasibility lemma, which states
that the constraints (4) are satisfied, is immediate from
Lemmas 1 and 3.

Lemma 4 (Feasibility):Supposep is a non-increasing se-
quence. Then for any finiteS ⊆ N and i /∈ S

pi

(

ϕS∪{i}(p) − ϕS(p)
)

≥ 1 +
∑

j∈S

pj

(

ϕS(p) − ϕS\{j}(p)
)

or equivalently

I
S
S∪{i}(p) ≥ 1 +

∑

j∈S

I
S\{j}
S (p)

with equality if i is the smallest element not inS.

C. Bounding the Objective Function

We need to bound the quantity
(

∑k

j=1 pjβj

)

maxS,i∈S
ϕS(p)−ϕS\{i}(p)

βi
from above.

Towards this end, the key property we need is that as a
set-functionϕS(p) is supermodular.

Lemma 5 (Supermodularity):For every non-increasingp,
finite S and i, j /∈ S, we have

ϕS∪{i}(p) + ϕS∪{j}(p) ≤ ϕS∪{i,j}(p) + ϕS(p)

Thus, for any fixedp, the function mapping a setS to ϕS(p)
is supermodular, and we have

I
S′

S′∪{i}(p) = pi

(

ϕS′∪{i}(p) − ϕS′(p)
)

≤

pi

(

ϕS∪{i}(p) − ϕS(p)
)

= I
S
S∪{i}(p)

wheneverS′ ⊆ S and i /∈ S.
We defer the proof to the full version [12]. This lemma

enables us to prove that each current is bounded from above
by a constant independent ofp. These constants are defined
as follows.

Definition 1: For each finiteS ⊆ N the constantCS is
defined as follows.C∅ = 1 and if S 6= ∅ then CS = 1 +
∑

j∈S CS\{j}∪[j−1]. For eachk ∈ N, αk is defined asαk =

α2
k−1 + 3αk−1 + 1; α0 = 0.
Consider the following order on finite subsets ofN, which

we call the co-lex order. We say that a setS precedesT
in this order if there existsi ∈ T \ S such thatS and T
agree on membership of integers greater thani. Note that the
constantsCS have been defined by induction onS according
to this order. We will also use this order to induct on the
finite subsets ofN, in the subsequent proofs.

The bounds on the currents are given by the following
lemma.

Lemma 6 (Boundedness of currents):For every finite set
S ⊆ N and for all non-increasingp, IS

S∪{i}(p) ≤ CS , where
i is the smallest element not inS.

Proof: We prove by induction on the position ofS in
the co-lex order. For the base case, whenS = ∅ and i = 1,
we haveI∅{1}(p) = f{1}(p) = 1 = C∅ for all p, by equation
(10).

For the inductive case, assume that the claim holds for all
finite subsets ofN which precede a setS in the co-lex order.
Let i be the smallest element not inS. Then by Lemma 4
we have

I
S
S∪{i}(p) = 1 +

∑

j∈S

I
S\{j}
S (p)

≤ 1 +
∑

j∈S

I
S\{j}∪[j−1]
S∪[j−1] (p)

≤ 1 +
∑

j∈S

CS\{j}∪[j−1]

= CS

15

where the first inequality is due to supermodularity (Lemma
5), and the second is by induction hypothesis, since the
smallest element not inS \ {j} ∪ [j − 1] is j. Note that
S \ {j} ∪ [j − 1] precedesS in the co-lex order, for all
j ∈ S.

Our final ingredient in the proof of Theorem 1 is the
following lemma relating the quantities from Definition 1.

Lemma 7:The following hold for everyk ∈ N.

1) If k is the largest element inS ⊆ N, then

CS = (αk−1 + 2)CS\{k}

2) αk =
∑k

j=1 C[k]\{j} = C[k] − 1.
3) C[k]\{1} > C[k]\{2} > · · · > C[k]\{k−1} > C[k]\{k}.

Proof: We prove the claims by induction onk, and then
(for part (1)) induction on the position ofS in the co-lex
order. Parts (2) and (3) are easily verified fork = 1, and so
is part (1) forS = {1}.

Let k > 1. The first set in the co-lex order havingk
as the largest element in{k}. For S = {k} we have from
Definition 1 and part (2) of induction hypothesis

C{k} = 1 + C[k−1] = 2 + αk−1 = (αk−1 + 2)C∅

For an arbitraryS havingk as the largest element, we have
from Definition 1 and part (2) of induction hypothesis

CS = 1 +
∑

j∈S

CS\{j}∪[j−1]

= 1 + CS\{k}∪[k−1] +
∑

j∈S\{k}

CS\{j}∪[j−1]

By part (2) of induction hypothesis

CS\{k}∪[k−1] = C[k−1] = αk−1 + 1

Furthermore, sinceS \{j}∪ [j−1] precedesS in the co-lex
order, we have

CS\{j}∪[j−1] = (αk−1 + 2)CS\{j,k}∪[j−1]

Thus,

CS = 2 + αk−1 + (αk−1 + 2)
∑

j∈S\{k}

CS\{j,k}∪[j−1]

= (αk−1 + 2)



1 +
∑

j∈S\{k}

CS\{j,k}∪[j−1]





= (αk−1 + 2)CS\[k]

This proves part (1). In particular, we have

C[k] = (αk−1 + 2)C[k−1]

Again by part (2) of induction hypothesis and Definition 1

C[k] = (αk−1 + 2)(αk−1 + 1)

= α2
k−1 + 3αk−1 + 2

= αk + 1

This proves part (2). Finally, for anyi < j < k we have

C[k]\{i} = (αk−1 + 2)C[k−1]\{i}

> (αk−1 + 2)C[k−1]\{j}

= C[k]\{j}

where the inequality is by part (3) of induction hypothesis.
Further,

C[k]\{j} = (αk−1 + 2)C[k−1]\{j}

> αk−1 + 1

= C[k−1]

= C[k]\{k}

This proves (3).

D. Proof of Theorem 1

We now show how the above lemmas imply Theorem 1.
First, we prove an upper bound on the competitive ratio
achieved by the probability distributionp = (p1, . . . , pk)
when the weights areβ1, . . . , βk.

Theorem 2:Consider an instance of the weightedk-
server problem with weightsβ1, . . . , βk, and a randomized
memoryless algorithm which moves theith server with a
probability pi, wherep1 ≥ · · · ≥ pk. Then the competitive
ratio of this algorithm against an adaptive online adversary
is at mostα̃(β, p), where

α̃(β, p) =





k
∑

j=1

pjβj



max
i∈[k]

I
[k]\{i}
[k] (p)

piβi

Proof: Lemma 4 assures that the constraints (4) hold.
To satisfy the set of constraints given by (3), we choose

α =





k
∑

j=1

pjβj



 max
S⊆[k],i∈S

ϕS(p) − ϕS\{i}(p)

βi

Due to the supermodularity property from Lemma 5, it is
sufficient to take the maximum withS = [k] and over alli.
Thus we have

α =





k
∑

j=1

pjβj



 max
i∈[k]

ϕ[k](p) − ϕ[k]\{i}(p)

βi

=





k
∑

j=1

pjβj



 max
i∈[k]

I
[k]\{i}
[k] (p)

piβi

With Theorem 2 in place we are ready to prove Theorem
1.

Proof of Theorem 1: Let β1, . . . , βk be the weights
of the servers, and assumeβ1 ≤ · · · ≤ βk without loss
of generality. The required memoryless algorithm behaves
as follows. Letpi = C[k]\{i}/βi for all i. On receiving a
request which is not covered by any server, the algorithm

16

serves it with theith server, with probabilitypi/P , where
P =

∑k
j=1 pj . By part (3) of Lemma 7 and our assumption:

β1 ≤ · · · ≤ βk, we havep1 ≥ . . . ≥ pk. Thus we can apply
Theorem 2 and hence, the competitive ratio of our algorithm
is at most

α̃(β, p) =





k
∑

j=1

pjβj



max
i∈[k]

I
[k]\{i}
[k] (p)

piβi

=





k
∑

j=1

C[k]\{j}



max
i∈[k]

I
[k]\{i}
[k] (p)

C[k]\{i}

≤ αk

where the last inequality follows from part (2) of Lemma
7, and Lemma 6. Note that since the currents are invariant
under scaling ofp, so is α̃(β, p), and henceP can be
ignored.

Corollary 1 (to Theorem 2):The Harmonic algorithm
for the weightedk-server problem on uniform spaces has
a competitive ratio ofkαk against an online adaptive adver-
sary.

Proof: The probabilities for the Harmonic algorithm
are given by pi = (1/βi)/

∑k
j=1(1/βj) and therefore

1/(piβi) =
∑k

j=1(1/βj) for all i, and
∑k

j=1 pjβj =

k/
∑k

j=1(1/βj). By Theorem 2, the competitive ratio is
given by

α =





k
∑

j=1

pjβj



max
i∈[k]

I
[k]\{i}
[k] (p)

piβi

= k · max
i∈[k]

I
[k]\{i}
[k] (p)

≤ k · max
i∈[k]

C[k]\{i} ≤ k ·
k

∑

i=1

C[k]\{i} = kαk

IV. A L OWER BOUND RESULT

We believe that it is not possible to improve the upper
bound of αk on the competitive ratio of for randomized
memoryless algorithms for the weightedk-server problem
on uniform spaces. This conjecture is formally stated as
follows.

Conjecture 1:For any ε > 0 there exist weights
β1, . . . , βk and an adversarial strategy which forces any
randomized memoryless algorithm to perform at least
(1 − ε)αk times worse than the adversary.

As a first step towards proving Conjecture 1, we prove that
Theorem 2 is essentially tight. For an algorithm which uses
probabilitiespi wherep = (p1, . . . , pk) when the weights
are β = (β1, . . . , βk), we prove a lower bound on the
competitive ratio, which goes arbitrarily close tõα(β, p) as
the separation between the weights grows unbounded.

Theorem 3:Let β1 ≤ · · · ≤ βk be the weights of the
servers in an instance of the weightedk-server problem

on uniform metric spaces. Consider a randomized memory-
less algorithm which moves theith server with probability
pi whenever there is no server on the requested point.
Then the competitive ratio of this algorithm is at least
α̃(β, p)/(1 + sα̃(β, p)), wheres = max1≤i<k βi/βi+1.

Proof: Consider the uniform metric space with2k
points. We may assume that at any point of time, the
algorithm’s servers occupyk distinct points. We will also
ensure that the adversary’s servers occupyk distinct points.

As before, let at any point of time, letai (resp.si) denote
the position of the adversary’s (resp. algorithm’s)ith server.
The adversary always ensures thatai 6= sj for any i < j.
In order to maintain this invariant, whenever thej th server
of the algorithm is shifted toai for j > i, the adversary
shifts its ith moves to a point not occupied by any other
(adversary’s as well as algorithm’s) server.

The adversary generates the request sequence as follows.
If there exists ani such thatai 6= si, the adversary finds
the smallest suchi and requestsai. By the choice ofi, for
all j < i we haveaj = sj and henceai 6= sj . Further the
invariant ensures thatai 6= sj for anyj > i. We already have
ai 6= si. Thus,ai is not occupied by any of the algorithm’s
servers.

On the other hand, ifai = si for all i, the adversary
behaves as follows. Supposei = t achieves the maximum
in the expression for̃α(β, p). That is,

α̃(β, p) =





k
∑

j=1

pjβj



 ·
I
[k]\{t}
[k] (p)

ptβt

The adversary requests a point not occupied by any server,
and shifts itstth server to that point.

The adversary pays only in the following two cases -
when it shifts itsith server out of a point because thej th

server of the algorithm arrives at the same point, for some
j > i, and when it shifts itstth server becauseai = si

for all i. We will denote the total cost incurred in the
former case byADV ′ and the total cost in the latter case
by ADV . Suppose the total cost incurred by the algorithm
is ALG. In the former case, the algorithm incurs a cost of
βj just before the adversary paysβi, where βj ≥ βi/s.
Thus ALG ≥ ADV ′/s. For the latter case, we prove
ALG ≥ α̃(β, p)ADV (up to an additive constant).

As before, at any point of time letS = {i | ai = si} ⊆
[k], andS will denote the state of the system. We will again
assign a potential to each state, but this time we will ensure
the following.

1) When the adversary moves itstth server, the increase
in potential isat least α̃(β, p) · βt.

2) When the algorithm is moves a server, the expected
decrease in potential isat most the expected cost
incurred by the algorithm.

Note that when the adversary moves its servers to ensure
ai 6= sj for all i < j, the state remains the same. Thus,

17

the above two statements implyALG ≥ α̃(β, p)ADV
(up to an additive constant). Interestingly, the potentials
that we assign to the states here are same as those that
we assigned in the proof of the upper bound. That is,
φS = −(

∑k
j=1 pjβj)ϕS(p). Note however, that we have not

made any assumption about whetherp is a non-decreasing
sequence.

Consider the situation when the adversary incurs a cost of
βt, due to shifting of thetth server becauseai = si for all i,
that is, the state is[k]. The state after the move is[k] \ {t}
and the change in potential is

φ[k]\{t} − φ[k] =





k
∑

j=1

pjβj



 (ϕ[k](p) − ϕ[k]\{t}(p))

=





k
∑

j=1

pjβj



 ·
I
[k]\{t}
[k] (p)

pt

= α̃(β, p) · βt

Now consider the algorithm’s move, in response to a
request given while the system is in stateS ([k]. Let i
be the smallest element not inS. As discussed before, the
next request isai, and this point is not occupied by any
of the algorithm’s servers. Hence the algorithm must incur
a cost

∑k
j=1 pjβj in expectation. The expected change in

potential will be

pi

(

φS∪{i} − φS

)

+
∑

j∈S

pj

(

φS\{j} − φS

)

= −





k
∑

j=1

pjβj











pi

(

ϕS∪{i}(p) − ϕS(p)
)

−
∑

j∈S

pj

(

ϕS(p) − ϕS\{j}(p)
)







= −
k

∑

j=1

pjβj

where the last equality is by Lemma 1. Thus we have
provedALG ≥ α̃(β, p)ADV (up to an additive constant).
Therefore, the competitive ratio is at least

ALG

ADV + ADV ′
=

(

ADV

ALG
+

ADV ′

ALG

)−1

≥

(

1

α̃(β, p)
+ s

)−1

=
α̃(β, p)

1 + sα̃(β, p)

Now proving Conjecture 1 reduces to proving that
α̃(β,p)

1+sα̃(β,p) can be forced to be arbitrarily close toαk.
Formally this is stated as follows.

Conjecture 2:For anyk and anyε > 0 there existsβ =
(β1, . . . , βk) with β1 ≤ · · · ≤ βk such that for allp =
(p1, . . . , pk) we have

α̃(β, p)

1 + sα̃(β, p)
≥ (1 − ε)αk

wheres = max1≤i<k βi/βi+1.

V. CONCLUDING REMARKS

We have proved that there exists a competitive memory-
less algorithm for the weightedk-server problem on uniform
metric spaces. This is in contrast with the line metric, which
does not admit a competitive memoryless algorithm, even
with 2 servers. The competitive ratioαk that we establish,
is given byαk = α2

k−1 + 3αk−1 + 1. We can boundαk as
follows.

αk + 2 = (αk−1 + 2)2 − αk−1 − 1 < (αk−1 + 2)2

Therefore

αk + 2 < (αt + 2)2
k−t

= [(αt + 2)2
−t

]2
k

for any t < k. For t = 4 one can verify that(αt + 2)2
−t

<

1.6, and henceαk < 1.62k

, as promised in the introduction.
We believe thatαk is the best possible competitive ratio

achievable by memoryless algorithms for the weightedk-
server problem on uniform metric spaces. This is implied
by Conjecture 2. Furthermore, we can show that Conjecture
2 is true if Lemma 6 is tight for certain currents. Proving this
seems to require a deeper understanding of the behaviour of
currents as functions of probability distribution.

The immediate increment to our results would perhaps be
to determine whether there exists a competitive memoryless
algorithm for the weighted server problem on star metrics.
This problem translates to having a weightβi for the ith

cache location and a costct with each paget; the overall
cost of replacing paget by paget′ at theith cache location
beingβi(ct + ct′). We believe that it should be possible to
prove an unbounded lower bound for this problem, on the
lines of the lower bound proof by [1] for2 servers on the
line metric.

We improve the upper bound on the deterministic compet-
itive ratio by [2] for the weighted server problem on uniform
metrics. However, our bound is still doubly exponential,
whereas the lower bound is only exponential in the number
of servers. It would be interesting to reduce this gap. The
prime candidate for improving the upper bound is perhaps
the (generalized) work function algorithm, which has been
proved to be optimally competitive for the weighted2-server
problem on uniform metrics [1], and which is the best known
algorithm for several other problems [6], [13].

The introduction of different costs for replacements at
different cache locations seems to make the caching problem
notoriously hard. This is certified by the fact that attemptsto
develop algorithms, better than the one by Fiat and Ricklin

18

[2], have given negligible success even withk = 3. For
k = 2, Sitters [7] has shown that the generalized work
function algorithm is competitive for the generalized server
problem on arbitrary metrics, which subsumes the weighted
2-server problem. He has also expressed a possibility of the
non-existence of a competitive algorithm, fork > 2. All
this is in a striking contrast with the problem of weighted
caching, where the pages (points) have costs instead of
cache locations (servers). For the weighted caching prob-
lem, k-competitive deterministic andO(log k)-competitive
randomized algorithms have been discovered [14], [15],
[16], [17], [18], [19], even when the pages have different
sizes, matching the respective lower bounds.

ACKNOWLEDGMENT

The authors would like to thank Nikhil Bansal for pointing
them to some important work on the weightedk-server
problem.

REFERENCES

[1] M. Chrobak and J. Sgall, “The weighted 2-server problem,”
Theoretical Computer Science, vol. 324, no. 2-3, pp. 289–312,
2004.

[2] A. Fiat and M. Ricklin, “Competitive algorithms for the
weighted server problem,”Theoretical Computer Science, vol.
130, no. 1, pp. 85–99, 1994.

[3] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and
A. Wigderson, “On the power of randomization in on-line
algorithms,”Algorithmica, vol. 11, no. 1, pp. 2–14, 1994.

[4] M. S. Manasse, L. A. McGeoch, and D. D. Sleator, “Compet-
itive algorithms for on-line problems,” inProceedings of
the 20th Annual ACM Symposium on Theory of Computing.
ACM, 1988, pp. 322–333.

[5] E. Koutsoupias, “Thek-server problem,”Computer Science
Review, vol. 3, no. 2, pp. 105–118, 2009.

[6] E. Koutsoupias and C. H. Papadimitriou, “On thek-server
conjecture,”Journal of the ACM, vol. 42, no. 5, pp. 971–983,
1995.

[7] R. Sitters, “The generalized work function algorithm is
competitive for the generalized 2-server problem,”CoRR, vol.
abs/1110.6600, 2011.

[8] E. F. Grove, “The harmonic onlinek-server algorithm is
competitive,” inProceedings of the 23rd Annual ACM Sym-
posium on Theory of Computing. ACM, 1991, pp. 260–266.

[9] Y. Bartal and E. Grove, “The harmonick-server algorithm is
competitive,” Journal of the ACM, vol. 47, no. 1, pp. 1–15,
2000.

[10] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir,
“Random walks on weighted graphs and applications to on-
line algorithms,”J. ACM, vol. 40, no. 3, pp. 421–453, 1993.

[11] Y. Bartal, M. Chrobak, and L. L. Larmore, “A randomized
algorithm for two servers on the line (extended abstract),”
in ESA, ser. Lecture Notes in Computer Science, vol. 1461.
Springer, 1998, pp. 247–258.

[12] A. Chiplunkar and S. Vishwanathan, “On the competitiveness
of randomized memoryless algorithms for the weighted k-
server problem,”CoRR, vol. abs/1301.0123, 2013.

[13] W. R. Burley, “Traversing layered graphs using the work
function algorithm,” Journal of Algorithms, vol. 20, no. 3,
pp. 479–511, 1996.

[14] M. Chrobak, H. J. Karloff, T. H. Payne, and S. Vishwanathan,
“New results on server problems,” inSODA, 1990, pp. 291–
300.

[15] M. S. Manasse, L. A. McGeoch, and D. D. Sleator, “Compet-
itive algorithms for server problems,”J. Algorithms, vol. 11,
no. 2, pp. 208–230, 1990.

[16] N. E. Young, “Thek-server dual and loose competitiveness
for paging,”Algorithmica, vol. 11, no. 6, pp. 525–541, 1994.

[17] ——, “On-line file caching,” inSODA, 1998, pp. 82–86.

[18] N. Bansal, N. Buchbinder, and J. Naor, “A primal-dual
randomized algorithm for weighted paging,”J. ACM, vol. 59,
no. 4, p. 19, 2012.

[19] A. Adamaszek, A. Czumaj, M. Englert, and H. Räcke, “An
O(log k)-competitive algorithm for generalized caching,” in
SODA. SIAM, 2012, pp. 1681–1689.

19

