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Abstract— The significant progressg in constructing graph
spanners that are sparse (small number of edges) or light (low
total weight) has skipped spanners that are everywhere-sparse
(small maximum degree). This disparity is in line with other
network design problems, where the maximum-degree objective
has been a notorious technical challenge. Our main result is for the
LOWEST DEGREE 2-SPANNER (LD2S) problem, where the goal
is to compute a 2-spanner of an input graph so as to minimize
the maximum degree. We design a polynomial-time algorithm

achieving approximation factor Õ(Δ3−2
√

2) ≈ Õ(Δ0.172), where
Δ is the maximum degree of the input graph. The previous
Õ(Δ1/4)–approximation was proved nearly two decades ago by
Kortsarz and Peleg [SODA 1994, SICOMP 1998].

Our main conceptual contribution is to establish a formal con-
nection between LD2S and a variant of the DENSEST k-SUBGRAPH

(DkS) problem. Specifically, we design for both problems strong
relaxations based on the Sherali-Adams linear programming (LP)
hierarchy, and show that “faithful” randomized rounding of the
DkS-variant can be used to round LD2S solutions. Our notion of
faithfulness intuitively means that all vertices and edges are chosen
with probability proportional to their LP value, but the precise
formulation is more subtle.

Unfortunately, the best algorithms known for DkS use the
Lovász-Schrijver LP hierarchy in a non-faithful way [Bhaskara,
Charikar, Chlamtac, Feige, and Vijayaraghavan, STOC 2010]. Our
main technical contribution is to overcome this shortcoming, while
still matching the gap that arises in random graphs by planting a
subgraph with same log-density.

1. INTRODUCTION

The significant progress made over the years in construct-

ing graph spanners shares, for the most part, two features:

(1) the objective is to minimize the total number/weight of

edges; and (2) the techniques are primarily combinatorial.

This second feature has started to change recently, with the

use of Linear Programming (LP) in several results [10],

[18], [8]. One of the earliest uses of linear programming

for spanners, though, was also one of the few examples

of a different objective function: in 1994, Kortsarz and

Peleg [31] considered the LOWEST DEGREE 2-SPANNER

(LD2S) problem, where the goal is to find a 2-spanner of an

input graph that minimizes the maximum degree, and used a

natural LP relaxation to devise a polynomial-time algorithm
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achieving approximation factor Õ(Δ1/4) (where Δ is the

maximum degree). They also showed that it is NP-hard to

approximate LD2S within a factor smaller than Ω(logn).
We make the first progress on approximating LD2S since

then, by designing a new approximation algorithm with an

improved approximation factor.

Theorem 1. For any arbitrarily small constant ε > 0,
the LD2S problem can be approximated in polynomial time
within factor Õ(Δ3−2

√
2+ε) ≤ Õ(Δ0.172).

Degree bounds have a natural mathematical appeal and

are also useful in many applications. For example, one

common use of spanners is in compact routing schemes

(e.g. [42], [16]), which store small routing tables at every

node. If we route on a spanner with large maximum degree,

then a priori the node of large degree will have a large

table, even if the total number of edges is small. Similarly,

the maximum degree (rather than the overall number of

edges) is what determines local memory constraints when

using spanners to construct network synchronizers [37] or

for efficient broadcast [5]. The literature on approximation

algorithms includes recent exciting work on sophisticated

LP rounding for network design problems involving degree

bounds (e.g. [33], [39]).

Dense subgraphs. Our central insight involves the rela-

tionship between sparse spanners and finding dense sub-

graphs. Such an informal relationship has been folklore

in the distributed computing and approximation algorithms

communities; for instance, graph spanners are mentioned

as the original motivation for introducing the DENSEST k-

SUBGRAPH (DkS) problem [29], in that case in the context

of minimizing the total number of edges in the spanner.

Surprisingly, we show that there is a natural connection

between DkS and the more challenging task of construct-

ing spanners that have small maximum degree. We prove

that certain types of “faithful” approximation algorithms

for a variant of DkS which we call SMALLEST m-EDGE

SUBGRAPH (or SmES) imply approximation algorithms for

LD2S, and then show how to construct such an algorithm for

SmES; combining these two together yields our improved

approximation for LD2S.

We seem to be the first to formally define and study SmES,

although it has been used in previous work (sometimes

implicitly) as the natural minimization version of DkS, see
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e.g. [35], [25], [2]. In SmES we are given a graph G and

a value m, and want to find the subgraph of G with at

least m edges that has the fewest vertices. A straightforward

argument shows that an f -approximation for SmES implies

an Õ(f2)-approximation for DkS. In the other direction, all

that was known was that an f -approximation for DkS implies

an Õ(f)-approximation for SmES. One contribution of this

paper is a non-black box improvement: while the best-known

approximation for DkS is O(n1/4+ε), we give an algorithm

with smaller approximation ratio for SmES.

Theorem 2. For any arbitrarily small constant ε > 0,
SmES can be approximated in polynomial time within factor
Õ(n3−2

√
2+ε) ≤ Õ(n0.172).

This improvement is key to our main result about approx-

imating LD2S.

LP hierarchies. The log-density framework introduced

in [9] in the context of DkS (see Section 3.1) predicts,

when applied to SmES, that current techniques would hit

a barrier at n3−2
√
2, precisely the factor achieved by our

algorithm. Here, the use of strong relaxations (namely LP

hierarchies) is crucial, since simple relaxations have large

integrality gaps. For example, one can show that the natural

SDP relaxation for SmES has an Ω(n1/4) integrality gap (for

G = G(n, n−1/2) and m = n1/2), similarly to the Ω(n1/3)-
gap shown for DkS by Feige and Seltser [23].

While we borrow some of the algorithmic techniques

developed for DkS by [9], the crucial need for a “faithful”

approximation required us to develop new tools which

represent a significant departure from previous work both

in terms of the algorithm and its analysis. For example, our

algorithm and analysis rely on the existence of consistent

high-moment variables arising from the Sherali-Adams [38]

hierarchy and not present in the Lovász-Schrijver [34] LP

hierarchy (which was sufficient for [9]).

Basic terminology. We denote the (undirected)1 input graph

by G = (V,E), and let n = |V |. For a vertex v ∈ V , let

ΓG(v) = {u : {u, v} ∈ E} denote its neighbors in G. If the

graph G is clear from context then we will drop the subscript

and simply refer to Γ(v). Recall that the maximum degree

of vertices in G is denoted Δ. We suppress polylogarithmic

factors by using the notation Õ(f) as a shorthand for f ·
(logn)O(1).

As usual, a 2-spanner of G is a subgraph H = (V,EH)
such that every u, v ∈ V that are connected by an edge in G
are also connected in H by a path of length at most 2. This

is a special case of the more general notion of a k-spanner,

which was introduced by Peleg and Schäffer [36] and has

been studied extensively; see also Section 1.4.

1Our algorithm for LD2S also works for the directed case, though for
simplicity we focus on undirected graphs.

1.1. LP-based approach for LD2S

The LP relaxation of LD2S used by Kortsarz and Peleg

[31] is very natural: for each edge {u, v} ∈ E it has a

variable x{u,v} ∈ [0, 1], plus additional variables x{u,v};w ∈
[0, 1] for every w ∈ Γ(u)∩Γ(v) (i.e., whenever u, v, w form

a triangle in G). The objective is to minimize λ, subject to

a degree constraint∑
v∈Γ(u) x{u,v} ≤ λ ∀u ∈ V, (1)

and the constraints that every edge in G (i.e. demand pair)

is covered by either a 1-path or a 2-path in the spanner

(subgraph):

x{u,v} +
∑

w∈Γ(u)∩Γ(v) x{u,v};w ≥ 1 ∀{u, v} ∈ E. (2)

x{u,v};w ≤ min{x{u,w}, x{v,w}} ∀{u, v} ∈ E,

w ∈ Γ(u) ∩ Γ(v).
(3)

This LP relaxation seems like a natural place to start,

but it is actually quite weak, having integrality gap Ω(
√
Δ).

Indeed, let G be a clique of size Δ+1; observe that every 2-

spanner of this G must have maximum degree at least
√
Δ,

while the LP has value λ ≤ 1 (by setting all x variables

to 1/Δ). The same argument works for a disjoint union of

n/(Δ+1) such cliques. Kortsarz and Peleg [31] nevertheless

managed to achieve Õ(Δ1/4) approximation (in polynomial-

time). Their algorithm combines a relatively simple rounding

of this LP with another partial solution that does not use

the LP, and whose analysis relies on a combinatorial lower

bound on the optimum.

Our approach is to look at the Kortsarz-Peleg LP above

from the perspective of a single vertex w. Consider an

integral solution H to the LP above, i.e. a valid 2-spanner.

From the viewpoint of w, incident edges are included in H
for two possible reasons: either to span an edge connecting

two neighbors of w (i.e., including the edges {u,w} and

{v, w} in order to span the edge {u, v}), or to span the

edge itself. It’s reasonable to focus on the case where H
has significantly fewer edges than G, and therefore many

edges in H are included because of the first reason. Let Gw

be the subgraph of G induced by the neighbors of w, and

let S be the subset of vertices of Gw that are adjacent to w
in H . Then from the perspective of w, including the edges

between w and S in H “covers” every demand formed by

an edge (of Gw) that connects two vertices in S, namely

E′ = {{u, v} ∈ E : u, v ∈ S}. We can look at each

neighborhood this way, and reinterpret LD2S as the problem

of covering every demand in at least one neighborhood Gw,

while minimizing the maximum degree.

This viewpoint naturally suggests an LP-based algo-

rithm for LD2S: solve the Kortsarz-Peleg LP above (or

some other relaxation), and for every w ∈ V , interpret∑
{u,v}∈E:u,v∈Γ(w) x{u,v};w as the amount of “demand” that
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w is supposed to cover locally, and
∑

u∈Γ(w) x{w,u} as w’s

“budget”. Then for each w ∈ V run a subroutine that covers

the required amount of demand within the budget. Since in

LD2S every demand must be covered, this subroutine should

cover the required amount of demand but is free to somewhat

violate the budget constraint; the amount of violation will

correspond to the LD2S approximation guarantee. We thus

need to solve the SMALLEST m-EDGE SUBGRAPH (SmES)

problem: given a graph (in our case Gw) and a value m,

choose as few vertices as possible subject to covering at least

m edges, where an edge is covered if both its endpoints are

chosen.

Unfortunately, this reduction from LD2S to SmES does

not work. There are two main issues with it. First, if w
chooses to add an edge to u (i.e. the SmES algorithm at Gw

includes u ∈ Γ(w)) then this increases the degree of both w
and u. So even if u stays within its own budget when Gu is

processed, many of its neighbors might decide to add their

edge to u, and the degree at u will be very large compared

to its budget. Second, since we run a SmES algorithm at

each vertex separately, they might make poorly-correlated

choices as to which demands they cover. This may cause a

high degree of overlap in the demands covered by different

vertices, leading to much less total demand covered. Both

of these problems stem from the same source: while we

used the LP to define the total demand and budget at each

vertex, we did not require the SmES algorithm to act in a

way consistent with the LP. If we could force the SmES

subroutine to make decisions that actually correspond to the

fractional solution, then both of these problems would be

solved. This is our motivation for defining faithfulness.

1.2. Faithful rounding

While our formal notion of faithfulness is somewhat

technical and depends on the exact problem that we want

to solve, the intuition behind it is natural and can apply to

many problems. Suppose that we have an LP in which there

are variables {xe}e∈U (where U is a universe of elements)

as well as variables {xe,e′}e,e′∈U . In our case, each e is

a vertex in a SmES instance (i.e. an edge in LD2S) and

each pair {e, e′} is an edge in a SmES instance (a 2-path in

LD2S). A standard way of interpreting fractional LP values

is as probabilities, i.e. we think of xe as the probability

that e should be in the solution. This interpretation naturally

leads to independent randomized rounding, where we take

e into our solution with probability proportional to xe.

By this interpretation, xe,e′ should be the probability that

both e and e′ are in the solution. But now we have a

problem, since the natural constraints to force this type of

situation in an integral setting, namely constraints such as

xe,e′ ≤ min{xe, xe′}, correspond poorly to the probabilities

obtained by independent randomized rounding. For example,

if xe = xe′ = xe,e′ , then the LP “believes” that the

probability that both e and e′ are in the solution is xe,e′ , but

under independent randomized rounding this event happens

with probability xe · xe′ = x2
e,e′ , which could be much

smaller. In a faithful rounding this does not happen: roughly

speaking, faithfulness requires every element and pair of

elements to be included in the solution with probability that

is proportional to its LP value.

Many algorithms are naturally faithful, and indeed we

suspect that one reason this notion has not been defined

previously (to the best of our knowledge) is that in most

cases it either falls out from the analysis “for free” or it

is unnecessary. The connection we show between LD2S

and faithful rounding for SmES might give one hope that

the recent algorithmic breakthrough for DkS by Bhaskara,

Charikar, Chlamtac, Feige and Vijayaraghavan [9] could

imply better approximations for LD2S. However, their result

heavily uses hierarchies, which creates a formidable obstacle

for faithful rounding, as we discuss in Section 1.3.

1.3. LP hierarchies and faithful rounding

Following the lead of Bhaskara et al. [9], we employ a

strong LP relaxation for SmES, which can be viewed as

part of an LP hierarchy. In this context, a hierarchy is a

sequence of increasingly tight relaxations to a 0-1 program,

usually obtained via a general mechanism that works for

any 0-1 program. Such hierarchies (for both LPs and SDPs)

have been suggested by Sherali and Adams [38], Lovász and

Schrijver [34], and Lasserre [32] (in our case, we use the

Sherali-Adams hierarchy). A key property shared by these

hierarchies is that they are locally integral; that is, the q-th

relaxation in the hierarchy coincides exactly with the convex

hull of feasible 0-1 solutions, when both are projected onto

any q-dimensional subspace corresponding to q variables

in the program.2 Specifically for Sherali-Adams, the q-th

relaxation for a given 0-1 linear program with variables

x1, . . . , xN ∈ {0, 1}, is obtained by extending the 0-1

program to include a variable xS for every S ⊆ {1, . . . , N},

|S| ≤ q, and then writing a “locally integral” relaxation for

this extended 0-1 program to guarantee that xS =
∏

i∈S xi

(by convention x∅ = 1). For more details, see the survey

[15].

There has been a recent surge of interest in the study of

hierarchies of LPs (or other convex programs), especially in

connection with approximation algorithms for combinatorial

optimization problems. Specifically, such strong relaxations

can potentially lead to progress on problems whose approx-

imability has persistent gaps, such as VERTEX-COVER and

MINIMUM-BISECTION. This line of attack was probably

first described explicitly in [3]. However, designing rounding

procedures for these relaxations is often quite challenging.

2Consequently, if N denotes the number of initial 0-1 variables, then
the N -th relaxation is exactly the convex hull of all 0-1 solutions, i.e.,
corresponds to solving the 0-1 optimization problem exactly. The q-th
relaxation in the sequence can be written explicitly as a (linear) program
of size NO(q), and thus solved in time NO(q).
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Indeed, relatively few papers have managed to improve over

state-of-the-art approximation algorithms using hierarchies.

The few papers that do give improved approximation bounds

using hierarchies include [11], [12], [7], [14], [9].3 In

particular, the last paper designs a rounding procedure for

an LP hierarchy for DkS, which we adapt for SmES.

Our plan is to leverage the success of [9], but as men-

tioned before, we face a serious obstacle — their rounding

procedure is not faithful. They essentially condition on a

small set of events, for instance that the solution includes a

small set S∗ of carefully chosen elements, and then they use

only the LP variables for sets containing this S∗, namely, a

variable xS∗∪{u} is now thought of as the LP variable for

singleton u. But clearly that variable might have very little

to do with the actual xu, which is the quantity with respect

to which we are trying to be faithful.

Our main technical contribution is to overcome this and

design a faithful rounding for SmES based on Sherali-

Adams. Our algorithm is loosely based on the DkS algo-

rithm of [9], but numerous technical difficulties have to be

resolved to make it faithful. This, together with our reduction

from LD2S to faithful SmES, gives our new approximation

algorithm for LD2S. We believe that our notion of faithful

rounding is of independent interest, and might prove useful

for other approximation algorithms, especially in the context

of using hierarchies such as Sherali-Adams.

For comparison, we mention that recent algorithmic re-

sults, due to [6], [26], design rounding schemes for the

Lasserre [32] hierarchy. Their rounding appears to be faithful

(at least at an informal level), but it is not applicable to

our context. First, their analysis holds only for expander-

like graphs, and second, their rounding technique applies to

problems such as constraint satisfaction and graph partition-

ing, with no connection to DkS.

1.4. Related work

Graph spanners, first introduced by Peleg and

Schäffer [36] and Peleg and Ullman [37], have been

studied extensively, with applications ranging from routing

in networks (e.g. [4], [41]) to solving linear systems (e.g.

[40], [20]). The foundational result on spanners is due

to Althöfer, Das, Dobkin, Joseph and Soares [1], who

gave an algorithm that, given a graph and an integer

k ≥ 1, constructs a (2k − 1)-spanner with n1+1/k edges.

Unfortunately this result obviously does not give anything

nontrivial for 2-spanners, and indeed it is easy to see that

there exist graphs for which every 2-spanner has Ω(n2)
edges, thus nontrivial absolute bounds on the size of a

2-spanner are not possible. Kortsarz and Peleg [30] were

the first to consider relative bounds for spanners. They gave

a greedy O(log |E|/|V |)-approximation algorithm for the

3There are also papers that recover known approximation bounds, say
a PTAS, while other ones show the limitations of these hierarchies by
exhibiting integrality gaps for certain problems and hierarchies.

problem of finding a 2-spanner with the minimum number

of edges. This was then extended to variants of 2-spanners,

e.g. client-server 2-spanner [21] and fault-tolerant 2-
spanner [18], [19] (for which only O(logΔ) is known). All

of these bounds are basically optimal, assuming P 	= NP,

due to a hardness result of Kortsarz [28].

2. OUTLINE OF LP RELAXATION FOR LD2S AND

REDUCTION TO SmES

In this section we give an LP relaxation for LD2S that

uses a relaxation of SmES as a black box, as well as an

algorithm that shows how to use a faithful rounding for

SmES to approximate LD2S. Both the relaxation and the

algorithm presented here are simplifications that ignore some

technical details; the full relaxation and algorithm, as well

as all proofs, can be found in the full version [13].

We will actually give a relaxation for a slightly more

general version of LD2S in which instead of spanning all
edges we are given a subset Ê ⊆ E and are only required to

span edges in Ê. Note that the optimal solution for demands

Ê ⊆ E has maximum degree that is at most the maximum

degree of the optimal solution to the original LD2S problem

(where all edges are demands). This will allow us to cover

some demands, re-solve the LP with only the remaining

demands, and repeat.

Our relaxation is a feasibility LP, so we will guess the

optimal degree bound λ and use it as a constant in the LP.

For each u ∈ V , let Gu = (Vu, Eu) be the induced subgraph

of (V, Ê) on ΓG(u). Our relaxation includes a fractional

SmES solution for each Gu: let SmES-LP(Gu) be a linear

relaxation of SmES with variables {zuv }v∈Vu
∪ {zue }e∈Eu

with the property that zu{w,v} ≤ min{zuw, zuv } for all

{w, v} ∈ Eu. In a 0-1 solution this means an edge is covered

only if both of its endpoints are chosen. Any polytope that

includes this basic condition can be used, but obviously the

tighter this relaxation is the tighter our LD2S relaxation will

be, and in the end we will use a much stronger relaxation

for SmES that is based on the Sherali-Adams hierarchy.

Our relaxation for LD2S with demands Ê ⊆ E is given

by (4)-(7) in Figure 1. Constraint (4) requires that for each

neighborhood graph Gu there is an associated fractional

SmES solution.4 Constraint (5) simply requires that for each

edge, if either of the SmES instances at its endpoints include

it in their solution then we include it in the overall solution.

Constraint (6) gives the degree bound, and (7) is the main

covering constraint, requiring that every demand is either

included or is spanned by a 2-path. It is easy to see that this

is a valid relaxation for LD2S: if we are given a 2-spanner

H of G with maximum degree at most λ, for every edge

{u, v} ∈ E(H) we set x{u,v} = 1 and zvu = 1 and zuv = 1.

4Our actual relaxation (see [13]) has a collection of SmES instances
for each neighborhood graph based on the possible degrees in a bipartite
decomposition of an optimal solution, and we allow the LP to fractionally
“guess” which of these instances to use.
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Figure 1. Relaxation for LD2S with demands Ê

((zuv )v∈V (Gu), (z
u
e )e∈E(Gu)) ∈ SmES-LP(Gu) ∀u ∈ V (4)

max{zuv , zvu} ≤ x{u,v} ∀{u, v} ∈ E (5)∑
v∈Γ(u)

x{u,v} ≤ λ ∀u ∈ V (6)

∑
w∈Γ(u)∩Γ(v)

zw{u,v} + x{u,v} = 1 ∀{u, v} ∈ Ê (7)

For every edge {u, v} ∈ E \ E(H) we arbitrarily choose

some w ∈ V so that {u,w} ∈ E(H) and {w, v} ∈ E(H)
(some such w must exist since H is a 2-spanner) and set

zw{u,v} = 1. All other variables are 0.

We now show that it is sufficient to design a rounding

scheme for SmES that is faithful according to the following

definition. Given a graph G, let L(G) be an LP that has a

variable ζu for every u ∈ V (G) and a variable ζe for every

e ∈ E(G) (we will later instantiate L(G) as various LP

relaxations of SmES).

Definition 3. A randomized rounding algorithm A is a

factor f faithful rounding for L(G) if, when given a valid

solution ((ζu)u∈V , (ζe)e∈E) to L(G), it produces a random-

ized (not necessarily induced) subgraph H∗ = (V ∗, E∗)
such that

a) Pr[v ∈ V ∗] ≤ f · ζv for all v ∈ V (G),
b) Pr[{u, v} ∈ E∗] ≤ ζ{u,v} for all {u, v} ∈ E(G),
c) |V ∗| ≤ f ·∑v∈V (G) ζv (with probability 1), and

d) E[|E∗|] ≥ Ω̃(
∑
{u,v}∈E(G) ζ{u,v}).

Observe that if algorithm A is a factor f faithful rounding

for a relaxation of SmES then it is also an f -approximation

in the usual sense, simply by conditions c and d (up to a

polylogarithmic loss in the amount of edges covered). The

converse, however is not true: many rounding algorithms

that give an f -approximation are not faithful, including [9].

We now show that if we are given an algorithm A that

is a factor f(n) faithful rounding for SmES (where n is

the number of vertices in the SmES instance), there is

an Õ(f(Δ))-approximation algorithm for LD2S that uses

algorithm A as a black box. The reduction is given as

Algorithm 1. It begins with all edges as the demand set Ê,

and first solves the LP relaxation for LD2S with demand set

Ê. It adds every edge that has x value at least 1/4, and then

uses algorithm A to round each of the |V | SmES instances in

the relaxation. At the end of the loop it updates the demands

Ê by removing edges that were successfully covered by

this process, and repeats. Note that the edges covered by

the SmES roundings are used only in the analysis; in the

algorithm we take the vertices output by each SmES solution

and include the appropriate edges in our spanner.

Algorithm 1: Approximation algorithm for LD2S

Input : Graph G = (V,E), degree bound λ, factor

f(n) faithful rounding algorithm A for SmES

Output: 2-spanner H = (V,EH) of G
1 Ê ← E, EH ← ∅
2 while Ê 	= ∅ do
3 Compute a valid solution 〈�x, �z〉 for LP (4)-(7) on

graph G with demands Ê
4 Ex ← {e ∈ E : xe ≥ 1/4}
5 foreach u ∈ V do
6 H∗u ← A(Gu, �z

u) ; // output of SmES

rounding A
7 Eu ← {{u, v} ∈ E | v ∈ V (H∗u)}

// Add all edges found in above
rounding

8 EH ← EH ∪ Ex ∪
(⋃

u∈V Eu

)
// Remove satisfied demands

9 Ê ← Ê \(
EH ∪ {{u, v} | ∃w ∈ V : {u,w}, {w, v} ∈ EH

})

Theorem 4. Let algorithm A be a factor f(n) faithful
rounding for SmES (where n is the number of vertices in
the SmES instance). Then there is a (randomized) Õ(f(Δ))-
approximation for LD2S.

Proof: We provide only a sketch of the proof here, since

as mentioned both the relaxation for LD2S and the rounding

algorithm based on SmES are simplifications (see the full

version [13] for the complete relaxation and algorithm).

We may assume that our LD2S algorithm guesses some

λ ∈ [OPT, 2 ·OPT] simply by trying the O(logΔ) relevant

values and reporting the best solution. In this case, LP (4)-

(7) is guaranteed to have a feasible solution. We now use

Algorithm 1 with this value of λ. It is easy to see that each

iteration of the loop only increases the maximum degree by

Õ(f(Δ)) ·OPT: adding edges in Ex only costs a constant

factor more than the fractional solution, Definition 3(c)

implies that rounding the SmES solution at u only increases

the degree of u by f(|Vu|) · OPT ≤ f(Δ) · OPT, and
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Definition 3(a) together with the LP imply that rounding the

SmES solution at neighbors of u only increases the degree

of u by Õ(f(|Vu|)) ·OPT (with high probability).

So we just need to show that the number of iterations

is (with high probability) at most Õ(1). To do this we

first prove that in every iteration the expected number of

satisfied demands is at least Ω̃(|Ê|). Fix some iteration. We

clearly cover enough demand if |Ex| ≥ Ω(|Ê|). Otherwise,

summing (7) over all {u, v} ∈ Ê implies that the total

amount of demand covered by SmES instances (i.e. the z
variables) is large; in particular,∑

{u,v}∈Ê

∑
w∈Γ(u)∩Γ(v)

zw{u,v} ≥ Ω(|Ê|). (8)

For every {u, v} ∈ Ê and w ∈ Γ(u) ∩ Γ(v), let pw{u,v}
denote the probability that {u, v} was covered by the SmES

rounding at w, i.e. the probability that {u, v} ∈ E(H∗w).
Then Definition 3(d) and (8) imply that

∑
{u,v}∈Ê

∑
w∈Γ(u)∩Γ(v)

pw{u,v} ≥
∑

{u,v}∈Ê
Ω̃

⎛
⎝ ∑

w∈Γ(u)∩Γ(v)
zw{u,v}

⎞
⎠

≥ Ω̃(|Ê|). (9)

For any {u, v} ∈ Ê, we know from Definition 3(b) and

(7) that ∑
w∈Γ(u)∩Γ(v

pw{u,v} ≤
∑

w∈Γ(u)∩Γ(v)
zw{u,v} ≤ 1. (10)

We can then deduce that the probability that we cover

demand {u, v} ∈ Ê (in a single iteration) is at least
1
2

∑
w∈Γ(u)∩Γ(v) p

w
{u,v}, by simply using the following well-

known argument: if t (pairwise) independent events occur

with probabilities q1, . . . , qt that sum up to
∑t

i=1 qi ≤ 1,

then by the Bonferroni inequality, the probability that at least

one of these events occurs is at least∑
i

qi −
∑
i<j

qiqj =
∑
i

qi − 1
2

∑
i 	=j

qiqj ≥ 1
2

∑
i

qi. (11)

We thus obtain that the expected number of demands covered

(in a single iteration) is at least

1
2

∑
{u,v}∈Ê

∑
w∈Γ(u)∩Γ(v)

pw,
{u,v} ≥ Ω̃(|Ê|),

where the inequality is from (9), (10), and (11).

So we now know that in every iteration at least a c′ =
Ω̃(1) fraction of the remaining demands Ê are satisfied in

expectation, or equivalently that in expectation the number

of remaining unsatisfied demands is at most a (1− c′) frac-

tion of the previous number of demands. To see that this is

sufficient, note that by Markov’s inequality with probability

at most 1 − c′/2 the number of remaining demands is at

least a 1
1−c′/2 (1− c′) = 1− c′/2

1−c′/2 fraction of what it was.

Equivalently, with probability at least c′/2 at least a
c′/2

1−c′/2

fraction of demands are covered. Thus the probability that

this does not happen after (8/c′) lnn = Õ(1) iterations is at

most (1− c′/2)(8/c
′) lnn ≤ 1/n4. So with high probability,

after Õ(1) rounds the number of unsatisfied demands is at

most 1− c′/2
1−c′/2 ≤ 1− c′/2 of what it was. Now if this hap-

pens (4/c′) lnn = Õ(1) times then the number of remaining

demands is at most |E|(1 − c′/2)(4/c
′) lnn < 1, so the

algorithm terminates. Thus with high probability the number

of iterations is at most (8/c′) lnn · (4/c′) lnn = Õ(1), as

required.

3. A FAITHFUL ROUNDING ALGORITHM FOR SmES

In this section we describe our faithful factor n3−2
√
2+ε

rounding algorithm for SmES. While the description of the

full algorithm is rather lengthy, and therefore deferred to

the full version, we give a high-level overview (with some

technical details) and concentrate on a special case which

illustrates the main ideas in the algorithm and its analysis.

3.1. DENSEST k-SUBGRAPH and the log-density framework

We follow the framework introduced in [9]. They begin by

defining the notion of log-density of a graph as logn(Davg),
where Davg is the average degree and n is the number of

nodes. They then asked the following question: how hard is

it to distinguish between 1) a random graph, and 2) a graph

containing a subgraph with roughly the same log-density as

the first graph?

More formally, they pose the following DENSE VERSUS

RANDOM promise problem, parameterized by k and con-

stants 0 < α, β < 1: given a graph G, distinguish between

the following two cases:

1) G = G(n, p) where p = nα−1 (this graph has log-

density concentrated around α).

2) G is adversarially chosen so that the densest k-

subgraph has log-density β (where k1+β � pk).

For certain ranges of parameters, it seems quite chal-

lenging to efficiently distinguish when β < α. In fact, the

following hypothesis is consistent with the current state of

our knowledge:

Hypothesis 5. For all 0 < α < 1, for all sufficiently small
ε > 0, and for all k ≤ √

n, we cannot solve DENSE VERSUS

RANDOM in polynomial time (w.h.p.) when β ≤ α− ε.

The above hypothesis (if true) has immediate implications

for the hardness of approximation of both DkS and SmES.

Concretely, for SmES, let m = k1+β be the number of

edges in k-subgraph in the second case. We know that in

the first case w.h.p. the smallest m-edge subgraph has size

at least Ω̃(min{m,
√
mn1−α}). Thus, if we could achieve

approximation ratio � k/min{m,
√
mn1−α}, this would

refute Hypothesis 5 for the corresponding parameters. For

k = n
√
2−1 and α =

√
2 − 1, the hypothesis implies that

there exists no n3−2
√
2−ε-approximation for SmES.
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While [9] matches the gap predicted by the log-density

model for DkS with an n1/4+ε approximation for DkS (even

for general graphs), we also match the predicted gap for

SmES with an n3−2
√
2+ε-approximation for SmES.

3.2. Parametrization and simplifications

In order to achieve a faithful rounding, we will make cer-

tain assumptions (which we later justify) about the structure

of the intended solution to the LP relaxation. In particular,

we will assume that the subgraph represented by the solution

is regular, and that we are allowed to “guess” the size of

the subgraph, k, and the degree in the subgraph, d, thus

m = Θ(kd).
We also make the following simplifying assumptions. Let

f = f(n, k, d) be the intended approximation factor, which

will be determined shortly. We may assume that f ≤ d, since

it is easy to achieve a faithful O(d)-approximation. We also

assume that the maximum degree in the input graph is at

most D = nd/(kf2). All of these assumptions are without

loss of generality (see the full version [13] for details).

Let α = logn(D). We define our intended approximation

f implicitly as the value which satisfies f = nα(1−α)/(1+α)

(together with the definition of D we can derive an explicit

expression for α and f ). Note that maximizing this expres-

sion over α ∈ [0, 1] shows that f ≤ n3−2
√
2.

3.3. LP relaxation and faithful rounding for SmES

With the previous assumptions in mind, we can write a

feasibility-LP relaxation (simplified for this overview) which

is implied by q rounds of Sherali-Adams. This relaxation is

presented in Figure 2. The variables are {zT : T ⊂ V ∪
E, |T | ≤ q} (in the intended 0-1 solution, zT = 1 if and

only if all vertices and edges in T are in the subgraph).

The algorithm in its full generality is based on the

caterpillar structures introduced in [9] (where the caterpillar

structure depends on α). Let us concentrate here on the case

where α = 1/s for some (fixed) integer s > 0, in which case

the caterpillar is simply a path of length s. At its core, the

algorithm (for this value of α) relies on an LP-analogue of

the following combinatorial argument. Fix a vertex v0 in

the optimum subgraph. For all t = 1, . . . , s, let P v0
t be the

union of all (possibly self-intersecting) paths of length t in

the subgraph starting at v0, and let V v0
t be final endpoints

of those paths. Note that |V v0
1 | = d and that

|V v0
s | ≤ k =

dn

f2D
=

d

f2
· n1−α =

d

f2
f (1+α)/α = dfs−1.

Therefore, there must be some t ∈ {1, . . . , s− 1} for which

|V v0
t+1|/|V v0

t | ≤ f . Now consider the subgraph at this step

Hv0
t = (V v0

t , V v0
t+1, {{vt, vt+1} : ∃v0−. . .−vt−vt+1 ∈ P v0

t+1}).
Since the vertices in V v0

t all have degree d, the average

degree of vertices in V v0
t+1 is at least d/f . It turns out that

even without access to the optimum subgraph we can isolate

a subgraph with average degree at least d/f and at most kf
vertices (this is essentially because by the degree bound,

the number of vertices at any intermediate stage is at most

Ds−1 = n1−α = n
D = k · f2

d ≤ kf ). This essentially gives

an f -approximation for SmES (since we can repeat until

accumulating m edges).

Here we come to the fundamental difficulty in adapting

such an approach to achieve a faithful rounding. The combi-

natorial algorithm depends on choosing an initial vertex v0
which is actually in the optimum subgraph. The analogous

LP-rounding algorithm uses the LP values “conditioned on

choosing v0”, that is, values of the form zS∪{v0}/zv0 instead

of the original zS variables (where S corresponds to one or

more vertices/edges along the path). However, it is the zS
variables (in particular for singleton sets S representing one

vertex or one edge) which we want to be faithful to in our

rounding.5 Unfortunately, these two LP solutions might be

almost completely unrelated.

To overcome this difficulty, we use a somewhat elaborate

bucketing scheme, to ensure that all the relevant LP values

are reasonably uniform, as follows. Denote by Pv
t the set

of all length t paths in the graph starting at vertex v, and

by zp the variable for a path p (i.e., zT where T is the set

of edges and vertices in p, or by Constraint (15), T could

equivalently be just the edges in p). The core of the analysis

of the LP-analogue relies on the equality∑
v

∑
p∈Pv

t

zp =
∑
v

dtz{v} = kdt,

obtained by Constraint (12) and repeated applications

of (13), but in fact it can use any set of length-s paths P
for which

∑
p∈P zp = Ω̃(kds). Thus by partitioning the

set of paths
⋃

v P
v
s into buckets and choosing a bucket

P with the largest LP value, we can ensure that in every

path p = u0 − u1 − . . . − us in the bucket P certain LP

values (like the ones corresponding to entire paths, zp, or

the ones corresponding to path prefixes, z{{ui−1,ui}|i∈[t]}
for some t ∈ [s − 1], or to vertices in certain positions,

z{ut}, or to “conditioned” values, z{u0,ut}/z{u0}) are all

independent of the choice of path (up to a constant factor).

In other words, within the bucket P (say, vertices ut for a

fixed t ∈ {0, . . . , s}), the corresponding LP values will be

essentially uniform over the choice of starting vertex u0 and

path p.

Using the uniformity obtained via the above bucketing

scheme, we can relate the algorithm (which is based on the

conditioned LP values) to the original LP values. After some

additional combinatorial bucketing, we can run the following

algorithm: let V0 be the set of starting vertices u0 (i.e. paths

of length 0) that survive the bucketing, pick a starting vertex

u0 ∈ V0 uniformly at random, and for whichever level

5This problem is only exacerbated in the general case, when the cater-
pillar has additional leaves to condition on.
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Figure 2. Relaxation for SmES

∑
v∈V

zT∪{v} = kzT ∀T ⊂ V ∪ E, |T | ≤ q − 1 (12)

∑
u∈Γ(v)

zT∪{u} = dzT ∀T ⊂ V ∪ E : |T | ≤ q − 1, ∀v ∈ T ∩ V (13)

zT = zT∪{u} = zT∪{v} = zT∪{u,v} ∀T ⊂ V ∪ E, |T | ≤ q − 2, ∀{u, v} ∈ T ∩ E (14)

0 ≤ zT ≤ zT ′ ≤ z∅ = 1 ∀T ′ ⊆ T (15)

t ∈ [s − 1] that gives the approximation guarantee (it can

be shown that such a t exists), output the level t subgraph

Hu0
t = {{ut, ut+1} | ∃p = u0−u1−. . .−us ∈ P}. Since LP

values are uniform, the question essentially becomes, how

do we guarantee that no bucketed vertex (or edge) is chosen

with much higher probability than the rest (or the average)?

This is where we crucially use the regularity Constraint (13)

(as opposed to, say, a minimum degree constraint, as in [9]).

Roughly speaking, individual vertices and edges cannot be

reached by a disproportionately large fraction of vertices

u0 ∈ V0, because then the relative total LP weight of the

corresponding paths (to such a vertex or edge) would exceed

dt.

For the sake of concreteness, let us consider one specific

aspect of faithful rounding: the probability with which the

level t vertices ut are chosen. Let Pt be the set of length

t prefixes of paths in P , let Pu0
t be the set of paths in Pt

that start with the vertex u0 ∈ V0, and let Vt (resp. Vu0
t ) be

the set of level t endpoints of paths in Pt (resp. in Pu0
t ).

By the approximation guarantee (via an LP analogue of the

above combinatorial argument), we have

|Vu0
t | ≤ fk. (16)

Suppose the bucketing also ensures that every u0 ∈ V0 and

ut ∈ Vu0
t are connected by roughly the same number of

Pt paths (up to a constant factor), which we denote by h.

Also, suppose the cardinalities |Vu0
t | are roughly uniform for

different choices of u0. Then, abusing notation, we can write

the number of paths as |Pt| ≈ |V0|·|Vu0
t |·h, and in particular,

the total weight of paths p ∈ Pt is zp|V0| · |Vu0
t | · h ≈ kdt.

Now, by repeated applications of Constraint (13), we have

that the total weight of paths leading to a specific vertex

ut ∈ Vt is zp|{u0 | ut ∈ Vu0
t }|h ≤ zut

dt (note that this

argument reverses the direction of paths in the algorithm

and so crucially depends on the existence of consistent high-

moment Sherali-Adams variables, which are not present in

the Lovász-Schrijver hierarchy used in [9]). Combining this

with the (approximate) equality above, we can bound the

probability that a vertex ut is included in the output (the

level t subgraph) as

|{u0 | ut ∈ Vu0
t }|

|V0| ≤ dtzut

zph|V0| =
|Vu0

t |zut

k
≤ fzut

,

by (16).

4. DISCUSSION AND FUTURE DIRECTIONS

Some features of our techniques might be applicable to

other problems. Most obviously, this is perhaps the first time

that LP hierarchies are applied to “local” parts of an LP,

rather than to the entire LP. Can this approach be useful

for other problems? Currently, it is not clear to us how

this approach fares against one “global” application of an

LP hierarchy to some basic relaxation: a global hierarchy

could take advantage of non-locality in the constraints and

solution, but on the other hand would not allow us to locally

“guess” degrees (see e.g. footnote 4).

Persistent gaps in the approximability of other network

design problems naturally call for a judicious use of LP

hierarchies in order to obtain better approximation algo-

rithms. For example, the BASIC k-SPANNER problem, in

which the goal is to construct a k-spanner with as few edges

as possible, is only known to admit approximation ratio

O(n1/
(k+1)/2�) [1], while the best hardness of approxima-

tion is 2(log
1−ε n)/k for arbitrarily small constant ε > 0 [17].

An integrality gap that almost matches the upper bound

(namely a gap of nΩ(1/k)) was recently shown by Dinitz

and Krauthgamer [18], but stronger relaxations obtained via

hierarchies can possibly have smaller integrality gaps. In

particular, it is not at all clear what the best achievable

approximation ratio is for the regime when k is constant;

perhaps hierarchies will finally allow upper bounds that

beat [1] (note that this has been done using other techniques

for k = 3 by [8], who gave an Õ(n1/3)-approximation

for BASIC 3-SPANNER). Similarly, for directed k-spanner

the known upper bound is Õ(
√
n) [8], and there is an

Ω̃(n1/3) integrality gap [18], but it only applies to a simple

LP relaxation. Yet other relevant problems are DIRECTED

STEINER TREE and DIRECTED STEINER FOREST, see [24],

[8] and references therein. Perhaps hierarchies could help for

some of these problems?
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Finally, the connection we show between LD2S and

SmES suggests an intriguing possibility for conditional lower

bounds. The current hardness for LD2S is only Ω(logn),
while SmES is basically as hard as DkS, which is commonly

thought to be difficult to approximate well (say within a

polylogarithmic factor, although current hardness results rely

on various complexity assumptions and give only a relatively

small constant [22], [27]). A reduction in the other direction,

i.e. from SmES to LD2S, could give partial evidence that

LD2S cannot be approximated well, and could possibly

even match the upper bound that we prove here. The same

arguments about a formal connection to DkS obviously apply

also to other network design problems, such as BASIC k-

SPANNER.
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