
Improved Distance Sensitivity Oracles via
Fast Single-Source Replacement Paths

Fabrizio Grandoni
IDSIA, University of Lugano

fabrizio@idsia.ch

Virginia Vassilevska Williams
UC Berkeley and Stanford University

virgi@eecs.berkeley.edu

Abstract—A distance sensitivity oracle is a data structure
which, given two nodes s and t in a directed edge-weighted
graph G and an edge e, returns the shortest length of an
s-t path not containing e, a so called replacement path for
the triple (s, t, e). Such oracles are used to quickly recover
from edge failures.

In this paper we consider the case of integer weights
in the interval [−M,M], and present the first distance
sensitivity oracle that achieves simultaneously subcubic
preprocessing time and sublinear query time. More pre-
cisely, for a given parameter α ∈ [0, 1], our oracle has pre-
processing time Õ(Mnω+ 1

2 +Mnω+α(4−ω)) and query time
Õ(n1−α). Here ω < 2.373 denotes the matrix multiplication
exponent. For a comparison, the previous best oracle for
small integer weights has Õ(Mnω+1−α) preprocessing time
and (superlinear) Õ(n1+α) query time [Weimann,Yuster-
FOCS’10].

The main novelty in our approach is an algorithm
to compute all the replacement paths from a given
source s, an interesting problem on its own. We can
solve the latter single-source replacement paths prob-
lem in Õ(APSP (n,M))) time, where APSP (n,M) <

Õ(M0.681n2.575) [Zwick-JACM’02] is the runtime for com-
puting all-pairs shortest paths in a graph with n vertices
and integer edge weights in [−M,M]. For positive weights
the runtime of our algorithm reduces to Õ(Mnω). This
matches the best known runtime for the simpler replace-
ment paths problem in which both the source s and the
target t are fixed [Vassilevska-SODA’11].

Keywords-replacement paths; distance sensitivity ora-
cles; shortest paths.

I. INTRODUCTION

Let G = (V,E) be an n-node directed graph, with
edge weights (or lengths) w : E → Q. Given two nodes
s and t and an edge e, a replacement path Ps,t,e for
the triple (s, t, e) is the shortest path from s to t that
avoids edge e. A distance sensitivity oracle (DSO) is a
data structure that, after a preprocessing step, answers
queries of the form (s, t, e) by returning the length
Ds,t,e of the corresponding replacement path Ps,t,e

1.
DSOs allow quick recovery from (single) edge failures.

1In some variants of the problem the data structure also returns
the replacement path itself. Our results can be modified to return
paths as well, in time linear in the number of path edges.

DSOs are very well-studied in the literature. For
arbitrary non-negative edge weights, there are two
trivial approaches. The first does no precomputation
and each query (s, t, e) is answered by computing the
shortest path between s and t in G \ {e} explicitly
in O(m+ n log n) time using Dijkstra’s algorithm. The
second approach takes Õ(mn2) preprocessing time to
compute for every source node s and every edge e in
the shortest paths tree rooted at s, the new shortest
paths tree from s in G \ {e}. (Here and throughout
the paper, the Õ notation suppresses no(1) factors.) The
queries are then answered in O(1) time by looking up
the answer. Similar DSOs can be obtained for graphs
with possibly negative weights but no negative cycles
by adding an extra Õ(mn) time preprocessing step to
replace all negative weights by non-negative ones, as
in [12].

The preprocessing time for DSOs with arbitrary edge
weights was improved to Õ(mn

3
2) by Demetrescu et

al. [7], while keeping the query time constant. Bern-
stein and Karger further improved the preprocessing
time to Õ(

√
mn2) [3] and finally to Õ(mn) [4]. The lat-

ter preprocessing time matches, up to poly-logarithmic
factors, the best known runtime for the all-pairs shortest
paths problem (APSP) in the same setting, and seems
therefore very hard to beat.

One can do better, at least in terms of preprocessing
time, in the case of integer weights of small absolute
value. Let ω ∈ [2, 2.373] denote the smallest constant
such that there is an algorithm to multiply two n × n
matrices in Õ(nω) time [21]. For integer weights in
[−M,M], Weimann and Yuster [22] presented a DSO
with preprocessing time Õ(Mnω+1−α) and query time
Õ(n1+α) for any given parameter α ∈ [0, 1]. In particu-
lar, they showed that the problem can be solved with
both subcubic preprocessing time and subquadratic
query time2. An obvious open problem is whether
one can achieve subcubic preprocessing time with

2[22] also considers the case of f = O(1) (simultaneous) failures:
part of our results can be extended in that direction, but this is out
of the scope of this paper.

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.17

748

linear (or even sublinear) query time. We answer this
question affirmatively.

A. Our Results

Distance Sensitivity Oracles: In this paper we
present an improved DSO in the case of integer
weights of absolute value bounded by M .

Theorem 1. For any integer 1 ≤ S ≤ n, there is a
randomized distance sensitivity oracle for directed graphs
with integer weights in [−M,M], with preprocessing time
Õ(Mnω · (S4−ω +

√
n)), query time Õ(nS), and failure

probability3 polynomially small in n.

In particular, by choosing S = Θ(n
1

2(4−ω)), one
obtains subcubic preprocessing time Õ(Mnω+ 1

2) <

O(Mn2.88) and sublinear query time Õ
(
n1− 1

2(4−ω)

)
<

O(n0.70). Our oracle is always better than the oracle
in [22] in terms of query time, and for α < 1

2 it
improves also on the preprocessing time.

Incidentally, we are also able to obtain a variant of
the DSO in [22] with the same preprocessing time, but
with an improved query time.

Theorem 2. For any integer 1 ≤ L ≤ n, there is a
randomized distance sensitivity oracle for directed graphs
with integer weights in [−M,M], with preprocessing time
Õ(LMnω), query time Õ(n/L

1
4−ω + (n/L)2), and failure

probability polynomially small in n.

Choosing L = Θ(n1−α), this gives Õ(Mnω+1−α) ≤
O(Mn3.373−α) preprocessing time and Õ(n1− 1−α

4−ω +
n2α) ≤ Õ(n0.386+0.615α + n2α) query time. While this
DSO does not involve drastically new techniques on
top of the techniques needed for Theorem 1, we present
it for the sake of completeness since it implies a strict
improvement on [22] also for α > 1

2 .
The DSO in [22] distinguishes between hop-short

replacement paths, which contain at most L = Θ(n1−α)
nodes, and the remaining hop-long paths. Hop-short
paths are computed in Õ(n) time (at query time)
by considering Õ(L) (properly chosen) random sub-
graphs, and precomputing for each such graph the
distance oracle in [24] in Õ(Mnω) time. For hop-long
replacement paths Ps,t,e, the algorithm exploits a more
involved procedure, based on the computation of an
s-t shortest path in a proper auxiliary graph, whose
construction (at query time) takes superlinear time
Õ(n2/L).

We are able to reduce the query time for hop-short
paths by a careful use of known techniques. In order to
address hop-long paths, we take a completely different

3All the algorithms considered in this paper return lengths that
are never smaller than the correct ones: the failure probability refers
to the event that a strictly larger length is returned.

approach. Let B be a random sample of Õ(n/L) nodes,
so that whp every hop-long replacement path Ps,t,e

contains some node b ∈ B. Observe that the portion
of Ps,t,e from s to b must be the replacement path
for the triple (s, b, e). Similarly for the triple (b, t, e).
Suppose then that, for every b ∈ B, we precomputed
the quantities Ds,b,e and Db,t,e. Then we can triv-
ially answer the query (s, t, e) by computing Ds,t,e =
minb∈B{Ds,b,e + Db,t,e}. This takes Õ(|B|) = Õ(nL)
time, which is sublinear. Note that the computation of
Dv,b,e is equivalent to the computation of Db,v,e after
reversing all edge directions.

From DSOs to Single Source Replacement Paths:
From the above discussion, we can reduce the problem
of designing an improved DSO to the problem of ef-
ficiently computing all the replacement path distances
Ds,t,e from a fixed source s (s ∈ B in our DSO). We
call this problem single-source replacement paths (SSRP).
SSRP is a natural generalization of the well-studied
replacement paths problem (RP) [2], [8], [9], [14], [15],
[16], [20], [22], where both the source s and the target t
are fixed. Somehow surprisingly, SSRP has not received
much attention in the literature. The only reference to
our knowledge is a paper by Hershberger et al. [10]
that refers to the problem as edge-replacement shortest
paths trees and shows that in the path-comparison
model of computation of Karger et al. [13], SSRP on
directed graphs with n nodes, m edges and arbitrary
edge weights requires Ω(mn) comparisons. The reduc-
tions by Vassilevska Williams and Williams [23] imply
that, for arbitrary weights, any Õ(n3−ε) algorithm for
a constant ε > 0 even for the simpler RP problem
would imply a Õ(n3−δ) algorithm for some constant
δ > 0 for all-pairs shortest paths (APSP). Therefore,
there seems to be little hope to obtain a subcubic time
algorithm for SSRP. Here we present the first subcubic
algorithms for small integer weights. We note that due
to our use of fast matrix multiplication, our algorithms
do not fall under the path-comparison model. We think
that SSRP is a natural problem in itself, regardless of
its application to DSOs.

Theorem 3. There is a randomized algorithm that solves
SSRP in directed graphs with integer weights in [−M,M]

in time Õ(M
1

4−ω n2+ 1
4−ω). For positive weights the runtime

can be reduced to Õ(Mnω). The failure probability is
polynomially small in n.

Note that the runtime of our SSRP algorithm for
weights in [−M,M] matches the runtime of Zwick’s
APSP algorithm4 [26]. We also remark that the runtime

4Zwick achieves a slightly faster runtime O(M0.681n2.575) by
means of fast rectangular matrix multiplication [11]. We can similarly
improve the runtime of our algorithm: we will omit these technical
details for the sake of presentation.

749

of our algorithm for positive weights matches the best
known algorithm by Vassilevska Williams [20] for the
simpler RP problem. We suspect that the case in which
the weights can be negative might be intrinsically
harder, as the problem seems to be more tightly related
to APSP. Showing that this is the case, or obtaining
an Õ(Mnω) algorithm for possibly negative weights
as well is an interesting open problem.

We give some intuition for our approach in the
following. Let Ts be the shortest paths tree from source
s. Pv,u denotes the path from v to u in Ts, and Dv,u its
length. For a pair (t, e) ∈ V ×E, if e does not lie along
Ps,t, then Ps,t,e = Ps,t. We call the remaining pairs (t, e)
relevant, and focus on them. The first step in our algo-
rithm is a partition of Ts into a small (subpolynomial)
number of subtrees T ′. Using balanced tree separators,
we can guarantee that each T ′ contains roughly the
same number of nodes (modulo constants). Let P ′ be
the path from s to the root of T ′. For any relevant
pair (t, e) there must exist some subtree T ′ such that
t ∈ V (T ′) and either (a) e ∈ E(T ′) or (b) e ∈ E(P ′). This
way we identify a collection of subproblems, where
each subproblem is of the following two forms. In a
subtree problem, we are given a subtree T ′ of T and we
want to compute replacement paths Ps,t,e where both
t and e belong to T ′ (handling (a) above). In a subpath
problem we are given a subpath P ′ of T from the source
s to a node t′, and a subtree T ′ of T rooted at t′, and
we want to compute replacement paths Ps,t,e with t in
T ′ and e in P ′ (handling (b) above).

We solve each subtree problem T ′ recursively, after
a preliminary compression step where we replace the
nodes outside T ′ with a subpolynomially smaller ran-
dom subset B of them, adding auxilliary edges repre-
senting shortest paths between the sampled nodes.

Handling subpath problems (P ′, T ′) is the crux of
our approach. The portion of Ps,t,e not in Ps,t is called
a detour and (wlog) is a path that starts at some node v
of Ps,t (before edge e) and ends at some other node u of
Ps,t (after edge e). Note that possibly v = s or u = t. For
a given subpath problem (P ′, T ′), we distinguish two
types of replacement paths Ps,t,e depending on their
detour: in jumping paths, detours have both endpoints
in P ′; in departing paths, detours have only the starting
node in P ′. We can reduce the computation of jumping
paths to an instance of the RP problem which we solve
in Õ(Mnω) time with the algorithm in [20].

The computation of departing paths essentially re-
duces to the computation of their detours. For pos-
itive weights, we are able to compute such detours
in Õ(Mnω) time. We adapt an idea of Roditty and
Zwick [16] used in their unweighted RP algorithm.
Roughly speaking, consider the detour P̃v,u of a de-
parting path Ps,t,e, going from some v ∈ V (P ′) to

some u ∈ V (T ′)−{t′}. Suppose that P̃v,u has X nodes
and hence length at most MX . Consequently also the
length of the shortest path Pv,u from v to u is at most
MX , which implies that Pv,u contains at most MX
nodes (here we exploit the positiveness of the weights).
This forces v to be one of the final MX nodes of P ′

(since u /∈ V (P ′)). We exploit the above observation
as follows. Let L be a proper integer threshold. We
compute all the distances in G − E(P ′) from the final
ML nodes of P ′ to V (T ′): this way we obtain the
detours with X ≤ L. Then we sample a random set B
of Õ(n/L) nodes, so that whp B hits all the detours
with X ≥ L. We compute the shortest paths from
V (P ′) to B and from B to V (T ′), and then derive the
desired detour lengths by going through all the triples
(v, b, u) ∈ V (P ′)×B × V (T ′).

Consider the computation of shortest paths in the
two stages of the algorithm. In both cases we have
to solve an instance of the following S-T shortest paths
problem (STSP): given a directed edge-weighted graph
G = (V,E), and two subsets of nodes S, T ⊆ V ,
compute all the distances between pairs (s, t) ∈ S ×
T . The best know algorithm for STSP (for M small
enough) is given in [24] and has runtime Õ(Mnω +

M
1

4−ω n
3

4−ω (|S| |T |)1− 1
4−ω). We improve this to:

Theorem 4. There is a randomized algorithm that solves
STSP in directed graphs with integer weights in [−M,M]

in time Õ(Mnω + |S| · |T | · (Mn)
1

4−ω), with failure proba-
bility polynomially small in n.

Using our STSP algorithm and choosing L prop-
erly, we are able to solve a subpath problem in time
Õ(Mnω +M

1
2+

1
2(4−ω)n2+ 1

2(4−ω)). This is Õ(Mnω) for ω
big enough (in particular it holds for the current best
bound on ω of 2.373). In order to obtain a runtime of
Õ(Mnω) for any value of ω, we use a scaling trick.
We consider a logarithmic subset of intervals [X, 2X),
X ≥ L, and search for the detours with a number of
nodes in the interval by considering the detours which
start in the last 2MX nodes of P ′ and pass through a
sample of Õ(n/X) nodes. This way, going through the
triples (v, b, u) costs only Õ(Mn2) rather than Õ(n3/L).

For arbitrary weights the idea of considering the
final MX nodes of P ′ does not work: here a very
low weight path might contain many nodes due to
negative (or even zero) edge weights. One possibil-
ity is to compute APSP in G − E(P ′) with Zwick’s
algorithm (using our STSP algorithm does not help
since possibly |V (P ′)| = Ω(n) = |V (T ′)|). This solves
SSRP for integer weights in [−M,M] in the claimed
Õ(M

1
4−ω n2+ 1

4−ω) time. However, in order to design a
fast DSO, it is convenient to exploit a variant of this
SSRP algorithm. Recall that we need to compute hop-

750

long replacement paths containing at least L nodes,
for a proper integer threshold L. Also in this case
we exploit a scaling trick: for a logarithmic set of
intervals [X, 2X), X ≥ L, we address the problem of
computing replacement paths with a number of nodes
in the interval. To do this, we sample Õ(n/X) random
nodes B, and solve SSRP on each b ∈ B, but only
considering replacement paths on at most 2X nodes.
The last assumption allows us to reduce the runtime
of the SSRP algorithm, since in each subpath problem
(P ′, T ′) we need to consider only detours of departing
paths which start from the first 2X nodes of P ′ (other-
wise the corresponding replacement paths would have
> 2X nodes). The runtime of the modified SSRP turns
out to be Õ(Mnω + XM

1
4−ω n1+ 1

4−ω). For increasing
X , each execution of the modified SSRP algorithm
becomes more expensive, but this is compensated by
the smaller number of executions (i.e., Õ(n/X)). This
is sufficient to achieve the same performance of the
DSO for positive weights also in the case of arbitrary
weights (despite the fact that we are not able to solve
SSRP equally fast in the two cases).

B. Related Work

The replacement paths problem (RP) is very well
studied in the literature. Let m denote the number
of edges and n the number of vertices in the fol-
lowing. Malik, Mittal and Gupta [14] gave an Õ(m)
time algorithm for RP in undirected weighted graphs.
Nardelli et al. [15] used Thorup’s linear time algorithm
for single source shortest paths [19] to improve the
runtime to O(mα(n)) in the word-RAM model of com-
putation. The problem in directed graphs seems some-
what more difficult. Roditty and Zwick [16] showed
that in unweighted directed graphs RP can be solved
in Õ(m

√
n) time. For weighted planar digraphs, the

runtime can be reduced to Õ(n) as shown by Emek,
Peleg and Roditty [8]. For arbitrary directed graphs
with arbitrary edge weights, the fastest known algo-
rithm for RP is by Gotthilf and Lewenstein [9] and runs
in O(mn + n2 log log n) time. For dense graphs with
arbitrary edge weights, nothing much better than cubic
time is known.5 Vassilevska Williams and Williams [23]
showed that the RP problem in directed graphs is
equivalent to APSP, under subcubic reductions, i.e.
essentially either both problems admit truly subcubic
algorithms, or neither of them does. This apparent
cubic time barrier only holds when one wants to
solve the RP problem exactly. In contrast, Bernstein [2]
described an algorithm for RP in directed graphs with

5Polylogarithmic improvements are possible. For example,
Chan’s [5] O(n3 log log3 n/ log2 n) algorithm for all-pairs shortest
paths can be converted to one for replacement paths.

positive weights that for any ε > 0, computes (1 + ε)-
approximate replacement paths in Õ(1εm) time.

For graphs with bounded integer weights, there
are two improved algorithms for RP based on fast
matrix multiplication. Let ω ∈ [2, 3] denote the smallest
constant such that for all ε > 0, there is an algorithm to
multiply two n×n matrices in O(nω+ε) time. The best
bound on ω was 2.376 for about twenty years [6], and it
was recently improved independently by Stothers [18]
to 2.374 and by Vassilevska Williams [21] to 2.373.
For directed graphs with integer weights in [−M,M],
Weimann and Yuster [22] described an algorithm for
RP of runtime Õ(Mn1+ 2

3ω). Vassilevska Williams [20]
designed a faster randomized algorithm with runtime
Õ(Mnω), and failure probability polynomially small in
n. We will use her algorithm as a black box. An RP
algorithm can be used also to compute the k shortest
paths from s to t with an increase of the running time
by a factor O(k) [16].

Matrix multiplication is a common tool to solve
shortest path problems in the presence of small integer
weights. Alon, Galil and Margalit [1] presented an
algorithm for APSP in directed graphs with weights in
{−1, 0, 1} of runtime Õ(n

ω+3
2). This was improved and

generalized to integer weights in [−M,M] by Zwick
[26], whose algorithm has runtime Õ(M

1
4−ω n2+ 1

4−ω)
(or O(M0.681n2.575) by using fast rectangular matrix
multiplication). For undirected graphs, the current best
runtime is Õ(Mnω) by Shoshan and Zwick [17]. Yuster
and Zwick [24] gave the currently fastest Õ(Mnω)
algorithm for the single-source shortest path problem
(SSSP) in directed graphs with integer weights in
[−M,M].

C. Preliminaries

The distance product A�B of an a× b matrix A and
a b× c matrix B is the a× c matrix C such that Cij =
mink=1,...,b{Aik + Bkj}. Alon, Galil and Margalit [1],
following Yuval [25], show:

Lemma 1. The distance product of an a × b matrix by
a b × c matrix, where each entry is either an integer in
[−M,M] or +∞, can be computed in time Õ(min{abc,M ·

abc
(min{a,b,c})3−ω }).

The following lemma is at the heart of the DSO
in [22], and it will be crucial for us as well.

Lemma 2. [22] For an integer 1 ≤ L ≤ n and a constant
C > 0, sample s = L ·C log n graphs {G1, . . . , Gs}, where
each Gi is obtained from G by independently removing
each edge with probability 1/L. For C large enough, the
following two claims hold whp: (a) For any edge e ∈ G,
there are Θ(log n) graphs Gi not containing e. (b) For any

751

replacement path Ps,t,e on at most L nodes, there is at least
one Gi that does not contain e but contains Ps,t,e.

We will exploit the distance oracle in [24]. The final
claim of the next lemma is implicit in [24].

Lemma 3. [24] Given a directed graph with integer weights
in [−M,M], there exists a distance oracle with prepro-
cessing time Õ(Mnω), which answers queries (s, t) by
returning the length of the shortest s-t path in O(n) time.
Furthermore, the distance between nodes with a shortest
path containing at least L nodes can be returned in Õ(n/L)
time.

We will extensively use the following lemma. While
the upper bound part is used also in [22], the lower
bound part is at the base of the improved variant in
Theorem 2.

Lemma 4. Given a set P of paths and two parameters
1 ≤ L ≤ n and N > 0, sample 4Nn/L nodes B uniformly
at random. With probability at least 1− |P|ne−N for each
P ∈ P there exists B(P) ⊆ B which partitions P into
subpaths of at least L/8 and at most L nodes each.

Proof: We show that the claim does not hold for a
fixed path P between nodes s to t, with probability at
most ne−N : the claim follows from the union bound.
If P contains at most L nodes the claim is trivially
true. Otherwise, let us iteratively remove the first L/2
nodes of P until it contains less than L nodes. This
partitions P into at most 2n

L intervals containing L/2
nodes and a last interval which might contain up to
(almost) L nodes but also contains at least L/2 nodes.
Let us consider the central subinterval of L/4 nodes of
each interval, except possibly the last one. If the last
interval has more than L/2 nodes, then consider its
first subinterval of L/4 nodes.

Suppose that each subinterval contains some node
from B. In that case we let B(P) consist of one
arbitrary node of B per subinterval. It is not hard to
see that two consecutive nodes in B(P) ∪ {s, t} in the
order induced by P are at hop-distance at least L/8
and at most L. From the union bound, the probability
that there exists one subinterval not hit by B is at most
2n
L (1− L

4n)
4Nn
L ≤ ne−N .

Throughout this paper C > 0 denotes a sufficiently
large constant that guarantees that the failure proba-
bility of the considered algorithms is at most n−Q for
any fixed constant Q > 0.

II. SOLVING STSP
Our STSP algorithm builds upon Zwick’s APSP

algorithm [26], by combining a new idea with an
approach from [24]. Zwick’s algorithm proceeds as
follows. For a matrix D and V ′, V ′′ ⊆ V , let D[V ′, V ′′]
denote the matrix obtained by considering only the

rows and columns indexed by V ′ and V ′′, respectively.
The algorithm consists of a sequence of iterations i =
1, . . . ,
log3/2 n�. At iteration i, one is given a distance
matrix D, containing upper bounds on the distances
between nodes. Initially D contains edge weights (+∞
for missing edges). The algorithm samples a subset Bi
of bridge nodes, where each node is sampled indepen-
dently with probability pi = min{1, 9 lnn

si
}, si = (3/2)i.

Then one sets,

D ← min{D, roundsiM (D[V,Bi]) � roundsiM (D[Bi, V])},

where the minimum is computed element-wise. Here
roundM ′(·) is a function which takes as input a matrix
and returns the same matrix where the entries of abso-
lute value larger than M ′ are set to +∞. Zwick shows
that for any i and any two nodes u, v, if there is a short-
est path from u to v on at most (3/2)i edges, then after
iteration i whp D[u, v] = dist(u, v). By Lemma 1, the
runtime of the algorithm up until some given iteration
� is Õ(Mnωs3−ω

�), and after that iteration is Õ(n3/s�):
hence the overall runtime is Õ(M1/(4−ω)n2+1/(4−ω)). At
the end of the algorithm, the shortest path distances
are given by D with probability at least 1 − 1/n. It is
not hard to show that, by replacing the factor 9 in the
probability with 3Q+6 for Q > 1, the failure probability
decreases to n−Q: we next consider this variant of the
algorithm. By halting the algorithm after � iterations,
we obtain the following corollary that we will need
later.

Corollary 1. The distances between all pairs of nodes that
have shortest paths on at most S nodes can be computed in
time Õ(MnωS3−ω), with failure probability polynomially
small in n.

We next adapt Zwick’s algorithm to solve STSP, by
making the following changes:

1) Starting from B0 = V , we let Bi be a random
subset of Bi−1 so that |Bi| = pi · |V |.

2) We update only a portion of the matrix D at each
iteration according to the formula

D[S ∪Bi, T ∪Bi]← min{D[S ∪Bi, T ∪Bi],

roundsiM (D[S ∪Bi, Bi]) � roundsiM (D[Bi, T ∪Bi])}.

At the end of the process the submatrix D[S, T] con-
tains the desired distances. The first change introduces
a dependency between the sets Bi at different itera-
tions, which is crucial for our purposes. This type of
dependency was also used by Yuster and Zwick [24]
in the construction of their distance oracle. The second
step allows us to save time, while computing distances
for the relevant pairs of nodes as in Zwick’s original
algorithm. This step is where we improve on the
runtime for STSP obtained by applying the distance
oracle of [24] directly.

752

Proof: (Theorem 4) The correctness analysis follows
along the same line as in [26] and [24]. Consider next
the runtime. Let us assume σ := |S| ≤ |T | =: τ , the
other case is symmetric. We also let γ ≤ σ be a proper
threshold to be fixed later, and βi := |Bi|. At a given
iteration i, we need to compute the distance product of
a (σ+βi)×βi matrix by a βi×(τ+βi) matrix with entries
(other than +∞) of absolute value at most Õ(Mn/βi):
this costs the minimum of Õ((σ + βi)βi(τ + βi)) and
Õ(Mn

β3−ω
i

(σ + βi)(τ + βi)) by Lemma 1. For βi ≥ σ, this

is at most Õ(Mn2

β2−ω
i

) ≤ Õ(Mnω). For σ > βi ≥ γ, this is at

most Õ(Mn
β3−ω
i

σ τ) ≤ Õ(Mn
γ3−ω σ τ). In the remaining case

γ > βi the runtime is Õ(σ τ βi) ≤ Õ(σ τ γ). Choosing
γ = (Mn)

1
4−ω gives the claimed runtime.

Incidentally, Yuster and Zwick mention that with
their distance oracle one can compute shortest paths
trees from Õ(Mnw−2) sources in Õ(Mnw) time. We can

do the same from Õ(M
1− 1

4−ω
nω−1− 1

4−ω) sources, which
is Ω(

√
n) even for M = O(1) and ω = 2, whereas the

number of sources Yuster and Zwick can handle is only
Õ(1) in that case.

III. A FASTER SSRP ALGORITHM

We show how to solve SSRP, by reducing it to a small
(subpolynomial) set of subpath problems and a small
number of recursive calls on much smaller instances
(Section III-A), and by solving each subpath problem
efficiently (Section III-B).

A. From SSRP to Subpath Problems

Consider an SSRP instance on n nodes with weights
of absolute value at most M . For technical reasons we
introduce a parameter ñ ≥ n which is implicitly passed
in all the recursive calls. Intuitively, ñ is the number
of nodes in the root of the recursion tree (i.e., in the
input instance). Let H := h(ñ) be a suitably chosen
subpolynomial function6.

Assume we are given the shortest paths tree Ts

of the current instance and the lengths Dv,u of its
paths Pv,u (this can be computed in Õ(Mnω) time). We
define a matrix {D̃s,t,e}(t,e)∈V (Ts)×E(Ts) which contains
our estimates of the replacement path distances Ds,t,e

for any node t and edge e in Ts. Observe that for
e /∈ E(Ts), Ds,t,e = Ds,t and this information can be
stored implicitly.

Let us assume that n ≥ H and M ≤ n3−ω , otherwise
we solve the problem with the trivial cubic algorithm
in Õ(n3) = Õ(Mnω) time. The algorithm initializes
each D̃s,t,e to +∞, and then sets D̃s,t,e ← Ds,t for any
pair (t, e) such that e /∈ E(Ps,t).

6For ω > 2, one can set H = poly log(ñ) and otherwise H =

2
√

log ñ log log ñ.

Then the algorithm partitions Ts into Θ(H) subtrees
with Θ(n/H) nodes each. In more detail, starting from
T = {Ts}, while there is T ∈ T with more than n/H
nodes, we compute a balanced separator node v of T ,
and use it to split T into two trees T ′ and T ′′, with
|V (T ′)|, |V (T ′′)| ≥ 1

3 |V (T)| + 1, which partition the
edges of T and intersect at node v only7. The trees T ′

and T ′′ replace T in T . Observe that at the end of the
process, the trees in T are edge-disjoint though they
might intersect at separator nodes. Furthermore, these
trees partition the edge set of Ts. As each tree contains
at least n

3H edges, |T | ≤ 3H . Each splitting step, and
hence the overall procedure, can be performed in Õ(n)
time.

Let P ′ be the path from s to the root t′ of T ′ ∈ T .
The values of D̃s,t,e that still need to be updated
must satisfy either (a) (t, e) ∈ V (T ′) × E(P ′) or (b)
(t, e) ∈ V (T ′)× E(T ′) for some T ′ ∈ T . We define the
subproblem of computing Ds,t,e for the pairs (t, e) of
the first and second type a subpath problem (P ′, T ′) and
a subtree problem T ′, respectively.

In the next section we show how to solve a subpath
problem with failure probability polynomially small
in n. We apply that procedure for O(log ñ) times to
each subpath problem, so that the failure probability
becomes polynomially small in ñ.

We solve each subtree problem T ′ recursively, af-
ter a proper compression step where we reduce the
number of nodes to O(n log ñ

H). (T ′ is already small,
however, there are many nodes outside of T ′, and
the compression step aims at reducing these.) In more
detail, we sample a random set B′ of n

H · C log ñ
nodes as in Lemma 4, so that with probability at least
1 − 1/ poly(ñ) each replacement path on at least H
nodes is partitioned by B′ into segments containing at
most H nodes each. We construct an auxiliary directed
complete graph G′ on node set B′ ∪ V (T ′) ∪ {s},
whose edges e are labelled with the corresponding
shortest path distance w′(e) in the graph G−E(T ′) but
only considering paths on at most H nodes, hence of
absolute length at most MH . Running the truncated
version of Zwick’s APSP algorithm from Corollary 1
O(log ñ) times, the computation of the weights w′(·)
takes Õ(MnωH3−ω log ñ) time and succeeds with prob-
ability at least 1− 1/poly(ñ). Then we add back edges
e ∈ E(T ′) with their original weight w′(e) = w(e).
Observe that the multi-graph G′ contains a contracted
representative of each replacement path for the consid-
ered triples (s, t, e) with failiure probability polynomi-

7We recall that in O(n) time we can compute a balanced separator
node v and a partition of T −{v} in two forests F ′ and F ′′, so that
each forest contains at least 1

3
|V (T)| nodes. It is then sufficient to

let T ′ and T ′′ be the subtrees induces by F ′ and F ′′, respectively,
plus node v.

753

ally small in ñ.
We get rid of parallel edges as follows: let e = uv ∈

E(T ′) and f = uv be the edge parallel to e (and with
the same orientation). Observe that any replacement
path containing the subpath corresponding to f must
be a replacement path for edge e and only for that
edge. We set D̃s,t,e ← min{D̃s,t,e, Ds,t − w(e) + w′(f)}
for each t such that (t, e) is relevant, and remove f
from G′.

Observe that the shortest paths tree T ′s from s in
G′ contains the subtree T ′ (by breaking ties properly).
We then solve the SSRP problem induced by (s,G′, w′)
recursively. Let D̃subtree

s,t,e be the obtained lengths. Fi-
nally, for each (t, e) ∈ V (T ′) × E(T ′), we set D̃s,t,e ←
min{D̃s,t,e, D̃

subtree
s,t,e }.

Given the above algorithm, we can prove the follow-
ing lemma.

Lemma 5. Given an algorithm that solves a subpath
problem in time Õ(Mαnβ) with failure probability 1−δ, for
constants δ > 0 and β ≥ α + 1 ≥ 1, there is an algorithm
that solves SSRP in time Õ(Mnω + Mαnβ) with failure
probability polynomially small in n.

Proof: Let n and M denote the number of nodes
and maximum absolute weight in the input SSRP
instance. We will use n and M for the same quanti-
ties in some SSRP subproblem. We let H = h(n) =
2
√
logn log logn (assuming ω > 2, h(n) = poly log(n)

would be sufficient).
We analyze the initial call of the above algorithm

where the role of ñ is played by n. The failure prob-
ability of the algorithm can be upper-bounded by
summing the failure probabilities of the Õ(n) subpath
problems and the Õ(n) compression steps. By solving
each subpath problem for C log n times and storing
the best distances, we obtain a subpath algorithm with
failure probability n−Q for any given constant Q > 0.
We assume that this is the subpath procedure used in
the considered algorithm. As already discussed, the
compression step in each subtree problem preserves
the correct replacement path distances with a similar
failure probability n−Q, since both the sampling step
and the computation of shortest paths fail with polyno-
mially small probability in n. The claim on the failure
probability of the entire algorithm follows from the
union bound.

Now consider the running time. In each recursive
call involving n nodes and absolute weights at most M ,
we partition the tree into at most 3H pieces containing
at most n/H nodes each, and then we perform a
compression step that increases the number of nodes
to at most 2Cn log n/H and the absolute weights to at
most MH . Thus at level i ≥ 0 of the recursion tree
the algorithm executes at most (3H)i+1 compression

steps and subpath procedures on instances on at most
n(2C log n)i/Hi nodes and with weights of absolute
value at most MHi. The number of recursive levels is
at most logH/(2C logn) n. The (leaf) instances on at most
H nodes are solved using the cubic time algorithm in
overall time O(nH3) = Õ(n). We analyze the rest of
the running time.

Consider first the compression steps. Each compres-
sion step can be performed in time Mnωg(n) for some
subpolynomial function g(·). Hence, all the compres-
sion steps generated by SSRP instances at level i in
the recursion tree can be performed in time

(3H)i+1 · (MH
i)

(
n(

2C log n

H
)i
)ω

g(n)

ω≥2

≤ Mn
ω3H g(n) · (6C log n)i ω.

Summing over all the levels i of the recursion tree, the
cost of the compression steps is

Mn
ω3H g(n)

logH/(2C log n) n∑
i=0

(6C log n)iω

≤Mn
ω3H g(n) log n · 2

ω log(6C logn) log n
log H−log(2C log n)

H=2
√

log n log log n

≤ Mn
ω
g(n) · 2O(

√
logn log logn)

.

The same bound holds, with a factor 3H less, for the
base SSRP instances with M > n3−ω which are solved
in Õ(n3) ≤ Õ(Mnω) time each.

Similarly, the subpath problems generated by SSRP
instances at level i ≥ 0 in the recursion tree take time
at most

(3H)i+1 · (MH
i)α

(
n(

2C log n

H
)i
)β

g(n)

β≥α+1

≤ M
α
n
β3H g(n) · (6C log n)iβ ,

and hence their total execution time is at most

M
α
n
β3H g(n) log n · 2

β log(6C logn) log n
log H−log(2C log n)

≤M
α
n
β
g(n) · 2O(

√
logn log logn)

.

The claim on the running time follows.

B. Solving Subpath Problems

Let us focus on a subpath problem (P ′, T ′), where
s and t′ are the endpoints of P ′. Let n and M be the
number of nodes and the largest absolute weight in
the considered instance, respectively. In the worst case
both P ′ and T ′ contain O(n) nodes. As mentioned in
the introduction, we distinguish between two types
of replacement paths Ps,t,e for (t, e) ∈ V (T ′) × E(P ′),
e = uv. A jumping path Ps,t,e leaves P ′ at some node
(between s and u) and then meets P ′ again at some
other node (between v and t′). A departing path Ps,t,e

leaves P ′ at some node (between s and u) and never
meets P ′ again.

754

We can easily deal with jumping paths via a re-
duction to the RP problem: we solve the RP problem
induced by P ′ with the Õ(Mnω) time algorithm in [20].
Let D̃s,t′,e be the resulting distances, which are incor-
rect with polynomially small probability in n. Then the
shortest jumping path length for the triple (s, t, e) is
simply D̃s,t′,e +Dt′,t: this takes Õ(n2) extra time.

It remains to compute the departing paths. We start
by observing that it is sufficient to compute all the
distances distG′(v, t) from nodes v in P ′ to nodes t in T ′

in the graph G′ := G− E(P ′). Let s = v1, v2 . . . vh = t′

be the sequence of nodes in P ′. For e = vivi+1 and any
t ∈ V (T ′), the shortest departing path for (s, t, e) has
length minj≤i{Ds,vj

+ distG′(vj , t)}. For a fixed t, we
can compute these quantities for all e ∈ P ′ via a single
scan of the nodes of P ′ from v1 to vh (updating the
corresponding minimum each time). This takes O(n2)
time. For the computation of the distances distG′(v, t)
one can directly apply Zwick’s APSP algorithm to
graph G′.

Lemma 6. There is an algorithm which solves a given
subpath problem with integer weights in [−M,M] in time
Õ(M

1
4−ω n2+ 1

4−ω), with failure probability polynomially
small in n.

The part of Theorem 3 relative to negative weights
follows from Lemmas 5 and 6.
The rest of this section is devoted to positive weights.
Let Vx be the final x nodes of P ′. We first consider
the detours (of departing paths) which contain at most
L nodes, for a proper parameter L. As we already
mentioned in the introduction, such detours must start
at some node in VML, since otherwise a detour would
be shorter than the shortest path between its endpoints
or the associated replacement path would be jump-
ing. We use the STSP algorithm from Theorem 4 to
compute the distances distG′(v, t) from v ∈ VML to
all t ∈ V (T ′) in G′. For the remaining detours, let us
define O(log n) intervals [Xi, 2Xi) with Xi = 2iL and
0 ≤ i ≤
log2 n

L�. For each i, we search for detours
with a number of nodes in [Xi, 2Xi) as follows: we
sample a bridge set Bi of n

Xi
·C log n nodes as in Lemma

4, so that Bi hits any detour on at least Xi nodes
whp. We compute distG′(v, b) and distG′(b, v) for any
b ∈ Bi and any node v, using our STSP algorithm.
For each (v, t) ∈ V2MXi

×V (Ti), the desired distance is
minb∈Bi

{distG′(v, b) + distG′(b, t)}.
Lemma 7. There is an algorithm which solves a given
subpath problem with integer weights in [1,M] in time
Õ(Mnω), with failure probability polynomially small in n.

Proof: Consider the above algorithm. The algo-
rithm fails if either the execution of the RP algorithm
fails, or at least one of the executions of the STSP

algorithm fails, or for some i the sample Bi does not
hit all the detours on at least Xi nodes. The claim on
the failure probability follows.

The computation of jumping paths and of departing
paths from their detours takes Õ(Mnω) time. The
computation of the detours themselves takes time

Õ(Mn
ω +MLn (Mn)

1
4−ω)

+
∑
i

Õ(Mn
ω +

n

Xi

n(Mn)
1

4−ω +MXi

n

Xi

n)

=Õ(Mn
ω + (MLn+

n2

L
)(Mn)

1
4−ω).

Choosing L =
√

n/M gives an overall runtime of
Õ(Mnω +

√
Mn

3
2 (Mn)

1
4−ω), which is Õ(Mnω) for any

value of ω ∈ [2, 3] since by assumption M ≤ n3−ω <
n7−2ω .

Combining Lemmas 5 and 7, one obtains the part
of Theorem 3 corresponding to positive weights (note
that the compression step in Lemma 5 does not create
negative weights).

IV. DISTANCE SENSITIVITY ORACLES

In this section we present our improved DSOs. We
start with the DSO from Theorem 1: we consider first
the case of positive integer weights (Section IV-A),
and later extend the result to allow for non-positive
weights (Section IV-B). In Section IV-C we describe
the alternative DSO from Theorem 2. We conclude
the section with a brief discussion about the space
complexity.

A. Positive Weights

The basic strategy is as follows. Given two integer
parameters 0 ≤ S ≤ L ≤ n, we distinguish 3 types
of replacement paths: hop-long and hop-short replace-
ment paths contain at least L and at most S nodes,
respectively. The remaining paths are hop-average. We
design a distinct oracle for each kind of path. In
particular, the oracle for hop-long paths will crucially
exploit our SSRP algorithm. The preprocessing and
query time of the overall oracle is given by the sum
of the preprocessing and query times of these three
oracles.

(1) Hop-short paths. We sample S · C log n random
graphs G1, . . . , GS·C logn as in Lemma 2. We compute
all-pairs shortest paths on at most S nodes in each Gi

as in Corollary 1, in time Õ(S3−ωMnω) per graph, and
hence Õ(S4−ωMnω) altogether. For a query (s, t, e), it
is sufficient to return the shortest distance from s to t
in the graphs Gi not containing e. By Lemma 2 whp
the number of considered graphs (and hence the query
time) is O(log n), and at least one of them contains
Ps,t,e if it is hop-short.

755

(2) Hop-average paths. We sample L · C log n random
graphs G1, . . . , GL·C logn as in Lemma 2. We apply
the preprocessing step of the distance oracle from
Lemma 3 to each sampled graph. This takes Õ(LMnω)
preprocessing time, and allows us to answer a query
(s, t, e), by considering all the Θ(log n) graphs Gi not
containing e, and querying the corresponding distance
oracles in Õ(n/S) time. By Lemmas 2 and 3, whp the
answer is correct if Ps,t,e is hop-average.

(3) Hop-long paths. We sample n
L ·C log n nodes B as in

Lemma 4, so that whp B hits all the replacement paths
on at least L nodes. We solve SSRP from any source
b ∈ B both in the original graph and in the graph
where we reverse all the edges. The preprocessing time
is Õ(nLMnω). In order to answer a query (s, t, e), it is
sufficient to consider the concatenation of replacement
paths Ps,b,e and Pb,t,e for any b ∈ B: this takes Õ(n/L)
time, and returns the correct answer whp if Ps,t,e is
hop-long.

Altogether we obtain an Õ(Mnω(S4−ω + L + n
L))

preprocessing time, and a Õ(nS) query time. Setting
L = Θ(max{√n, S}) concludes the proof of Theorem 1
for positive weights.

B. Negative Weights

We use the same approach as above for hop-short
and hop-average paths (which also works in the pres-
ence of non-positive weights). For hop-long paths, we
exploit a variant of our SSRP algorithm, where we are
only interested in computing correctly the replacement
paths on at most X nodes. Observe that, in each
subpath problem (P ′, T ′), it is sufficient to consider
the detours of departing paths which start in the first
X nodes; otherwise, the departing replacement path
would be too long. Using our STSP algorithm, the
runtime reduces to Õ(Mnω + XM

1
4−ω n1+ 1

4−ω). Note
that we can use the same parameter X also in the
recursive calls, since the compression step can only
reduce the number of nodes in each path. By the same
argument as in Lemma 5, this also upper-bounds the
overall runtime of the algorithm.

Lemma 8. For any 0 ≤ X ≤ n, there is an algorithm of
runtime Õ(Mnω+XM

1
4−ω n1+ 1

4−ω) for SSRP which com-
putes correctly all the replacement path distances of paths
with at most X nodes with failure probability polynomially
small in n.

We exploit the modified SSRP algorithm as follows.
We define O(log n) intervals [Xi, 2Xi) with L ≤ Xi :=
2iL < 2n. In order to compute the replacement paths
with a number of nodes in [Xi, 2Xi), we sample
n
Xi
· C log n nodes Bi as in Lemma 4, so that whp Bi

hits all the replacement paths on at least Xi nodes. We

solve SSRP from each source b ∈ Bi in the original
graph and in the graph with reversed edge directions,
using the modified SSRP algorithm with parameter
X = 2Xi. The preprocessing time is Õ(n

Xi
Mnω +

n
Xi

Xi M
1

4−ω n1+ 1
4−ω) ≤ Õ(nLMnω + M

1
4−ω n2+ 1

4−ω). For
a query (s, t, e), it is sufficient to consider all the triples
(s, b, t) with b ∈ Bi, which takes Õ(n

Xi
) ≤ Õ(nL) time.

Since LMnω + n
LMnω ≥ Mnω+ 1

2 ≥ M
1

4−ω n2+ 1
4−ω

for any ω ∈ [2, 3], the extra term M
1

4−ω n2+ 1
4−ω is

irrelevant in the runtime. Hence we obtain (modulo
polylogarithmic factors) the same preprocessing and
query time as in the case of positive weights. This
concludes the proof of Theorem 1.

C. An Alternative Oracle

We next describe the DSO from Theorem 2. We again
distinguish between hop-short, hop-average, and hop-
long paths. We handle the first two types of paths as in
Section IV. This takes Õ(Mnω(S4−ω+L)) preprocessing
time and Õ(nS) query time.

Consider next hop-long paths. We exploit the Õ(L)
random graphs Gi that we used in the computation
of hop-average paths. Recall that we precomputed the
distance oracle from Lemma 3 for each such graph.
We sample n

L ·C log n nodes B as in Lemma 4, and we
compute all the distances of absolute value at most ML
between pairs of nodes in B in each Gi. This can be
done in Õ(Mnω) time per graph as observed in [22].
We also construct an auxiliary graph with a dummy
node r and edges of cost zero from r to any other node.
In this graph we compute distances d(v) := dist(r, v)
from r in time Õ(Mnω).

Given a query (s, t, e), we construct an auxiliary
graph on node set B∪{s, t}. For any pair b1, b2 ∈ B, we
set the weight w′(b1b2) of edge b1b2 to the minimum
(precomputed) distance from b1 to b2 in any graph
Gi not containing e. Since there are O(log n) such
graphs, this step costs Õ(|B|2). At this point we set
the distances from s to B and from B to t. It is here
that our algorithm (for hop-long paths) deviates from
[22]. In [22] the authors query the distance oracle for
any pair (s, b) and (b, t) with b ∈ B. Since each query
takes Õ(n) time, altogether this costs Õ(n|B|) time. We
rather observe that, due to the lower bound part of
Lemma 4, it is sufficient to consider only the shortest
paths from s and to t which contain Ω(L) nodes.
This costs only Õ(n/L) by the final claim of Lemma
3. Therefore we are able to construct the auxiliary
graph in Õ(n/L · |B|+ |B|2) time only. The rest of the
query proceeds as in [22]: we add d(u) − d(v) to each
auxiliary weight w′(uv), which makes edge weights
non-negative. Then we use Dijkstra’s algorithm to
compute the shortest s-t path in the auxiliary graph

756

in time Õ(|B|2). Summarizing, the preprocessing time
for hop-long paths is Õ(LMnω), and the query time is
Õ(n2/L2).

The overall failure probability is polynomially small
in n by the usual arguments. Choosing S = L

1
4−ω

completes the proof of Theorem 2.

D. Space Complexity

Consider first the DSO from Theorem 2. Note that
for hop-average replacement paths it is sufficient to
store, for each relevant distance oracle, only the portion
corresponding to paths containing at least S nodes:
this takes O(n2/S) space only. Altogether the space
complexity is Õ(n2S+n2L/S+(n/L)2L) = Õ(n2L

1
4−ω).

For the DSO from Theorem 1, we need to add to the
above space complexity a term Õ(n2|B|) = Õ(n3/L).
For a comparison, the DSO in [22] has space complex-
ity Õ(n2L): this is always worse than Õ(n2L

1
4−ω), and

worse than Õ(n3/L) for L large enough.

ACKNOWLEDGMENT

This work was partially supported by ERC Start-
ing Grant NEWNET 279352, by NSF Grants CCF-
0830797, CCF-1118083, IIS-0963478 and IIS-0904325,
and by AFOSR MURI Grant.

REFERENCES

[1] N. Alon, Z. Galil, and O. Margalit. On the exponent of
the all pairs shortest path problem. Journal of Computer
and System Sciences, 54(2):255–262, 1997.

[2] A. Bernstein. A nearly optimal algorithm for approxi-
mating replacement paths and k shortest simple paths in
general graphs. In Proc. SODA, pages 742–755, 2010.

[3] A. Bernstein and D. R. Karger. Improved distance sensi-
tivity oracles via random sampling. In Proc. SODA, pages
34–43, 2008.

[4] A. Bernstein and D. R. Karger. A nearly optimal oracle
for avoiding failed vertices and edges. In Proc. STOC,
pages 101–110, 2009.

[5] T. M. Chan. More algorithms for all-pairs shortest paths
in weighted graphs. In Proc. STOC, pages 590–598, 2007.

[6] D. Coppersmith and S. Winograd. Matrix multiplication
via arithmetic progressions. Journal of symbolic computa-
tion, 9(3):251–280, 1990.

[7] C. Demetrescu, M. Thorup, R. A. Chowdhury, and V. Ra-
machandran. Oracles for distances avoiding a failed node
or link. SIAM Journal on Computing, 37(5):1299–1318,
2008.

[8] Y. Emek, D. Peleg, and L. Roditty. A near-linear-time
algorithm for computing replacement paths in planar
directed graphs. ACM Transactions on Algorithms, 6(4),
2010.

[9] Z. Gotthilf and M. Lewenstein. Improved algorithms for
the k simple shortest paths and the replacement paths
problems. Information Processing Letters, 109(7):352–355,
2009.

[10] J. Hershberger, S. Suri, and A. Bhosle. On the difficulty
of some shortest path problems. In Proc. STACS, pages
343–354, 2003.

[11] X. Huang and V. Y. Pan. Fast rectangular matrix
multiplication and applications. Journal of Complexity,
14(2):257–299, 1998.

[12] D. B. Johnson. Efficient algorithms for shortest paths in
sparse networks. Journal of the ACM, 24(1):1–13, 1977.

[13] D. Karger, D. Koller, and S. Phillips. Finding the hidden
path: Time bounds for all-pairs shortest paths. SIAM
Journal on Computing, 22(6):1199–1217, 1993.

[14] K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital
arcs in the shortest path problem. Operations Research
Letters, pages 223–227, 1989.

[15] E. Nardelli, G. Proietti, and P. Widmayer. A faster
computation of the most vital edge of a shortest path.
Information Processing Letters, 79(2):81–85, 2001.

[16] L. Roditty and U. Zwick. Replacement paths and k
simple shortest paths in unweighted directed graphs. In
Proc. ICALP, pages 249–260, 2005.

[17] A. Shoshan and U. Zwick. All pairs shortest paths in
undirected graphs with integer weights. In Proc. FOCS,
pages 605–614, 1999.

[18] A. Stothers. Ph.D. Thesis, U. Edinburgh, 2010.

[19] M. Thorup. Undirected single-source shortest paths
with positive integer weights in linear time. Journal of
the ACM, 46(3):362–394, 1999.

[20] V. Vassilevska Williams. Faster replacement paths. In
Proc. SODA, pages 1337–1346, 2011.

[21] V. Vassilevska Williams. Multiplying matrices faster
than Coppersmith Winograd. In Proc. STOC, pages 887-
898, 2012.

[22] O. Weimann and R. Yuster. Replacement paths via fast
matrix multiplication. In Proc. FOCS, pages 655–662,
2010.

[23] V. Vassilevska Williams and R. Williams. Subcubic
equivalences between path, matrix and triangle prob-
lems. In Proc. FOCS, pages 645–654, 2010.

[24] R. Yuster and U. Zwick. Answering distance queries in
directed graphs using fast matrix multiplication. In Proc.
FOCS, pages 389–396, 2005.

[25] G. Yuval. An algorithm for finding all shortest paths
using N2.81 infinite-precision multiplications. Information
Processing Letters, 4:155–156, 1976.

[26] U. Zwick. All pairs shortest paths using bridging sets
and rectangular matrix multiplication. Journal of the ACM,
49(3):289–317, 2002.

757

