
A New Infinity of Distance Oracles for Sparse Graphs

Mihai Pǎtraşcu

AT&T Labs—Research
Passed away June 5, 2012

Liam Roditty

Bar-Ilan University
liamr@macs.biu.ac.il

Mikkel Thorup

AT&T Labs—Research
and University of Copenhagen
mikkel2thorup@gmail.com

Abstract—Given a weighted undirected graph, our basic goal
is to represent all pairwise distances using much less than
quadratic space, such that we can estimate the distance between
query vertices in constant time. We will study the inherent
trade-off between space of the representation and the stretch
(multiplicative approximation disallowing underestimates) of
the estimates when the input graph is sparse with m = ˜O(n)
edges.

In this paper, for any fixed positive integers k and �, we
obtain stretches α = 2k + 1 ± 2

�
= 2k + 1 − 2

�
, 2k + 1 + 2

�
,

using space S(α,m) = ˜O(m1+2/(α+1)). The query time is
O(k + �) = O(1). For integer stretches, this coincides with
the previous bounds (odd stretches with � = 1 and even
stretches with � = 2). The infinity of fractional stretches
between consecutive integers are all new (even though � is fixed
as a constant independent of the input, the number of integers �
is still countably infinite). We will argue that the new fractional
points are not just arbitrary, but that they, at least for fixed
stretches below 3, provide a complete picture of the inherent
trade-off between stretch and space in m. Consider any fixed
stretch α < 3. Based on the hardness of set intersection, we
argue that if � is the largest integer such that 3−2/� ≤ α, then
˜Ω(S(3 − 2

�
, m)) space is needed for stretch α. In particular,

for fixed stretch below 2 2
3

, we improve Pǎtraşcu and Roditty’s
lower bound from ˜Ω(m3/2) to ˜Ω(m5/3), thus matching their
upper bound for stretch 2. For space in terms of m, this is the
first hardness matching the space of a non-trivial/sub-quadratic
distance oracle.

Keywords-sparse graphs; distance oracles; shortest paths;
distances;

I. INTRODUCTION

A distance oracle for an undirected graph is a compact

replacement for the all-pairs shortest paths matrix of a graph.

We have a stretch parameter α. Given any two vertices v and

w, a distance oracle with stretch α returns a distance estimate

δ̂(v, w) which is never less than the real distance δ(v, w)
from v to w but at most α times larger, that is, δ(v, w) ≤
δ̂(v, w) ≤ αδ(v, w). We require that the estimate is returned

in constant time. Such distance oracles compose nicely with

multiplicative approximation algorithms that need access to

a distance metric. We are interested in the inherent trade-offs

between stretch and the space needed to store the distance

oracles for sparse graphs with m = Õ(n) edges. For the

space we will typically not worry about logarithmic factors.

Therefore we use the Õ/Ω̃-notation which suppresses log-

factors.

A. State-of-the-art

The state of the art in distance oracles is best understood

by reference to the results of Thorup and Zwick [TZ05]

considering weighted undirected graphs with n nodes and

m edges. For any fixed positive integer k, they describe a

stretch 2k−1 distance oracle of size Õ(n1+1/k). The query

time is O(k) = O(1), as required.

Based on a girth conjecture of Erdős, Thorup and Zwick

argue that for dense enough graphs, these are the only

relevant bounds for fixed stretch α, that is, if k is the largest

integer such that 2k−1 ≤ α, then Ω̃(n1+1/k) space is needed

for stretch α. In particular, there are dense graphs such that

stretch below 3 requires space near-quadratic in n.

Getting bounds in terms of n is natural when we think of

the shortest path metric as a general metric on n points, but

for graph algorithms, we often measure complexity in terms

of m which is equivalent to the input size (isolated vertices

are trivial and can be handled implicitly by a dictionary over

the connected vertices). We seek the best Õ-bounds in m.

Such bounds are valid for all graphs, but essentially they are

equivalent to bounds in terms of n for sparse graphs with

m = Õ(n). The trivial point is that if a graph is not sparse,

we can always add m isolated edges with 2m new vertices.

Sparse graphs with m = O(n) are important. This

includes mathematically defined graph models like bounded

degree graphs and planar graphs, but it is also common in

practice in networks where links are expensive. We may,

for example, have a few high degree hub vertices, but low

average degree. We note that planar graphs have a special

structure that admits much more efficient distance oracles

(see, e.g., [Tho04]), but many sparse graphs do not have

such special structure. For m = Õ(n), the space of the

Thorup-Zwick distance oracles is Θ̃(m1+1/k).

The lower bounds of Thorup and Zwick are incompress-

ability bounds and can never get higher than m. However,

Sommer et al. [SVY09] proved in the cell-probe model

that there are sparse graphs such that constant stretch and

query time requires space m1+Ω(1). With current cell-probe

techniques we cannot hope for a more specific lower-bound

trade-off, e.g., we do not have any asymptotic separation in

query time between space Θ(m1.01) and Θ(m100) for any

static data structure problem with instances of size m.

Pǎtraşcu and Roditty [PR10] showed that a stretch below

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.44

738

3 is possible with space that is substantially subquadratic in

m. They obtained stretch 2 using space Õ(m5/3). Based on a

conjectured hardness of set intersection queries, they get that

space Ω̃(m2) is needed for stretch below 2 and that space

Ω̃(m3/2) is needed for stretch below 21
3 . This leaves open a

polynomial gap for stretch 2. Abraham and Gavoille [AG11]

implicitly (we shall shortly discuss what they did explicitly)

generalized the stretch 2 oracle to all even stretches. With

stretch 2k, the space becomes Õ(m1+1/(k+1/2)).

Other related work: The distance oracles of Thorup and

Zwick have inspired a broad array of loosely related results,

focusing on such issues like construction time [BS06],

[BK06], [BGSU08], the query time [MN07] and space

bounds for random graphs [KFY04], [CSTW09], [EWG08]

and derandomization [RTZ05]. These efforts do not lead to

better space / stretch tradeoffs.

The above mentioned paper [PR10] of Pǎtraşcu and

Roditty contains several other results. For the stretch 2 dis-

tance oracle, they present the mixed bound Õ(n4/3m1/3) =
Õ(m5/3). For unweighted graphs they also show that if

we add one to the distance estimate, that is, δ̂(u, v) ≤
2δ(u, v) + 1, then space Õ(n5/3) is possible. In fact, they

start with this simpler multiplicative-additive version for

unweighted graphs before they get the clean stretch 2 for

weighted graphs. Abraham and Gavoille [AG11] continued

with the multiplicative-additive version, showing how to

generalize it to estimates δ̂(u, v) ≤ 2kδ(u, v) + 1, using

space Õ(n1+1/(k+1/2)), and using it for labeling and routing

schemes. They say they will handle the weighted case in the

full version. Indeed it is a simple translation of their gener-

alization to get stretch 2k with space Õ(m1+1/(k+1/2)), as

claimed above.

B. Our results

In this paper we focus on pure multiplicative stretches

with no extra additive terms. This means that we are not

restricted to unweighted graphs. A purely multiplicative

stretch also means that our distance oracles can be used

naturally in multiplicative approximation algorithms that

need access to a distance matrix. Our focus is to understand

the space bounds purely in terms of m.

First we observe that for all the integer stretches α, the

current space bounds fall on a smooth curve:

S(α,m) = Õ(m1+2/(α+1))

This includes both the odd stretches from [TZ05] and the

even stretches from [PR10], [AG11]. For arbitrary (non-

integer stretches) α, the best known space was S(�α�,m).

1) Upper bounds: In this paper, we add an infinity of

fractional stretches between consecutive integers; namely

stretches of the form α = 2k + 1 ± 2
� (α = 2k + 1 − 2

�
or α = 2k + 1 + 2

�) for fixed integers k and �:

2

3
2

5
3

1 2 3 4 5

4
3

1 Stretch

Space as exponent

6

of n

Figure 1. The step function. The big dots denote points of Thorup and
Zwick on odd stretches to which other stretches converge.

Theorem 1. Fix positive integers k and �. For any weighted
graph with n vertices and m edges, there is a distance oracle
with stretch α− = 2k + 1− 2

� using space

Õ((m3+k/n2+k)1/(k+2−1/�)n2/m) = (1)

Õ(m1+1/(k−1/�)) = S(α−,m)

and a distance oracle with stretch α+ = 2k − 1 + 2
� using

space

Õ((m3+k/n2+k)1/(k+2+1/�)n2/m) = (2)

Õ(m1+1/(k+1/�)) = S(α+,m).

The query time in both cases is O(k + �) = O(1).

See Figure I-B for an illustration of the step function of

space stretch curve. Concerning the mixed bounds involving

both m and n, we note that for dense enough graphs, we

get better results with the Thorup-Zwick oracles. Our focus

here are bounds purely in m.

Like in [PR10], for the case of unweighted graphs, we

could replace m with n in the space bounds accepting an

extra additive 1 in the estimates, but this is not our focus

here.

For any α and any set A of reals, let �α�A = max{a ≤
α|a ∈ A}. For fixed stretch α, the space offered by Theorem

1 follows the step function

S(�α�{2k+1± 2
� |k,�∈N>0},m) = (3)

Õ(m
1+2/(�α�{2k+1± 2

�
|k,�∈N>0}+1)

).

Formally we note here that when α is fixed as a constant

independent of the input, then so k and � and therefore O(k+
�) = O(1).

739

Some obvious questions remain:

• Is it a coincidence that all the best known distance

oracles are on the space curve S, or is it possible to

do polynomially better than S for any stretch? The

conditional lower bound from [PR10] for stretch 2 is

only Ω̃(m3/2)� S(2,m) = Õ(m5/3).
• If not, can we continuously match S for all stretches?

• If not, is the step function behavior inherent, or are

there distance oracles outside the curve that are not

dominated by any distance oracles on the curve?

2) Hardness: Recall that the lower bounds of Thorup and

Zwick [TZ05] are incompressability bounds that can never

go higher than m. Also, concerning unconditional cell-probe

lower bounds, recall that we do not have any asymptotic sep-

aration in query time between space Θ(m1.01) and Θ(m100)
for any static data structure problem with instances of size

m, so we cannot hope to get any remotely tight cell-probe

understanding of the stretch-space trade-off.

As with NP-hardness for off-line problems, we resort

to hardness with respect to the conjectured hardness of a

core problem. Following the lead of [PR10] we relate to

the presumed hardness of set intersection. We will argue

that our step function (3) cannot be improved for any fixed

stretch below 3. In particular, this implies that we improve

the Ω̃(m3/2) lower bound from [PR10] for stretch 2 to

match the upper bound of S̃(2,m) = Õ(m5/3). For space

in terms of m, this is the first hardness matching the space

of a non-trivial/sub-quadratic distance oracle. The only tight

hardness from [PR10] was the quadratic space for stretch

strictly below 2.

Hardness by set intersection for stretch below 3:
We first set up our hardness assumption about intersection

queries. Consider the static data structure problem:

instance for preprocessing: The construction algorithm

receives the n sets S1, ..., Sn ⊆ [u]. In a regular instance,

for some set size parameter s ≤ u, each set has size at most

s, and each element appears in at most ns/u sets.

query: for given (i, j) ∈ [n]2, the boolean query is

whether Si intersects Sj .

The two obvious solutions are to either store all the

(positive) answers in the preprocessing phase, or to simply

store the sets directly and intersect them during the query. A

popular belief consistent with all current upper bound ideas

is that in general there is no smooth trade-off between these

two extreme types of solutions. Pǎtraşcu and Roditty [PR10,

Conjecture 7] considered a polylogarithmic universe with no

particular regularity constraint. The conjecture they used was

that for some large enough constants a and b, if we have a

data structure that represents any family of n input sets over

[u], u = �loga n	, using O(n2/ logb n) space, and answers

any intersection query in constant time, then there is a family

of input sets such that 1/12 of the all
(
n
2

)
intersection queries

are answered falsely.

For our stronger and more general lower bounds, we

consider regular instances with an arbitrary universe size u
and a polylogarithmic set size s = �loga n	. Each element

appears in at most ns/u sets, and is hence witnessing at less

than (ns/u)2 set intersections. It follows that we have at

most (ns)2/u positive set intersections in total, and in fact,

we expect Θ((ns)2/u) intersection for a random instance.

With a hash table we can store all positive answers in

O((ns)2/u) space, and the basic conjecture is that this is

best possible for constant query time. For u
 s2, we

get almost all queries right by answering “no”. To get a

plausible lower bound with larger universes, we therefore

have to require that there are no false negatives.

Conjecture 2. Let a and b be sufficiently large constants.
Consider regular set intersection instances with n sets,
universe size u, and set size s = �loga n	. If a data structure
with constant query time uses only O(n2/(u logb n)) space
and makes no false negatives, then for some set intersection
instance, the fraction of false positives is Ω(1) over all

(
n
2

)
possible queries.

Even though this conjecture does not have any explicit

step function in it, we use it to prove that our step function

(3) cannot be improved for any fixed stretch below 3

Theorem 3. Under Conjecture 2, for any fixed positive
integer �, that are graphs with m edges such that a distance
oracle with constant query time and stretch below 3−2/(�+
1) must use space Ω̃(S(3− 2/�,m)) = Ω̃(m1+1/(2−1/�)).

We note here that the point of a hardness assumption

is to help us identify the limits of what can be achieved,

leaving us with a single hard core problem capturing what

has to be done for further progress to be made. The concept

of NP-hardness has taken us far in this direction for off-

line problems, but for the understanding of approximability,

the stronger Unique Games conjecture has helped us to

close the gap between what we can do, and what we

believe to be hard. Here we suggest using the presumed

hardness of set intersection in the case of larger universes

and regular instances, formulating a more flexible conjecture

than [PR10, Conjecture 7], and use it to get tight space

bounds for all fixed stretches below 3.

To argue hardness of stretch below 3−2/(�−1), we will

use the following combinatorial reduction.

Theorem 4. Fix an integer � > 1. Consider a regular set
intersection instance such that u = s6n1−1/(2−1/�)/f where
f = o(1). We can construct an unweighted graph G with
m = O(sn logn) edges and n sources and sinks such that
if sets Si and Sj intersect, then δ(i, j) = � + 1. Moreover,
among all source-sink pairs (i, j) ∈ [n]2, there is only a
fraction O(f) with δ(i, j) < 3�+1 = (�+1)(3−2/(�+1)).

Proof that Theorem 4 implies Theorem 3: Given a

distance oracle with stretch below 3 − 2/(� + 1) for G,

740

we interpret δ̂(i, j) < 3� + 1 as Si ∩ Sj �= ∅, yield-

ing at most a fraction O(f) = o(1) of false positives

for the set intersection problem. By Conjecture 2, if the

queries take constant time, the space needed is Ω̃(n2/u) =
Ω̃(n2/(s6n1−1/(2−1/�)/f) = Ω̃(n1+1/(2−1/�)).

Mixed hardness for larger stretches: We note that the

mixed bounds from (1) in Theorem 1 cannot be improved

in general. Recall from [TZ05] that assuming Erdős’ girth

conjecture, for any integer k, there are families of graphs

with m = Θ(n1+1/(k+1)) edges that require Ω(m) bits of

representation for any stretch strictly below 2k + 3. With

such m and k, we will argue that our mixed bound from (1)

cannot be improved polynomially for large �. The point is

simply that for m = n1+1/(k+1) and stretch 2k + 3 − 2/�
when �→∞, we get the bound

Õ((m3+k/n2+k)1/(k+2−1/�)n2/m) =

Õ(((n1+1/(k+1))3+k/n2+k)1/(k+2−1/�)n2/n1+1/(k+1)) =

Õ((n(4+2k)/(k+1))1/(k+2)n1−1/(k+1)) =

Õ(n2/(k+1)n1−1/(k+1)) = Õ(n1+1/(k+1)).

which is best possible.

3) Techniques: In the area of distance oracles, many

things are simple when viewed the right way. Using hardness

of set intersection for larger universe sizes gives us not

only a tight hardness for stretch 2, but also lower bounds

matching the step function (3) for all fixed stretches below

3. Technically the construction is less ad-hoc than the one

used for the weaker lower bound in [PR10]. Moreover, it

was the steps in the lower bounds, that lead us to look for

the fractional stretch distance oracles in Theorem 1. A moral

difference between our oracles and the previous ones from

[PR10], [TZ05] is that the previous oracles aim for a case

of a small set S of vertices such that δ(u, S) is small. Here,

more generally, we operate with two vertex sets R and T
where the product |R||T | of the sizes is small and sums like

δ(u,R)+δ(v, T) and δ(u,R)+δ(u, T) are small. The more

appealing aspect of our techniques is that upper and lower

bounds match in many places. We see this as an indication

that (3) is the optimal trade-off between stretch and space

in terms of m.

Notations: Let G = (V,E) be an undirected graph.

All our graphs are weighted and we assume weights and

distances fit in machine words (all our algorithms use only

additions and comparisons of weights). For every v ∈ V and

every set X ⊆ V let p(v,X) be the vertex that is closest to

v among the vertices of X . Let u,w ∈ V . We denote with

δ(u,w) the length of the shortest path (distance) between u
and w. We denote with δ(v,X) the distance between v and

its closest vertex in X , that is, δ(v,X) = δ(v, p(v,X)).

II. DISTANCE ORACLES WITH 3± 2/� STRETCH

In this section we prove Theorem 1 for k = 1. We start by

describing a general technique for growing balls which is the

backbone of the new distance oracles. Next, we show that for

certain vertex pairs it is possible to store the exact distance.

Then, we show how to maintain estimated distances for all

other vertex pairs. We end by showing how to combine all

these ideas in order to prove Theorem 1 for k = 1.

A. Growing balls

Algorithm 1: Ball(v, c(·), s)

H ← {v}; // H is a priority queue with tentative

distances

B ← ∅;
while H is not empty do

u← extract-min(H);

foreach (u,w) ∈ E ∧ (u,w) /∈ B do
if c((u,w)) ≤ s then

B ← B ∪ {(u,w)};
s← s− c((u,w));
relax(u,w);

else
return B;

return B;

The algorithm for growing a ball around a vertex is given

a total budget and a cost function that assigns edge costs.

Edges are added to the ball by scanning vertices in order of

increasing distance breaking ties arbitrarily. When we scan

the edges of a certain vertex we add its incident edges one

by one as long as we have enough budget. We reduce from

the budget the cost of each edge that we add. All the edges

of the current vertex have to be added before we can move

to the next vertex and scan its edges. If we reach to an edge

that is too costly for our budget we stop and the current set

of edges is the ball that we output. We denote the ball of v
with B(v). The algorithm for computing a ball is given in

Algorithm 1. It is important to note that edges have both a

weight and a cost which are two different values.

The radius rad(B(v)) of a ball is the distance to the

last vertex for which the algorithm has started an edge

scanning. A vertex w is properly contained in B(v) if

δ(v, w) < rad(B(v)). In such a case B(v) contains all

edges incident to w. We say that two balls B(u) and B(w)
intersect if and only if rad(B(u)) + rad(B(w)) > δ(u,w).
With a slight abuse of notations we assume that B(v)
contains the vertex v and distances to all properly contained

vertices in B(v).
We now turn to describe how we use this algorithm for

growing balls with different cost functions to create a set

of balls around each vertex. These balls are then used in

order to maintain distances. Let G = (V,E) be an weighted

undirected graph, where |V | = n and |E| = m. For technical

reasons, we add m/n loops to each vertex so we have m′ =

741

2m edges. Replacing m with m′, we obtain that every vertex

has at least m/(2n) incident edges.

For i = 0, . . . , �, we will define increasing balls Bi(v)
around each vertex v. We set B0(v) = v and B�(v) =
Ball(v, 1, q�), where 1 is a cost function that assigns each

edge a cost of 1. We assume also that B�(v) stores the

distance to all vertices w that are properly contained in

B�(v), that is, δ(v, w) < rad(B�(v)). Since the smallest

vertex degree is m/(2n) the number of distances stored with

each vertex is at most q�4n/m = O(q� n
m).

The balls for i = 1, . . . , �− 1, are created in two phases.

In the first phase we set Ai(u) = Ball(u, 1, qi). We then

use these balls to define a cost function as follows:

∀e ∈ E, φi(e) = 1 +#{w : e ∈ A�−i(w)} m

nq�−i
.

In the second phase we use the cost function to create

balls. We set Bi(v) = Ball(v, φi, q
i). We denote with B̄i(v)

the ball with the edge that was scanned and not added to

Bi(v) due to lack of budget, that is, the edge in which we

stopped growing Bi(v). Assuming that for each ball grown

from v we break ties in the same way then for every v ∈ V
we have Bi(v) ⊆ Ai(v) as the cost of every edge is at least

1.

Also, for consistency, we note

Lemma 5. For all i ∈ {0, . . . , �− 1}, Bi(v) ⊆ Bi+1(v).

Proof: For i = 0 we have B0(v) = {v} and since

v ∈ Bi(v) for every i ∈ {1, . . . �} it follows that B0(v) ⊆
B1(v). For i = �−1 we have B�−1(v) ⊆ A�−1(v) and since

A�−1(v) ⊆ B�(v) we get that B�−1(v) ⊆ B�(v).
Assume now that i ∈ {1, . . . , �− 2}. Recall that Bi(v) =

Ball(v, φi, q
i) and Bi+1(v) = Ball(v, φi+1, q

i+1), thus, if

for every e it holds that φi(e) ≥ φi+1(e)/q then any edge

of Bi(v) is also in Bi+1(v) and the claim follows.

We now show that φi(e) ≥ φi+1(e)/q. Let #(e,Aj) =
#{w : e ∈ Aj(w)}

φi(e) ≥ φi+1(e)/q ⇐=

#(e,A�−i)
m

nq�−i
≥ #(e,A�−(i+1))

m

nq�−(i+1)
/q

⇐⇒ #(e,A�−i) ≥ #(e,A�−(i+1))

The last inequality holds as A�−i(w) ⊇ A�−(i+1)(w).

B. Intersecting balls

We now analyze the space that is needed in order to

maintain exact distances between every pair of vertices v, w
that for some i ∈ {0, . . . , �} their balls Bi(v) and B�−i(w)
intersect. We start by showing that any two balls with non-

zero radius that intersect have a common edge.

Lemma 6. If two balls B(u) and B(w), both with non-zero
radius, intersect then they must have a common edge.

Proof: As rad(B(u)) + rad(B(w)) > δ(u,w) there

must be a value x such that x < rad(B(u)) and δ(u,w)−
x < rad(B(w)). Let (v, v′) be an edge on the shortest path

between u and w, such that δ(u, v) ≤ x and δ(u, v′) > x. It

follows that δ(v′, w) < δ(u,w) − x. We get that δ(u, v) <
rad(B(u) and δ(v′, w) < rad(B(w)), hence, v is properly

contained in B(u) and v′ is properly contained in B(w) and

the edge (v, v′) is in B(u) ∩B(w).
We will store with Bi(v) the distances to all vertices w �=

v such that B�−i(w) intersects Bi(v). The distance between

such a pair of vertices v and w is stored in a hash table. We

will, however, ignore the case where one of the balls have

radius 0; for if B�−i(w) has radius 0 and intersects Bi(v),
then w is properly contained in Bi(v) ⊆ Ai(v) ⊆ B�(v),
and then the distance is already stored with B�(v). Thus we

only save the distance if Bi(v) and B�−i(w) intersect and

have non zero radius.

Lemma 7. The total space for storing distances between
every pair of balls Bi(v) and B�−i(w) that intersect is
O(q� n

2

m).

Proof: Given a vertex v ∈ V and a ball Bi(v) with non-

zero radius we save distances to all vertices w whose ball

B�−i(w) intersects Bi(v) and has a non-zero radius. From

Lemma 6 it follows that in such a case Bi(v) and B�−i(w)
share a common edge. Thus, the space that we charge with

ball Bi(v) for saving distances is
∑

e∈Bi(v)
#{w : e ∈

B�−i(w)}. We now bound
∑

e∈Bi(v)
#{w : e ∈ B�−i(w)}.

Recall that Bi(v) was grown with budget qi and cost

function φi, hence,

qi ≥
∑

e∈Bi(v)

φi(e) (4)

≥
∑

e∈Bi(v)

(
1 + #{w : e ∈ A�−i(w)} m

nq�−i

)
(5)

≥
∑

e∈Bi(v)

#{w : e ∈ B�−i(w)} m

nq�−i
(6)

It follows that:
∑

e∈Bi(v)
#{w : e ∈ B�−i(w)} ≤ q� n

m .

C. Separated balls

For every u ∈ V we have the set of balls

B0(u), B1(u), . . . , B�(u) as before. We now bound the

distance between certain balls of two vertices u and w,

such that Bi(u) and B�−i(w) do not intersect for every

i ∈ {0, . . . , �}.
For simplicity, we normalize distances so that δ(u,w) = 1

and let ai = rad(Bi(u)) and bi = rad(Bi(w)). Since Bi(u)
and B�−i(w) do not intersect, we have ai+b�−i ≤ 1 for all i.
We can find non-negative real values 0 = x0, x1 . . . , x� = 1
such that ai ≤ xi and bi ≤ 1− x�−i.

742

Lemma 8. There exists i ∈ {0, . . . , �− 1} such that,

ai + b�−i−1 ≤ 1− 1/�. (7)

Moreover, for some c ∈ {a, b} and i ∈ {0, . . . , �− 1},
ci + c�−i−1 ≤ 1− 1/�. (8)

Proof: The proof follows from a simple averaging

argument. We have:

�−1∑
i=0

(ai+b�−i−1) ≤
�−1∑
i=0

(1−(xi+1−xi)) = �−(x�−x0) = �−1.

As there are � values and their total sum is �− 1 there must

be an i such that (ai+ b�−i−1) ≤ 1− 1/�, and Equation (7)

follows.

We now turn to prove the second part of the Lemma.

Notice that
∑�−1

i=0(bi + a�−i−1) =
∑�−1

i=0(ai + b�−i−1).

2(�− 1) =

�−1∑
i=0

(ai + b�−i−1) +

�−1∑
i=0

(bi + a�−i−1) =

�−1∑
i=0

(ai + a�−i−1) +
�−1∑
i=0

(bi + b�−i−1).

Again it follows from averaging that for some c ∈ {a, b}
and i ∈ {0, . . . , � − 1}, ci + c�−i−1 ≤ 1 − 1/�, and

Equation (8) follows.

Notice that simply by looking at the values ai and bi for

every i ∈ {0, . . . , � − 1}, we can find the value of i that

minimizes ai + b�−i−1. Then we know that ai + b�−i−1 ≤
1− 1/�.

Similarly to Lemma 8, we have

Lemma 9. There exists i ∈ {0, . . . , �− 1} such that,

ai+1 + b�−i ≤ 1 + 1/� (9)

Moreover, for some c ∈ {a, b} and i ∈ {0, . . . , �− 1},
ci+1 + c�−i ≤ 1 + 1/�. (10)

Proof: As before, the proof follows from a simple

averaging argument.

We conclude that for every two vertices u and w for which

Bi(u) and B�−i(w) do not intersect for every i ∈ {0, . . . , �}
the above two Lemmas provide a bound for some i on the

distance between any pair of vertices one from Bi(u) and

one from B�−i−1(w), in the case of Lemma 8, and one from

Bi+1(u) and one from B�−i(w), in the case of Lemma 9.

Thus, to maintain a distance estimation we just need to store

one vertex from each ball. For this we use standard hitting

set techniques:

Lemma 10. For every i ∈ {0, . . . , �}, there is a set Si of
size O(m/qi log n) vertices so that for every vertex v ∈ V ,
δ(v, Si) ≤ rad(Bi(v)).

Proof: We will sample edges (u,w) and include both

u and w in Si. Then our condition is satisfied if we

sample any edge from B̄i. The total weight of edges in

B̄i is at least qi. The cases of i = 0, j are trivial. For

i = 1, . . . , j − 1, our condition is satisfied with high

probability for every v ∈ V if we sample each edge with

probability min{1, O((φi(e)/q
i) log n)}. Now note that∑

e

φi(e) = m+
∑
e

#{w : e ∈ A�−i(w)} m

nq�−i

= m+
∑
w

#{e ∈ A�−i(w)} m

nq�−i

≤ m+ nq�−i m

nq�−i
= 2m

The expected size of Si is thus O((m/qi) log n). We can

easily derandomize the construction to find each Si deter-

ministically.

D. Base case of Theorem 1

We will now prove the base case of Theorem 1 with k =
1, that is, stretch 3± 2/�.

Stretch 3− 2/�: For every vertex v ∈ V we construct

the balls B0(v), . . . , B�(v) using the ball growing technique

described in Section II-A. For every i ∈ {0, . . . , �− 1}, we

store all distances from Si × S�−i−1 as defined in Lemma

10. The number of distances stored is:

O(m/qi log n)×O(m/q�−i−1 log n) = Õ(m2/q�−1).

For each vertex v and each i, let ci(v) = p(v, Si). We

also store the nearest vertex ci(v) ∈ Si and δ(v, ci(v)).
The query works as follows. Given u,w ∈ V we first

check in the hash table if there is i ∈ {0, . . . , �} such

that Bi(u) and B�−i(w) intersect. In such a case the exact

distance is stored and we output it. Otherwise, there is not

any i ∈ {0, . . . , �} such that Bi(u) and B�−i(w) intersect

and we are in the case of separated balls as in Section II-C,

where we do not stored the exact distance.

We now look for i ∈ {0, . . . , � − 1} that minimizes

rad(Bi(u)) + rad(B�−i−1(w)). As an estimation, we use

δ(u, ci(u)) + δ(ci(u), c�−i−1(w)) + δ(w, c�−i−1(w)).

This estimation was produced in O(�) time. From the

triangle inequality it follows that:

δ(ci(u), c�−i−1(w)) ≤ δ(u, ci(u))+δ(u,w)+δ(w, c�−i−1(w)).

Hence, our estimation is bounded by 2(δ(u, ci(u)) +
δ(w, c�−i−1(w))) + δ(u,w).

From Lemma 8 we have rad(Bi(u))+rad(B�−i−1(w)) ≤
(1− 1/�)δ(u,w). Moreover, δ(u, ci(u)) ≤ rad(Bi(u)) and

δ(w, c�−i−1(w)) ≤ rad(B�−i−1(w)). We get that

2((δ(u, ci(u))+δ(w, c�−i−1(w)))+δ(u,w) ≤ (3−2/�)δ(u,w).

743

To minimize the space we need to consider also the O(q� n
2

m)
space needed in order to store distances in the hash table for

vertices with intersecting balls. To balance, we set

m2/q�−1 = q�
n2

m
⇐⇒ q =

(
m3

n2

)1/(2�−1)

,

and then the total space is

Õ

(
n2

m

(
m3

n2

)1/(2−1/�)
)

= Õ
(
m1+1/(2−1/�)

)
.

Stretch 3+2/�: For every i ∈ {0, . . . , �− 1}, we store

all distances from Si+1×S�−i as defined in Lemma 10. The

number of distances stored is:

O(m/qi+1 log n)×O(m/q�−i log n) = Õ(m2/q�+1).

As before given two vertices u and w we check in the hash

table to find i such that Bi(u) and B�−i(w) intersect and we

have an exact distance. If there is no such i we search for

i such that δ(u, ci+1(u)) + δ(w, ci−�(w)) ≤ 1 + 1/�, which

we know that exists from Lemma 9 and use it to estimate

the distance with stretch 3 + 2/�.

Setting q to balance the space with O(q� n
2

m), we end up

with a total space of

Õ

(
n2

m

(
m3

n2

)1/(2+1/�)
)

= Õ
(
m1+1/(2+1/�)

)
.

III. DISTANCE ORACLE WITH STRETCH 2k + 1± 2/�

In this section we prove Theorem 1 for k ≥ 1. For

our construction it is more convenient to subtract one from

k, that is, for integers k ≥ 0 and � ≥ 1, we will

get distance oracles with stretch 2k + 3 ± 2/� and space

Õ(m1+1/(k+2±1/�). We start by presenting a generalized

implementation of Thorup—Zwick distance oracle.

A. Generalizing the Thorup-Zwick-construction

We will now present a generalization of the Thorup-Zwick

construction [TZ05] that is needed in order to obtain our

general distance oracle. We start by a quick overview of Tho-

rup and Zwick distance oracle. In the construction phase they

create a sequence of vertex sets A0 ⊇ A1 ⊇ · · · ⊇ Ak−1,

where A0 = V and every Ai, for 1 ≤ i < k, is obtained

by placing each element of Ai−1 in Ai, independently, with

probability n−1/k. The expected size of Ai is n1−i/k. For

every vertex u and every 0 ≤ i ≤ k − 1 they define a ball

Bi(u) (in their terminology they called it a bunch) to be

all vertices w ∈ Ai such that δ(u,w) < δ(u, p(u,Ai+1))
(for k we have δ(u, p(u,Ak)) =∞). Each vertex saves the

distance to all the vertices in its balls. The expected size of

each ball Bi(v) for every 0 ≤ i < k−1 is O(n1/k). The ball

Bk−1(v) = Ak−1 and hence its expected size is O(n1/k) as

well. The total size of the distance oracle is O(n1+1/k).
For u,w ∈ V an estimated distance is computed as

follows. We run a loop for i = 0, . . . , k−1. We have vi = u

for even i and vi = w for odd i. Let δ(u,w) = Δ and let

pi = p(vi, Ai). We search for the smallest i for which pi ∈
Bi(vi+1). In such a case we return δ(vi, pi) + δ(pi, vi+1)
as these distances are saved in Bi(vi+1). Such an i must

exists as Bk−1(v) = Ak−1 for every v. Thorup and Zwick

showed that δ(vi, pi) ≤ iΔ whenever pi−1 ∈ Bi−1(vi).
Thus, for the smallest i for which pi ∈ Bi(vi+1) we have

δ(pi, vi+1) ≤ δ(vi, pi) + Δ ≤ (i + 1)Δ by the triangle

inequality. We get δ(vi, pi) + δ(pi, vi+1) ≤ (2i + 1)Δ and

as i ≤ k − 1 this gives 2k − 1 stretch.

The generalization of the Thorup-Zwick distance oracle

by Abraham and Gavoille [AG11] was to let A0 start as

subset of V with a good bound on δ(u,A0), but here we

need a stronger generalization. The input to the constriction

algorithm is an integer parameter k as before and three ad-

ditional parameters. Two sets of vertices R and T and a size

parameter r. The distance oracle will use O(nr+|R|·|T |/rk)
space and for two vertices u,w ∈ V it will report an

estimation bounded by

2(δ(u,R) + δ(v, T)) + (2k + 1)δ(u,w),

where v = w for even k and v = u for odd k.

The construction works as follows. As in Thorup-Zwick

distance oracle we create a sequence of vertex sets but

with a base set R and not V , that is, R = R0 and Ri is

obtained from Ri−1 by placing each element of Ri−1 in

Ri, independently, with probability r−1. The sequence is

composed of k+1 sets, R = R0, R1, . . . , Rk. The expected

size of Ri is |R|/ri. For every 0 ≤ i < k and for every

u ∈ V we have a ball Bi(u) that saves distance to vertices

w ∈ Ri such that δ(u,w) < δ(u, p(u,Ri+1)). For i = k
we have a ball only for vertices that are in T , moreover,

as δ(u, p(u,Rk+1)) = ∞ all these balls are the same and

equals to Rk. In other words, we keep the distance from

each vertex of Rk to each vertex of T . The total size is

composed of the space needed for the k first balls around

each vertex, which is O(knr) and the space needed for

saving the distance between every vertex pair (r, t), where

r ∈ Rk and t ∈ T , which is O(|T ||R|/rk).
For u,w ∈ V an estimated distance is computed as

follows. We run a loop for i = 0, . . . , k − 1. We have

vi = u for even i and vi = w for odd i. Let δ(u,w) = Δ
and let pi = p(vi, Ri). We search for the first i for which

pi ∈ Bi(vi+1). Notice that as opposed to Thorup —

Zwick distance oracle it might be that such an i does not

exist. Assume first that there is such an i. It follows by a

similar arguments to those used by Thorup and Zwick that

δ(vi, pi) ≤ iΔ+δ(v0, p0) whenever pi−1 ∈ Bi−1(vi). Thus,

the estimation δ(vi, pi)+ δ(pi, vi+1) that we use is bounded

by

2(iΔ+ δ(v0, p0)) + Δ = (2i+ 1)δ(u,w) + 2δ(u,R).

In case that there is not such an i we return δ(vk, pk) +
δ(pk, t) + δ(t, vk+1), where t = p(vk+1, T). As before we

744

have δ(vk, pk) ≤ kΔ+ δ(v0, p0). By the triangle inequality

we have δ(pk, t) ≤ δ(vk, pk)+ δ(u,w)+ δ(t, vk+1). Hence,

we have:

δ(vk, pk) + δ(pk, t) + δ(t, vk+1) ≤
2(δ(vk, pk) + δ(t, vk+1)) + δ(u,w ≤
2(δ(v0, p0) + δ(t, vk+1)) + (2k + 1)δ(u,w).

There are two possibilities. Recall that v0 = u, now if k
is even then vk+1 = w and we get that:

2(δ(v0, p0) + δ(t, vk+1)) + (2k + 1)δ(u,w) =

2(δ(u,R) + δ(w, T)) + (2k + 1)δ(u,w).

If k is odd then vk+1 = u and we get:

2(δ(v0, p0) + δ(t, vk+1)) + (2k + 1)δ(u,w) =

2(δ(u,R) + δ(u, T)) + (2k + 1)δ(u,w).

Summing up, we have proved:

Lemma 11. Given arbitrary vertex sets R and T , parameter
r > 2 and integer parameter k, there is a distance oracle
DO(k,R, T, r) that uses Õ(rn + |R||T |/rk) space and
return estimation on the distance between u and w which
is at most 2(δ(u,R) + δ(v, T)) + (2k + 1)δ(u,w), where
v = w for even k and v = u for odd k. The query time is
O(k).

B. Proof of Theorem 1

We now combine the constructions presented above to

obtain distance oracles with stretch 2k+3± 2/� for k ≥ 0.

We have four parameters. The parameters � and k control

the stretch. The parameters q and r control the space.

For every vertex v ∈ V we construct the balls

B0(v), . . . , B�(v) using the ball growing technique de-

scribed in §II-A. For every i ∈ {0, . . . , �} we have the sets

Si as defined in Lemma 10. However, rather than saving all

distances between vertices of Si and S�−i−1 as we have

done in the case of 3 − 2/� stretch distance oracle, we

use the parameterized generalization of Thorup and Zwick

distance oracle from §III-A. For every i ∈ {0, . . . , �} and

every pair of sets Si and S�−i−1 we have a distance oracle

DO(k, Si, S�−i−1, r).
Given u,w ∈ V if there is an i ∈ {0, . . . , �} such that

Bi(u) and B�−i(w) intersect we have the exact distance

which we output. Otherwise, there is not any i ∈ {0, . . . , �}
such that Bi(u) and B�−i(w) intersect and we are in the

scenario of separated balls as in §II-C. To perform the query

in this scenario we have to consider two cases.

Case 1: k is even. We search for i ∈ {0, . . . , � − 1}
that minimizes rad(Bi(u)) + rad(B�−i−1(w)). For this i
we query DO(k, Si, S�−i−1, r) for an estimation on δ(u,w).
From Lemma 11 we know that this estimation is at most

2(δ(u, Si) + δ(w, S�−i−1)) + (2k + 1)δ(u,w).

From Equation (7) of Lemma 8 it follows that

rad(Bi(u)) + rad(B�−i−1(w)) ≤ (1 − 1/�)δ(u,w). From

Lemma 10 it follows that δ(u, Si) ≤ rad(Bi(u)) and

δ(w, S�−i−1) ≤ rad(B�−i−1(w)).
Thus we get that δ(u, Si) + δ(w, S�−i−1) ≤ (1 −

1/�)δ(u,w) and the estimation is at most (2k + 3 −
2/�)δ(u,w) for k ≥ 1.

Case 2: k is odd. We search for i ∈ {0, . . . , � − 1} and

v ∈ {u,w} that minimizes rad(Bi(v)) + rad(B�−i−1(v)).
Without loss of generality, assume that v = u. For this i we

query DO(k, Si, S�−i−1, r) for an estimation on δ(u,w).
From Lemma 11 we know that this estimation is at most

2(δ(u, Si) + δ(u, S�−i−1)) + (2k + 1)δ(u,w).
From Equation (8) of Lemma 8 it follows that

rad(Bi(u)) + rad(B�−i−1(u)) ≤ (1 − 1/�)δ(u,w). From

Lemma 10 it follows that δ(u, Si) ≤ rad(Bi(u)) and

δ(u, S�−i−1) ≤ rad(B�−i−1(u)).
Thus we get that δ(u, Si) + δ(u, S�−i−1) ≤ (1 −

1/�)δ(u,w) and the estimation is at most (2k + 3 −
2/�)δ(u,w) for k ≥ 1.

Next, we turn to analyze the space requirements of the

construction for every i ∈ {0, . . . , �}. From Lemma 7 it

follows that the space needed to store the ball intersections is

Õ(q�n2/m). From Lemma 10 it follows that Si = Õ(m/qi),
thus, |Si| · |S�−i−1| = Õ(m2/q�−1). By Lemma 11

DO(k, Si, S�−i−1, r) requires Õ(rn + |Si| · |S�−i−1|/rk)
space. Thus, the total space is:

Õ(q�n2/m+ rn+m2/(q�−1rk)).

To minimize the space we chose q and r to balance the

terms. We set r = q�n/m, then we just have to solve

q�n2/m = m2/(q�−1(q�n/m)k). Reordering terms, we get

q2�−1+k� = m3+k/n2+k, and conclude that the total space

is

Õ((m3+k/n2+k)�/(2�−1+k�)n2/m) =

Õ((m3+k/n2+k)1/(k+2−1/�)n2/m) =

Õ(m1+1/(k+2−1/�)) = S(2k + 3− 2/�,m).

As in §II-D we have an almost identical construction

for stretch 2k + 3 + 2/�. The difference is that for every

i ∈ {0, . . . , � − 1}, we use the parameterized version

of Thorup and Zwick with R = Si+1 and T = S�−i.

Using Lemma 9 for the analysis, we get the claimed

stretch, with space Õ(m3+k/n2+k)1/(k+2+1/�)n2/m) =
Õ(m1+1/(k+2+1/�)) = S(2k + 3 + 2/�,m).

For the query time, we spend O(�) time finding the right

i ∈ {0, ..., �−1} and, for k odd, v ∈ {u,w}. Next we spend

O(k) in Lemma 11, so the total query time is O(k + �).

IV. HARDNESS REDUCTION

We will now present our hardness reduction as stated in

Theorem 4:

745

Fix an integer � > 1. Consider a regular set inter-

section instance such that u = s6n1−1/(2−1/�)/f
where f = o(1). We can construct an unweighted

graph G with m = O(sn log n) edges and n
sources and sinks such that if sets Si and Sj

intersect, then δ(i, j) = � + 1. Moreover, among

all source-sink pairs (i, j) ∈ [n]2, there is only a

fraction O(f) with δ(i, j) < 3�+1 = (�+1)(3−
2/(�+ 1)).

Proof of Theorem 4: In our reduction described below,

we generally do not worry about rounding problems. Adding

dummy vertices and elements, we can always increase s and

u by a constant factor. These constants will be absorbed by

the O(f).
The graph will be a layered graph with n vertices on

each layer. At the beginning we have a layer of n source

vertices and at the end a layer of n sink vertices. The

hard instance only queries distances between vertices of the

source layer and vertices of the sink layer. In the middle we

have u disjoint “components”. To fit the overall structure,

each component is also a layered graph with w = n/u
vertices in each layer. More precisely, each component is a

binary butterfly graph of width w = n/u. In each layer of the

butterfly, the vertices are indexed by [w] = {0, . . . , w − 1}
and the 2w edges from layer i to layer i+1 connect a vertex

to two vertices: one with the same index, and one which has

the same index except that the ith bit is flipped. There are

log2 w bits to be switched, hence this many edge layers and

one more vertex layer.
For each set Si, i ∈ [n], and each a ∈ Si, we add a

source edge from source i to some vertex v in the first layer

of butterfly component a. By regularity, we know that a
is in at most ns/u = sw sets i, so we can distribute the

source edges to component a in such a way that a vertex in

the first butterfly layer has at most s incident source edges.

Corresponding sink edges are placed between the sinks and

the last layer of the butterfly graphs. If a ∈ Si ∩ Sj , then

there is a path from source i via component a to sink j. At

this point we have O(n log n) vertices and O(n(s+ log n))
edges.

We will place � + 1 layers of heavy edges with weight

1. All other edges will have weight 0. At the very end

of our construction, we will contract all 0 weight edges.

The result is an unweighted graph with exactly the same

distances between sources and sinks. A direct path from a

source to a sink has weight �+1. All source and sink edges

will be heavy, and we will have �− 1 almost evenly spread

heavy layers in the butterfly graphs.
Our basic aim is to limit the number of source-sink paths

of weight strictly less than 3�+1, and hence the number of

source-sink paths of weight at most 3�. We note that such a

path cannot go zig-zag from a source to a sink to a source

to a sink, for such a path would need at least 3(�+1) heavy

edges. The path could first visit multiple sources, then cross

over to a sink, and then visit multiple sinks. The cross-over

part from the last source to the first sink uses � + 1 edges,

so the other parts which either go between sources, or go

between sinks, can use at most 2�− 1 heavy edges in total.

Note now that every source-source or sink-sink path segment

Q must cross any layer an even number of times, so together

they must use an even number of heavy edges. Out of the

2� − 1 heavy edges available, they can therefore only use

2�− 2 heavy edges.

The source-source and the sink-sink cases are symmetric,

so below we focus on the source-source case. Consider a

source-source segment Q that goes from a source i to a

source j with no other sources between. Then Q goes from

source i via a single butterfly component a to a source j and

then a ∈ Si∩Sj (recall that it is only source-sink paths that

we use to code set intersections). Suppose Q only moves

within the first q + 1 butterfly layers. How many possible

sources j can we reach from i with such a path? From i we

can reach at most s different vertices v in the first butterfly

layer. Fix v and consider the segment Q′ to the last vertex

w of Q in the butterfly. Since Q′ only uses q edge layers,

it can only change the corresponding q bits, so from v, we

can reach at most 2q different vertices w. Finally, from each

such vertex w, we can reach at most s sources j. Thus, in

total, from source i, we can reach at most s22q different

sources j.

We are now ready to make a strategic placement of the

heavy layers. Recall that all source and sink edges are heavy.

Technically, in the butterflies, the heavy layers will be vertex

layers where we insert a heavy edge between the incoming

and outgoing edges. We place the first heavy butterfly layer

after the first log2((s
4w)1/�/s2) original bit-switching edge

layers. Symmetrically we have a heavy vertex layer in front

of the last log2((s
4w)1/�/s2) bit-switching layers. Other-

wise we have log2((s
4w)1/�) bit-switching layers between

the heavy vertex layers. In total we end up with �−1 heavy

vertex layers spread between the log2 w bit-switching layers.

Return now to a path segment Q from some source i
going through a single component to another source. If Q
passes only one heavy layer; namely that of the source edges,

it can reach at most s2((s4w)1/�/s2) = (s4w)1/� sources.

For each additional heavy layer passed, it can reach another

factor of (s4w)1/� sources. Thus, if the segment passes h
heavy layers, it can reach (s4w)h/� sources, and this is using

at least 2h heavy edges. By composition this bound also

holds for a segment passing multiple sources: using 2h heavy

edges, we can reach (s4w)h/� sources. The same statement

holds for sink-sink paths.

The cross-over part is a direct source-sink paths through

a single component. It can take us from a given source to

one of at most s2w distinct sinks using at least �+1 heavy

edges. The source-source and sink-sink segments have 2�−1
heavy edges to share, but can use only an even number, so

all in all, using paths with at most 3� heavy edges, a source

746

can reach at most

s2w(s4w)(�−1)/� ≤ s6w2−1/�

possible sinks. We want this number to be bounded by

O(fn), so we require w = O((fn/s6)1/(2−1/�)). This is

implied by w = O(n1/(2−1/�)f/s6), or equivalently,

u = n/w = Ω(n1−1/(2−1/�)s6/f).

In Theorem 4 we defined u = n1−1/(2−1/�)s6/f , but we

ignored rounding problems in all the above calculations.

Since � = O(1), a correct rounding is subsumed by the

Ω-notation. To finish the construction, we just contract all

the original butterfly edges which all have weight 0. This

does not affect any distance, and now the coding is with an

unweighted graph. This completes the proof of Theorem 4.

REFERENCES

[AG11] Ittai Abraham and Cyril Gavoille. On approximate dis-
tance labels and routing schemes with affine stretch. In Proc.
25th ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pages 404–415, 2011.

[BGSU08] Surender Baswana, Akshay Gaur, Sandeep Sen, and
Jayant Upadhyay. Distance oracles for unweighted graphs:
Breaking the quadratic barrier with constant additive error. In
Proc. 35th International Colloquium on Automata, Languages
and Programming (ICALP), pages 609–621, 2008.

[BK06] Surender Baswana and Telikepalli Kavitha. Faster algo-
rithms for approximate distance oracles and all-pairs small
stretch paths. In Proc. 47th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 591–602, 2006.

[BS06] Surender Baswana and Sandeep Sen. Approximate dis-
tance oracles for unweighted graphs in expected O(n2) time.
ACM Transactions on Algorithms, 2(4):557–577, 2006. See
also SODA’04.

[CSTW09] Wei Chen, Christian Sommer, Shang-Hua Teng, and
Yajun Wang. Compact routing in power-law graphs. In Proc.
23rd ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pages 379–391, 2009.

[EWG08] Mihaela Enǎchescu, Mei Wang, and Ashish Goel. Re-
ducing maximum stretch in compact routing. In Proc. IEEE
INFOCOM, pages 336–340, 2008.

[KFY04] Dmitri V. Krioukov, Kevin R. Fall, and Xiaowei Yang.
Compact routing on internet-like graphs. In Proc. IEEE
INFOCOM, 2004.

[MN07] Manor Mendel and Assaf Naor. Ramsey partitions and
proximity data structures. Journal of the European Mathemat-
ical Society, 9(2):253–275, 2007. See also FOCS’06.

[PR10] Mihai Pǎtraşcu and Liam Roditty. Distance oracles beyond
the Thorup–Zwick bound. In Proc. 51st IEEE Symposium
on Foundations of Computer Science (FOCS), pages 815–823,
2010.

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. Determin-
istic constructions of approximate distance oracles and span-
ners. In Proc. 32nd International Colloquium on Automata,
Languages and Programming (ICALP), pages 261–272, 2005.

[SVY09] Christian Sommer, Elad Verbin, and Wei Yu. Distance
oracles for sparse graphs. In Proc. 50th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 703–712,
2009.

[Tho04] Mikkel Thorup. Compact oracles for reachability and
approximate distances in planar digraphs. Journal of the ACM,
51(6):993–1024, 2004. Announced at FOCS’01.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance
oracles. Journal of the ACM, 52(1):1–24, 2005. See also
STOC’01.

747

