
Randomized Greedy Algorithms for the Maximum Matching Problem
with New Analysis

Matthias Poloczek

Institute of Computer Science
Goethe University
Frankfurt, Germany

Email: matthias@thi.cs.uni-frankfurt.de

Mario Szegedy

Department of Computer Science
Rutgers University
Piscataway, USA

Email: szegedy@cs.rutgers.edu

Abstract—It is a long-standing problem to lower bound the
performance of randomized greedy algorithms for maximum
matching. Aronson, Dyer, Frieze and Suen [1] studied the
modified randomized greedy (MRG) algorithm and proved that
it approximates the maximum matching within a factor of at
least 1

2
+1/400, 000. They use heavy combinatorial methods in

their analysis. We introduce a new technique we call Contrast
Analysis, and show a 1

2
+1/256 performance lower bound for

the MRG algorithm. The technique seems to be useful not only
for the MRG, but also for other related algorithms.

Keywords-matching; randomized; greedy; approximation;

I. INTRODUCTION

This presentation follows the long tradition of analyzing

(random) greedy algorithms for the maximum cardinality

matching problem. Researchers have been concerned with

their performance on worst case instances as well as on

random graph instances. We have results on both, but our

hardest results are for worst case instances. Some of the

literature we survey below deal with the weighted case. Our

results will exclusively deal with the un-weighted case, and

so do our references unless we explicitly say otherwise.

A classical result by Korte and Hausmann [2], dating

back to 1978, gives that the greedy algorithm that always

picks a new edge (disjoint of the ones selected so far) with

the largest weight, achieves an approximation ratio of at

least 1
2 . Moreover, they show that for every graph (besides

some trivial exceptions) for the worst weight function the

greedy algorithm cannot beat 1
2 . By picking the edges at

random instead (in the un-weighted case), the approximation

improves only to 1
2 + o(1) on worst-case inputs, but a

significant benefit is achieved for sparse graphs and trees [3].

[4] deals with the weighted case where the probability of

picking an edge is proportional to its weight, and gives

improved bounds for some graph classes.

Karp and Sipser [5] in 1981 invented an algorithm that

matches an arbitrary vertex of degree one, if such a vertex

Matthias Poloczek’s research was partially supported by DFG SCHN
503/1-5.

Mario Szegedy’s research was partially supported by NSF grant CCF-
0832787.

exists, and picks a random edge otherwise. Aronson, Frieze

and Pittel [6] prove that this small modification yields a

matching that is within n1/5+o(1) of maximum size on

random graph instances with edge probability c/n.

Random cubic graph instances are studied in [7]. They

proved that the MINGREEDY algorithm of [8], which picks

a vertex of minimal degree randomly and matches it to a

random neighbor, leaves at most o(n) vertices unmatched,

on expectation.

Despite the success on random graph instances,

the 1
2–barrier for worst case instances remained unchal-

lenged, until Aronson, Dyer, Frieze and Suen [1] made a

breakthrough by managing to analyze a modification of the

randomized greedy algorithm first proposed in [8]. They call

this algorithm MRG (Modified Randomized Greedy). This

variant picks each next edge by first selecting a random node

(with non-zero degree) of the remaining graph and then a

random neighbor of it. (We keep deleting nodes that become

endpoints of edges in M , together with their incident edges.)

They proved that this algorithm has an approximation factor

of at least 1
2 +1/400, 000 for all graphs. While this tiny ad-

vance over 1
2 was very important theoretically, experiments

suggest, that the worst case performance of MRG could be

as large as 2
3 . There are also theoretical evidences for this: A

sequence of results [8], [9], [10] give, that on random graphs

with edge probability c/n the MRG algorithm outputs a

matching of expected size
(

1
2 − log(2−e−c)

2c

)
n. Our first

theorem improves on [1]:

Theorem 1. The approximation ratio of the MRG algorithm
for any graph G is at least 1

2 +
1

256 (on expectation, over
all random choices of the algorithm).

Our proof takes use of a new technique we call Contrast
Analysis, at the heart of which we have a Contrast Lemma.

Many researchers have also looked at the case when G =
(V = L ∪ R,E) is bipartite. In an interesting model

of [11] the algorithm has control over the order of the

nodes on the L side, while the ordering on the R side is

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.20

708

adversarial. The RANKING algorithm of Karp, Vazirani and

Vazirani picks a random permutation π on L and matches

the adversarially arriving vertex from R to a free neighbor in

L of minimal rank in π, thereby achieving an approximation

ratio of 1 − 1/e ≈ 0.632 [12], [13]. If the order on the R-

side is also random, the same algorithm performs better; [14]

gives a performance guarantee of 0.696 (independently [15]

shows a bound of 0.653).

Jukna and Schnitger recently started to investigate the

non-bipartite graph version of RANKING. We call this ver-

sion ’RANKING’ as well, and from now on under this term

we exclusively mean the general version. This algorithm is

likely to have a significantly better worst case performance

than MRG (perhaps as large as 0.727), but paradoxically,

showing a greater-than-1/2 approximation ratio has proven

to be an even harder challenge than before. The difference

between MRG and RANKING is that in the latter we once

and for all pick a random permutation, π, of the vertices, and

when we select a ”random” neighbor to the new node (new

nodes are simply selected in the order of π) we again use π
to pick its neighbor (the first available node in π, i.e. with

the lowest rank). The lower bound method of Aronson, Dyer,

Frieze and Suen breaks down, because RANKING uses only

a fraction of the randomness that MRG does, which makes

it harder to apply any independence argument. Very recently

we have learned that Pushkar Tripathi, independently from

us, has invented and studied RANKING, and in his thesis [16]

establishes (referring to joint work [17]):

Theorem 2. The approximation ratio of the RANKING

algorithm for any graph G is at least 0.56 (on expectation,
over all random choices of the algorithm).

We hope, that with our new technique we will be able to

improve on this bound. What we can give now is a Contrast

Lemma for RANKING.

For the special case of bipartite graphs, however, the better

guarantee of 0.696, obtained in the Online Bipartite Match-

ing Model [14], carries over to (our version of) RANKING, as

well as the upper bound 0.727 of [15]. Independently from

us, this has also been observed by Tripathi [16]. We give

the proof in the full version of our paper. The RANKING

algorithm, just as MRG, can be run in linear time (see

Sect. VI). We have also studied the performance of RANK-

ING on random instances (see Sect. V):

Theorem 3. For random graphs, where each edge is se-
lected with probability p = ω

(
logn
n

)
, algorithm RANKING

matches almost all nodes of the input graph with high
probability.

This result is an analogue of the results of [8], [9], [10] for

RANKING.

A. Randomized Greedy Algorithms

As customary, n will denote the number of vertices

of a graph instance G. Many known randomized greedy

algorithms for the maximum cardinality matching problem

follow a scheme described in this section. For a node v
let N(v) denote its set of neighbors of v. Moreover, a vertex

is called free with respect to a matching M if it is not an

endpoint of any edge in M .

Definition 1 (Schedule). A schedule σ specifies n + 1
permutations πO, πv1 , . . . , πvn on V (G).

A randomized greedy algorithm A first chooses a schedule

randomly according to a distribution on Sn+1
n (here Sn

is the set of all permutations on V (G)). The distribution

depends on the type of greedy algorithm we consider, and

may depend on G (in our cases it will not). After this random

choice the algorithm proceeds deterministically: In round l,
for l = 1, 2, . . . , n, the algorithm selects node v = πO(l)
and matches v to the first free neighbor according to πv .

However, if v is already matched or if it has no free

neighbor, A skips to the next round. At the end of round n
the algorithm returns the produced matching. We shall

investigate the following two types of greedy algorithms:

• The MRG algorithm chooses πO, πv1 , . . . , πvn uni-

formly at random from Sn+1
n .

• The RANKING algorithm fixes all n+1 permutations of

the schedule to the same permutation π that is drawn

uniformly at random from Sn.

II. KEY IDEAS

A. Proof Outline

It is known [1] and nearly trivial, that it is enough to

concentrate on graphs that have a perfect matching (see

also Sect. II-D). We define the approximation ratio (or

performance) of a randomized greedy matching algorithm A
on a graph G as:

r =
� [size of the matching the algorithm A gives on G]

the size of the maximum matching in G
.

We say that a node v of G is covered by a specific run

of algorithm A, if during that run A adds an edge to its

output-matching that is incident to v. The first thing to be

noticed is that running any schedule σ on input graph G
results in covering at least one endpoint of every edge

e = (u, v) ∈ E(G). For this reason any greedy algorithm A
that follows the scheme in Sect. I-A has an approximation

ratio of at least 1
2 on any graph G. To show a approximation

ratio better than 1
2 for a randomized greedy algorithm, it

is sufficient to prove, that for a constant fraction of the

edges of the optimal matching both endpoints are covered

with non-negligible probability. Unlike [1], which takes a

global view of the constructed matching and then examines

paths of length three formed in the union of the constructed

709

Figure 1. The bomb–graph B4 (l) and the double bomb–graph D4 (r)

and the optimum matching, we are going to give a simple

condition, which guarantees that both endpoints of a given

edge e of G (without any assumption on e) are covered with

positive constant (in terms of n) probability. We show that

this probability is going to be o(1) only if both endpoints of e
die very early (within the first o(n) rounds) in the matching

process (on expectation). A node by definition “dies” if the

algorithm covers it or if the node becomes isolated (because

all of its neighbors get covered, and so itself loses the chance

of getting covered later). Indeed, if one endpoint of an edge

does not die shortly after the other does, then throughout all

those rounds when the second node is still alive, it might be

chosen as an endpoint. And if it becomes covered, then both

endpoints will be covered. In the above discussion “short”

and “long” means o(n) and Ω(n) rounds, respectively, and

we always talk about a “typical” run.

What will be harder to rule out is the possibility that

both endpoints of e survive for Ω(n) rounds, but then

shortly after the first endpoint is covered, the other one

becomes isolated (all is understood on expectation). To

show that this is impossible we need to prove that when

a node u becomes covered, it will not suddenly change

the perspectives of v (its pair) getting covered (unless u
was covered with the (u, v) edge, which is, however, good

for us). The problem boils down to an interesting clear-cut

problem, which is to ”contrast” (i.e. relate) the coverage

probabilities of a node v by some algorithm A for G and

for G\u, respectively (for any u �= v ∈ V (G)). We establish

the desired relation, when A is the MRG algorithm, and

when A is the RANKING algorithm.

B. Hard Instances

While MRG has been studied extensively, RANKING (for

general graphs) is a recent invention of Jukna and Schnit-

ger (also, independently in [16], [17]), inspired by the ideas

in [11].

The motivation was to supersede the performance of

MRG on hard graphs. A classical hard graph for greedy

randomized matching algorithms is the so called “bomb–

graph”. In the bipartite adaption of [3] Bn consists of a

complete bipartite graph on 2n vertices, the core. Moreover,

each node of the core is connected to an additional node,

its antenna (cp. Fig. 1). The antenna edges form the only

perfect matching of the graph.

Algorithm Lamp KVV B900 D900

MRG 0.806 0.785 0.670 0.697
RANKING 0.797 0.911 0.751 0.738

Table I
EXPERIMENTALLY DETERMINED APPROXIMATION RATIOS

The (uniform) random edge heuristic will almost exclu-

sively pick edges from the core, reaching an approximation

ratio 1
2 + o(1). MRG has a chance of at least 1

2 to select

an antenna and thereby collect an edge that belongs to the

perfect matching. The benefit is substantial as the approxi-

mation ratio on Bn converges to 2
3 (for n→∞).

What Jukna and Schnitger have observed is that RANK-

ING performs better on Bn than MRG, as bad decisions

of collecting edges inside the core are now compensated

for. In case of MRG core vertices that have low rank

according to πO are likely to be selected as first endpoints

and pick (uniformly at random) a core vertex as mate. In

case of RANKING the reduced randomness plays a crucial

role: Since both endpoints of a matching edge are chosen

according to the same permutation π, the second endpoint

is likely to have a low rank according to π as well, and

hence two dangerous vertices are eliminated at once. As

a consequence, the probability of antenna nodes to be

matched is increased and the approximation ratio is boosted

to 0.75. For a long time 0.75 seemed to be the worst

approximation ratio of RANKING, until the double bomb–

graph (first proposed for another reason in [15]; cp. Fig. 1)

was found. On this graph RANKING has an approximation

ratio of at most 0.727 when n tends to infinity, the current

worst number for RANKING.

Table I contains some experimental results (all approx-

imation ratios are averaged over 1 million repetitions).

The ”Lamp graph” consists of two triangles connected via

a path with two internal vertices. The ”KVV graph” is

the well-known counter-example of [11]. For this bipartite

graph G = (L∪R,E) we set |L| = |R| = 450; then the i-th
node of R is adjacent to the vertices i, i + 1, . . . , 450 in L
(for i = 1, 2, . . . , 450). To our table we have also added

B900 (Bomb) and D900 (Double Bomb).

C. Basic Equations for Covering Probabilities

This section is the beginning of our rigorous mathematical

discussion. G will be our input graph, that we assume, has

a perfect matching (see next section for justification). First

we establish some trivial, but important equations. For every

schedule of Definition 1, it holds, that by the time we finish

running it on G, every node v ∈ V (G) will end up either

selected as a first endpoint of an edge of the final matching,

or picked as a second endpoint (picked as a neighbor of

some first endpoint selected in the same round) or it becomes

isolated in the end. (The unmatched nodes will form an

710

independent set in the end.) Whether we talk about MRG

or RANKING, the set of all schedules forms the basic set of

a probability space (only the probability measure depends

on the algorithm). For this probability space we define:

s(v) the probability that the node gets selected as

the first endpoint of a matching edge.

k(v) the probability that the node gets selected as

the second endpoint of a matching edge.

i(v) the probability that the node becomes isolated

(un-matched) in the end.

Clearly,

s(v) + k(v) + i(v) = 1 (for every v) (1)∑
v

s(v) =
∑
v

k(v) (2)

Also, let M be the matching the algorithm creates, and let �

denote expectation. Then∑
v

s(v) = �[|M |]. (3)

For an edge e = (v, w) let b(e) be the probability that

both endpoints of e are matched in the end (maybe or may

not be with each other). Since at least one of the endpoints

of e must be matched in the end, we have that

s(v) + k(v) + s(w) + k(w) = 1 + b(e). (4)

If M∗ is a perfect matching of the input graph G with n/2
edges, Equations (2)-(4) give:

�[|M |] = n/4 +
∑

e∈M∗
b(e)/2.

We would like to show that
∑

e∈M∗ b(e)/2 = Ω(n) with a

hopefully large constant.

Let e = (v, w) be an arbitrary edge of G. We shall lower

bound b(e) (the probability that both endpoints of e are

covered) in terms of s(v) for both MRG and RANKING

(separately) without any additional assumption on e. For

MRG the desired relation between s(v) and b((v, w)) is

stated by Lemma 6, and it is used in Sect. III-B to finish the

proof. (Nothing else is used in the tiny Sect. III-B, except

trivial monotonicity.)

D. Basic Lemmas

The lemmas of this technical section are essentially known

to the randomized matching community. The proofs there-

fore can be skipped, but for the sake of completeness, and

for getting the exact formulations for our more general

randomized greedy algorithm framework we include them.

Our goal here is to establish certain monotonicity and

independence (more precisely, disjointness) properties: for

instance it is shown that in the analysis we may assume that

our input graph G has a perfect matching. In the sequel,

let A denote a randomized greedy algorithm (as defined in

Sect. I-A) that runs schedule σ.

Lemma 1 (Locality Lemma). Let M be the matching
obtained by running schedule σ under A, and let X ⊆ V (G)
be such that the (X,V (G)\X) partition does not have any
edge of M across the parts.

Let N be the subset of edges of M induced on X and σ|X
be the schedule induced on X , i.e. all vertices not in X
are omitted in all permutations. Then, if we run A on G|X
(the induced subgraph of G on X), with the schedule σ|X ,
it returns N (i.e. the algorithm works obliviously to the
environment of X).

Proof: Imagine running the algorithm on the entire

V (G), and also on X , with the schedules σ and σ|X . Run the

two algorithms simultaneously in such a way, that whenever

the first algorithm selects a node v not belonging to X as a

first endpoint, we switch the second algorithm temporarily

off. The condition of the lemma guarantees that in this case

we never select a neighbor in X .

On the other hand, if a node inside X is selected according

to πO, the algorithm run on G will never pick a neighbor

(if it picks any) outside X . Thus, whenever we arrive at

processing a node v ∈ X , the two algorithms pick the first

available neighbor (according to πv) inside X , which by

induction will be always the same for both algorithms.

Corollary 1. Let σ be a fixed schedule on the nodes of G,
on which we run A. Let M be the resulting matching.
Then V (G) \ V (M) is an independent set in G and hence
the cardinality of M is at least half of a maximum matching.

Next we prove the property of “vertex monotonicity” that

has been shown for the MRG algorithm in [1].

Lemma 2 (Vertex Monotonicity). Let M be the matching
obtained by running schedule σ, and let C be the set of
nodes that M covers. Assume, we insert a new node v in the
graph and connect it to some nodes in V (G). Update σ by
inserting v in each of the permutations πO, πv1 , . . . , πvn of
σ arbitrarily (but keeping the relative order of all nodes) and
extending the schedule by a new permutation πv on V (G)∪
{v} (while keeping the remaining edges of M).

Then, when we run the algorithm, we get a new matching
M ′. Let C ′ = V (M ′). Then either C ′ ⊇ C or |C \C ′| = 1
and v ∈ C ′.

Proof: We claim that M ′ is either a superset of M , or

results from it, by switching edges along a single alternating

path that starts at v. This of course, immediately implies the

lemma.

In order to show the claim, consider the connected

components of M ∪ M ′. We are done, if we manage to

prove that except perhaps the component that contains v all

components are single edges. Indeed, consider a connected

component X of M ∪M ′ that does not contain v. If we

711

apply Lemma 1 on X for both G and G+ v, then we get

that N =M |X and N ′ =M ′|X must be both identical with

the matching that we get, when we run the algorithm on X
(here we use that v is not included in X). Thus N = N ′,
and since N ∪ N ′ by our assumption was connected, they

are both the same single edge.

Corollary 2. Regarding the approximation ratio of a ran-
domized greedy algorithm A we may assume that the graph
has a perfect matching.

Proof: We fix any maximum matching M∗ in a graph

and assume that M∗ leaves some nodes uncovered. By

Lemma 2, removing these nodes does not increase the size

of the matching computed by A. Hence, the approximation

ratio is not improved if we restrict ourselves to graphs

containing a perfect matching.

Let x1, . . . , xk ∈ V (G) and define G′ := G \
{x1, . . . , xk}. The final matching obtained by running A
on G and G′ resp. is denoted by M and M ′ resp.

Lemma 3. The symmetric difference of the matchings ob-
tained by running a given schedule σ on G and G′, re-
spectively, contains k alternating paths P1, . . . , Pk starting
at nodes x1, . . . xk, respectively. (We define a path as an
ordered sequence of nodes.) It might occur that Pi = xi or
that Pi = Pj . In the latter case Pi starts at node xi and
ends at xj . The same conclusion holds in the more general
setting, where we run only the first l rounds of σ on G
and G′, respectively.

Proof: We proceed by induction on l (the number of

rounds run so far). Initially Pi = xi for all i, which reflects

the situation before the first round. When we go into the lth

round, the algorithm selects πO(l), i.e. the vertex of rank l
in permutation πO, as first endpoint. If πO(l) is an endpoint

of some Pi, then either the run on G or the run on G′ cannot

collect an edge at this round. This is because the endpoint

of Pi is either matched in G or in G′ or it is xi. Thus the

edge that does get collected in this round for either G or G′

(if at all) will belong to the symmetric difference, and thus

augments the alternating path that had πO(l) as endpoint.

Note that the other endpoint of the new edge cannot be

a middle point of any path, nor the starting point, unless

the latter is an empty path. It is possible, however, that

the new edge joins two paths. Assume now that πO(l) is

not an endpoint of some Pi. Then when picking the second

endpoint, we might get two different new matching edges

for G and G′, but this can happen only, when at least one of

these endpoints coincides with the endpoint of some path Pi.

In the latter case Pi extends by πO(l) and possibly by

another point (which can be an endpoint for another paths,

thus joining the two paths).

E. Contrast Analysis and Contrast Lemmas

After several failed attempts to duplicate the lower bound

theorem of [1] for RANKING, we felt that we were missing

statements that tie the s(v) and k(v) values of different

graphs together. First we found such a lemma for the MRG,

and later, with a much greater effort for RANKING. We call

these ’Contrast Lemmas’ as they allow us to compare the s
and k values of related graphs with each other. The lemma

for MRG gives a little more, and as a result, we get sharper

lower bounds for MRG.

Why do Contrast Lemmas help us in our lower bound

proofs? As the algorithm proceeds, these lemmas allow us

to monitor the development of the expected future coverage

of each node, and allow us to contrast different stages of the

algorithm. Importantly, they state that a sudden change will

not happen in the expected covering probabilities of a node,

if the algorithm matches a separate node (unless through

their connecting edge). Recall our heuristic reasoning from

Sect. II-A that we want to prove that if a node dies (after

surviving long), its mate (w.r.t. to the optimal matching M∗)
will not die immediately by isolation. Indeed, it cannot,

because as its mate, that node is also a long survivor, so

its s value (before the death of the mate) is not (close to)

zero. Then the Contrast Lemma guarantees that its s value

cannot change suddenly to (or close to) zero, when the mate

dies.

Lemma 4 (Contrast Lemma for the MRG algorithm). Let A
be the MRG algorithm, and u, x1, . . . , xk ∈ V (G). The
probability that u covered in G\{x1, . . . , xk} =: G′, under
running A, is at least

1

k + 1
·
[
Prob(u is covered in G (under A))

−
k∑

j=1

Prob(u is matched to xj in G (under A))

]
.

The proof can be found in Sect. III-C. A similar lemma is

stated for RANKING in Sect. IV.

III. PUTTING THEOREM 1 TOGETHER

A. Estimating b from s

Towards our crucial Lemma 6 we show:

Lemma 5. Both for the RANKING algorithm and for the
the MRG algorithm the following holds: Let e = (v, w) be
an edge of G. Then b(e)+s(w)+k(w) ≥ s(v). (In fact, for
MRG an even a stronger statement holds: b(e) + s(w) ≥
s(v).)

Proof: First we prove this for the RANKING algo-

rithm. Let Γ(b(e)) denote the set of schedules for which

both v and w are covered, and define Γ(s(v)), Γ(s(w))
and Γ(k(w)) analogously. It is clearly sufficient to establish

712

an injective mapping from Γ(s(v)) to the multiset M :=
Γ(b(e)) ∪ Γ(s(w)) ∪ Γ(k(w)) for RANKING (if a schedule

is contained in two or three of the sets Γ(b(e)), Γ(s(w)),
Γ(k(w)), it appears twice (resp. three times) in M).

Recall that in case of RANKING any schedule with non-

zero probability is defined by a single permutation, π, and

with a little abuse of the notation we call the associated

schedule also π. Let π ∈ Γ(s(v)). If w is an endpoint

in the final matching produced by π, then π ∈ Γ(b(e))
holds and π ∈ Γ(s(v)) is mapped to that occurrence of π
in Γ(b(e)) ⊆ M. Otherwise v must precede w in π, since

with RANKING the situation can never occur, that the lower

ranked endpoint of an edge is not covered at all, while the

higher ranked endpoint is selected as a first endpoint of a

matching edge (since in the said situation the higher ranked

endpoint must be free at the time the lower ranked endpoint

is considered, and by default, it would match with it). Let π′

be the permutation we obtain by swapping v and w in π
(thus, lowering the rank of w), and let us focus on the round

when RANKING (now run with π′) considers w: If w has

already been picked by a vertex in the prefix, π′ contributes

to Γ(k(w)). Otherwise it must contribute to Γ(s(w)). To see

this, observe that no matching decision about v was altered

by moving v to higher ranks (when processing the nodes

up-to its old rank), so at the moment when w is considered

by π′, v is still free, and provides a default match. The

mapping we define now goes from π ∈ Γ(s(v)) to π′, which

is either contained in Γ(k(w)) or in Γ(s(w)), and is charged

to that set.

To conclude the argument, assume that π ∈ M is an

image under our mapping and observe that its origin can be

determined uniquely: If π is charged to Γ(b(e)), then π itself

is the origin. Otherwise, the origin is obtained by swapping v
and w.

Now let us switch to the MRG algorithm. We are

proving the stronger statement: b(e) + s(w) ≥ s(v). Set

M = Γ(b(e)) ∪ Γ(s(w)). Assume σ = πO, πv1 , . . . , πvn ∈
Γ(s(v)), i.e. for schedule σ vertex v is selected as a first

endpoint in some round l. If w has already been matched, σ
contributes not only to s(v), but also to b(e) and we

map σ ∈ Γ(s(v)) to σ ∈ Γ(b(e)).
Now assume that w is still free at the beginning of

round l. Let us denote by σ′ the schedule that one obtains by

swapping v and w in πO, while keeping the remaining part

of σ the same. If we run MRG with schedule σ′, then w
will be selected as a first endpoint of a matching edge in

round l, because v must be free at that time. In this second

situation we map σ ∈ Γ(s(v)) to σ′ ∈ Γ(s(w)). Similarly

to the proof for RANKING we can now observe that the

destination of our map reveals the origin: For σ′ ∈ Γ(b(e))
the origin is σ′ itself, and in the case, when σ′ ∈ Γ(s(w)),
the origin is obtained by swapping v and w in πO of σ′.

The next lemma will use all our lemmas so far, cru-

cially the Contrast Lemma, to make a simple relation be-

tween b((v, w)) and s(v) (for any edge (v, w) of G) in the

case of MRG.

Lemma 6. For any edge e = (v, w) in G we have b(e) ≥
s(v)2/8.

We prove the statement by induction on the number of the

edges of the graph G. If E(G) is just the (v, w) edge, the

statement clearly holds. Now consider an arbitrary graph G
with edge (v, w) and let β := s(w) + k(w). If β ≤ 7

8s(v)
then by Lemma 5 we have b(e) ≥ s(v) − β, which gives

b(e) ≥ s(v)/8 ≥ s(v)2/8. We need one more caveat. Let se
be the probability that any time during the algorithm the

edge e = (v, w) is selected from any side. If se ≥ s(v)/8,

we are again done outright.

Now we are ready for the inductive step, where we can

assume that β > 7
8s(v) and se < s(v)/8. We subdivide the

event space created by the randomness of the algorithm into

disjoint events. Let Ex,y be the event that in the first round

(x, y) is selected from the x side. (Remark: by definition,

if (x, y) ∈ E(G), then (y, x) ∈ E(G).) Define also: Ex =
∪y is a neighbor of x Ex,y . Then

Ev; {Ex,y}x,y, where (x, y) ∈ E(G) and x �= v

is obviously a complete system of disjoint events. Define

q := 1
n = Prob(Ev)

qx,y := Prob(Ex,y)
sx,y := the probability that v is selected (in any

round) from the v side, conditioned on

Ex,y
bx,y := the probability that both v and w are

covered (in some rounds), conditioned on

Ex,y
b := the probability that w is covered (in some

round), conditioned on Ev
Now we have

1 = q +
∑

x �= v and (x, y) ∈ E(G)

qx,y (5)

s(v) = q +
∑

x �= v and (x, y) ∈ E(G)

qx,ysx,y

b(e) = qb+
∑

x �= v and (x, y) ∈ E(G)

qx,ybx,y

Lemma 7. For all (x, y) ∈ E(G), x �= v we have bx,y ≥
s2x,y/8.

Proof: For (x, y) we separate four different cases. If

{x, y} ∩ {v, w} = ∅, then we are done by induction, since

the bx,y and sx,y values are respectively the b(e) and s(v)
values of G′, where G′ is the graph that arises after the first

step of the MRG algorithm, i.e. when after (x, y) is selected.

713

If x = w and y �= v, we are done, since when x = w, w is

guaranteed to be covered, so bx,y ≥ sx,y , (Since bx,y allows

for v to be covered from the non-v side, while sx,y does not,

equation does not necessarily hold). If y = w (but x �= v) we

are done, since bx,y ≥ sx,y (the same reason as previously).

Finally, if y = v we are done, since sx,y = 0, because v
is matched from the “wrong” side. We have considered all

cases, since x = v is not permitted by assumption.

Lemma 8. If β > 7
8s(v) and se < s(v)/8, then b ≥ s(v)/4.

Proof: If the degree d of v in G is one, then b = 1, and

the statement is trivial. Otherwise let w, x1, . . . , xd−1 be the

d neighbors of v. We apply the Contrast Lemma (Lemma 4)

to every G,Gi pair (1 ≤ i ≤ d−1), where Gi = G\{v, xi}.
For 1 ≤ i ≤ d− 1 let pi be zero if xi is not a neighbor of

w, otherwise we define pi as the probability that any time

during the algorithm the edge (w, xi) is selected from any
side. Recall, that se is the probability that any time during

the algorithm the edge e = (v, w) is selected from any side.

Then

β ≥ se + p1 + . . .+ pd−1

Lemma 4 gives that the probability that w is matched in Gi

is at least (β− se− pi)/3. Thus, the conditional probability

that w is covered, after v is selected as a first endpoint of a

matching edge in the first round, is lower bounded by

1

d
+

β − se − p1
3d

+ . . .+
β − se − pd−1

3d
(6)

Here the first term corresponds to the case, where w is

picked as the partner of v, and the ith subsequent term

lower bounds the probability that xi is picked as a neighbor

of v, and w is covered at a later point. The expression in

Equation (6) can be further expressed as

1

d
+

1

3d

(
β(d− 1)− se(d− 1)−

d−1∑
i=1

pi

)
≥

1

d
+

d− 2

3d
(β − se) ≥ 1

d
+

d− 2

4d
s(v) ≥ s(v)

4

We are now ready to do the recurrence:

b(e) = qb+
∑

x �= v and (x, y) ∈ E(G)

qx,ybx,y

≥ qb+
1

8

∑
x �= v and (x, y) ∈ E(G)

qx,ys
2
x,y

≥ qb+
1

8

(∑
x �= v and (x, y) ∈ E(G) qx,ysx,y

)2
∑

x �= v and (x, y) ∈ E(G) qx,y

≥ 1

n

s(v)

4
+
1

8

(
s(v)− 1

n

)2
1− 1

n

(7)

The first inequality follows from Lemma 7, the second

from Jensen’s inequality. The estimate of qb comes from

Lemma 8. We have also used Equation (5), and the fact,

that ∑
x �= v and (x, y) ∈ E(G)

qx,ysx,y = s(v)− 1

n
.

Estimating (7) further:

1

n

s(v)

4
+
1

8

(s(v)− 1
n)

2

1− 1
n

≥ 1

n

s(v)

4
+
1

8

(
s(v)− 1

n

)2

=
1

8
s(v)2 +

1

8n2
≥ s(v)2

8

as needed.

B. The MRG algorithm achieves at least a (1/2 + 1/256)
approximation

Denote by M∗ an arbitrary maximum matching of G
and let M∗ = {(vi, wi)}1≤i≤|M∗| such that s(vi) ≥ s(wi).
Recall that we may assume that M∗ is a perfect matching

because of the monotonicity property given by Lemma 2.

Clearly, ∑
i

(s(vi) + s(wi)) =
∑
i

(k(vi) + k(wi))

holds, because every edge selected by the algorithm has a

first and a second endpoint. Moreover, since the algorithm

obtains a maximal matching, we have∑
i

(s(vi) + s(wi) + k(vi) + k(wi)) ≥ |M∗|

and hence
∑

i s(vi) ≥ |M∗|/4.

Let ei = (vi, wi). Then Jensen’s inequality and Lemma 6

give:

∑
i

b(ei) ≥
∑
i

s2i
8
≥ 1

8
|M∗|

(
1

|M∗|
∑
i

si

)2

≥ |M∗|
128

Then the size of the matching the MRG algorithm finds on

expectation is at least

|M∗|
2

+
1

2

∑
i

b(ei) ≥ (1/2 + 1/256) · |M∗|.

C. The Proof of the Contrast Lemma (Lemma 4 for
the MRG algorithm)

In order to be able to compare the running of MRG

on two different graphs we recall the notion of schedule
for MRG from Definition 1. A schedule σ is given by n+1
permutations on V (G) = [n]:

σ = πO|πv1 . . . πvn

There are (n!)n+1 schedules, and in case of MRG we equip

the set of all schedules with the uniform distribution. It is

easy to show that we can run the MRG algorithm on an

714

arbitrary subgraph H of G in such a way that we pick a

random schedule and run it on this subgraph by skipping

any vertex in πO that is not contained in H .

To prove the claim, it is sufficient to define a max-(k+1)-
to-one map φ from the set

S1 = schedules, that when run on G, node u is

matched to a node in V (G)\{x1, . . . , xk}
to the set

S2 = schedules (for G), that when run on G′,
node u is matched

Recall from Lemma 3, that when executing a given

schedule, at the beginning of each round the symmetric

difference of the matchings obtained on G and G′ differ

in at most k alternating paths Pi (1 ≤ i ≤ k). We are now

ready to define φ(σ) for any σ ∈ S1. First observe that if

u /∈ Pi for any 1 ≤ i ≤ k, then the node u appears either

in both matchings or in none. Also, if u is an inner point of

some Pi, then u appears in both matchings. This gives us

the first rule:

1. Let σ ∈ S1. If u is not an an endpoint of any Pi created

by σ, then φ(σ) = σ (∈ S2).

The critical case corresponds to u being the endpoint

of some Pi (1 ≤ i ≤ k). Now, walking backwards on

Pi starting from u, let we first encounter node y (directly

connected with u) and then node y′. Note, that y′ exists,

since y �= xi, by the definition of S1.

2. For those σ ∈ S1, where u is the endpoint of some

Pi (1 ≤ i ≤ k) and σ chooses u as a first endpoint of a

matched edge in G, define φ(σ) by swapping u with y′ in

πO.

3. For those σ ∈ S1, where u is the endpoint of some

Pi (1 ≤ i ≤ k) and σ chooses u as a second endpoint of a

matched edge in G, define φ(σ) by swapping u with y′ in

πy .

It is easy to see that in items 2. and 3. φ(σ) ∈ S2 also

holds. We are done if we show that any σ′ ∈ S2 can have

at most k+1 inverse images. Trivially, σ′ can have at most

one inverse image from item 1. We show that σ′ can have at

most k inverse images from items 2. and 3 together. In fact,

if σ′ is such that G′ chooses u as a first endpoint of an edge

under σ′, then for any σ with φ(σ) = σ′ u is chosen for G
by σ as a first endpoint of an edge, and the mapping was

done under rule 2, otherwise for any σ with φ(σ) = σ′ u
is chosen for G by σ as a second endpoint of an edge, and

the mapping was done under rule 3. Thus no σ′ can come

from 2. and 3. at the same time.

We can decode σ from σ′ (of cases 2. or 3.) in such a

such a way that we run schedule σ′ until the lth round, when

u is chosen. Then we use the following lemma:

Lemma 9. The Pis are the same for σ′ and σ before the
lth round. Also, In the case, when σ′ comes from 3, y can
be identified as the other endpoint of the edge matched in
G′ under σ′.

Both claims of the lemma are easy to see. The second

claim holds, because when σ′ comes from 3, for both σ and

σ′ in the lth round y is the new vertex in πO, and for σ and

σ′ the vertex u is chosen (in G, and respectively, in G′) in

this (i.e. in the same) round.

The gist of the proof is now, that we can identify y′ as

the endpoint of one of the Pis as we enter the lth round.

Therefore we have only k options for y′. The rest is simple:

If u is chosen as a first endpoint for σ′, then σ arises by

swapping u and y′ in πO. Otherwise y is determined by σ′,
and σ arises by swapping y′ in πy . This procedure lets us

recover at most k σs coming from 2. or 3.

IV. THE CONTRAST LEMMA FOR THE RANKING

ALGORITHM

Recall that the RANKING algorithm maintains a single

random ordering π of the vertex set and chooses the next

first endpoint as well as its neighbor according to π.

We show a (slightly weaker) analogue of Lemma 4 for

the RANKING algorithm:

Lemma 10 (Contrast Lemma for the RANKING algorithm).
Let u, x ∈ V (G). Then the probability that u becomes an
endpoint in the final matching in G \ {x} =: G′ is at least

1

2
·
[
Prob(u is matched in G)

− Prob(u is matched to x in G)
]
.

In the proof of Lemma 10 we define a max-2-to-one map φ
from the set

S1 = permutations, that when run on G, node u
is matched to a node in V (G) \ {x}

to the set

S2 = permutations, that when run on G′ := G\
{x}, node u is matched

Note: to run a permutation π on G′, that was originally

designed for G, one simply needs to leave out node x from

π. We leave the the non-trivial proof that such map exists

to the journal version.

V. THE RANKING ALGORITHM ON RANDOM GRAPHS

In the analysis of a graph algorithm it is customary to

look at how it performs on random graphs. We look at

the the performance of RANKING on Gn,p, the Erdős-Rényi

distribution of graphs on n nodes, where every edge is

picked independently with probability p. We show that

715

Theorem 3, restated. If p = ω(logn
n), then with high prob-

ability RANKING matches almost all nodes of G ∈R Gn,p.

It is sufficient to show:

Lemma 11. Let p = ω(logn
n). Let us fix a permutation π of

[n], and let G range randomly in Gn,p. Then with probability
1−1/n almost all (n(1−o(1))) nodes of G will be matched.

Proof: Without loss of generality we may assume that

π[i] = i for all i. Our G now is not a fixed graph, but rather a

random one, that we can generate as follows: As we process

RANKING, and we reach node i, we generate all edges (i, j)
of G, where j > i on the fly. Once we have decided at edges

from i, we can determine the edge that RANKING will pick

in the ith round (if it picks any) without knowing anything

about the (existence of the) edges (i′, j′) for i′, j′ > i. As-

sume, node i is not yet picked in any of the previous rounds.

Assume furthermore that we still have at least L = nε nodes

with index greater than i that the algorithm has not matched

yet with a node less than i. Conditioned on the current

situation meeting the above criterions, when introducing the

new edges in the ith round, node i will have at least one

edge to the un-matched node-set with probability at least

1−(1−p)L ≥ 1−n−εpn/ logn = 1−1/nω(1) > 1−1/n2. If

we have less than L un-matched nodes remaining, we abort

the algorithm and return the current matching. Consider the

probability that there exists a stage i that the algorithm leaves

node i unmatched even though there are at least L future

nodes that are not matched from earlier rounds. The union

bound gives that this probability is at most n × 1
n2 = 1/n.

Thus with probability at least 1−1/n at least 1− ε fraction

of the nodes is matched. This is true for every fixed ε if n
is large enough.

In conclusion we get that the RANKING algorithm works

on random graphs with efficiency approaching one for a

wide range of parameter p. As a by-product we also got that

a random graph with edge probability ω(logn
n) almost surely

contains a near-perfect matching (i.e. a one with n(0.5 −
o(1)) edges). (Of course the latter is not new and much

stronger is known: Erdős and Rényi have shown that if a

random graph has n vertices and n
2 (lnn+ω(1)) edges, then

G almost surely has a perfect matching [18].)

VI. AN EFFICIENT IMPLEMENTATION OF RANKING

AND MRG

We describe an implementation of RANKING and MRG

that runs in time O(n+m). The main problems one needs to

address are how to ensure that no endpoint is matched more

than once and in case of the RANKING algorithm that the

second endpoints are chosen according to the same random

permutation.

Let us assume that the vertex identifiers are given by [n].
For the outer loop that selects the first endpoint a doubly

linked list LO is created that contains an element for each

vertex. Moreover, we have AO, an array of size n, where

the i-th element (for i ∈ [n]) contains a pointer to the

element of vertex i in LO (or ⊥ if the element of i is

not contained in LO anymore). Note that with an auxiliary

array and the well–known Fisher-Yates shuffle algorithm we

can obtain the random permutation πO for AO and LO in

time O(n) [19].

Then we generate a pair

(min{π−1
O (u), π−1

O (v)},max{π−1
O (u), π−1

O (v)})
for each edge (u, v) ∈ E and collect all pairs in an

array F (recall that π−1
O (w) denotes the rank of vertex w

according to permutation πO). F is sorted lexicographically

in time O(n+m); note that there are 2m pairs of integers

that are bounded by n, the largest rank. A doubly linked

adjacency list Li is created for each vertex i ∈ [n]. In

a single pass through F , for each tuple (π−1
O (u), π−1

O (v))
we append v in Lu as well as u in Lv and add mutual

cross–pointers to both list elements; note that the vertices

in each list are permuted according to πO. This completes

the construction for the RANKING algorithm. The MRG

algorithm, however, requires each list Li to be permuted

randomly; the total cost of this additional step is O(m).

Now we are ready to run the algorithm: As first endpoint

we pick the first element of LO, say u. If Lu is not empty, the

second endpoint, say v, is the first element of Lu, otherwise

we skip the round of u.

To assert that this procedure gives a valid matching, we

remove u and v from LO as well as from the adjacency

lists of their neighbors, thereby maintaining the invariant

that only free vertices appear in LO and Li. The removal is

accomplished as follows: we pass once through Lu and Lv

and for each vertex w ∈ Lu (resp. w ∈ Lv) we access and

remove the element of u (resp. v) in Lw in constant time,

using the cross–pointers. Observe that the overall running

time of this step is bounded by O(m), since each edge incurs

constant cost only once. Finally, u and v are deleted in LO,

before these changes are reflected in AO accordingly.

ACKNOWLEDGMENT

The authors would like to thank Stasys Jukna and Georg

Schnitger for pointing them to these questions. Moreover, the

authors feel indebted to Ulrich Meyer and Georg Schnitger

for their helpful comments.

REFERENCES

[1] J. Aronson, M. E. Dyer, A. M. Frieze, and S. Suen, “Random-
ized greedy matching II,” Random Struct. Algorithms, vol. 6,
no. 1, pp. 55–74, 1995.

[2] B. Korte and D. Hausmann, “An analysis of the greedy
algorithm for independence systems,” Annals of Discrete
Mathematics, vol. 2, pp. 65–74, 1978.

716

[3] M. E. Dyer and A. M. Frieze, “Randomized greedy match-
ing,” Random Struct. Algorithms, vol. 2, no. 1, pp. 29–46,
1991.

[4] Z. Miller and D. Pritikin, “On randomized greedy matchings,”
Random Struct. Algorithms, vol. 10, no. 3, pp. 353–383, 1997.

[5] R. M. Karp and M. Sipser, “Maximum matchings in sparse
random graphs,” in FOCS, 1981, pp. 364–375.

[6] J. Aronson, A. M. Frieze, and B. Pittel, “Maximum matchings
in sparse random graphs: Karp-sipser revisited,” Random
Struct. Algorithms, vol. 12, no. 2, pp. 111–177, 1998.

[7] A. M. Frieze, A. J. Radcliffe, and S. Suen, “Analysis of a
simple greedy matching algorithm on random cubic graphs,”
Combinatorics, Probability & Computing, vol. 4, pp. 47–66,
1995.

[8] G. Tinhofer, “A probabilistic analysis of some greedy cardi-
nality matching algorithms,” Annals of Operations Research,
vol. 1, pp. 239–254, 1984.

[9] O. Goldschmidt and D. S. Hochbaum, “A fast perfect-
matching algorithm in random graphs,” SIAM J. Discrete
Math., vol. 3, no. 1, pp. 48–57, 1990.

[10] M. E. Dyer, A. M. Frieze, and B. Pittel, “The average
performance of the greedy matching algorithm,” Ann. Appl.
Probab., vol. 3, no. 2, pp. 526–552, 1993.

[11] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal
algorithm for on-line bipartite matching,” in STOC, 1990, pp.
352–358.

[12] B. E. Birnbaum and C. Mathieu, “On-line bipartite matching
made simple,” SIGACT News, vol. 39, no. 1, pp. 80–87, 2008.

[13] G. Goel and A. Mehta, “Online budgeted matching in random
input models with applications to adwords,” in SODA, 2008,
pp. 982–991.

[14] M. Mahdian and Q. Yan, “Online bipartite matching with ran-
dom arrivals: an approach based on strongly factor-revealing
LPs,” in STOC, 2011, pp. 597–606.

[15] C. Karande, A. Mehta, and P. Tripathi, “Online bipartite
matching with unknown distributions,” in STOC, 2011, pp.
587–596.

[16] P. Tripathi, “Allocation problems with partial information,”
Ph.D. dissertation, Georgia Institute of Technology, 2012.

[17] G. Goel and P. Tripathi, “Matching with our eyes closed,” in
FOCS, 2012.

[18] N. Alon and J. Spencer, The Probabilistic Method. John
Wiley & Sons, 2008.

[19] R. Durstenfeld, “Algorithm 235: Random permutation,” Com-
mun. ACM, vol. 7, no. 7, p. 420, 1964.

717

