
Constructing a Pseudorandom Generator Requires
an Almost Linear Number of Calls

Thomas Holenstein∗

ETH Zurich
thomas.holenstein@inf.ethz.ch

Makrand Sinha‡

University of Washington
makrand@cs.washington.edu

Abstract—We show that a black-box construction of a
pseudorandom generator from a one-way function needs to
make Ω

(
n

log(n)

)
calls to the underlying one-way function. The

bound even holds if the one-way function is guaranteed to be
regular. In this case it matches the best known construction
due to Goldreich, Krawczyk, and Luby (SIAM J. Comp. 22,
1993), which uses O

(
n

log(n)

)
calls.

Keywords-Pseudorandom Generators; One-way Functions;
Black-box separation.

I. INTRODUCTION

A. One-way functions and pseudorandom generators

Starting with the seminal works by Yao [1], and Blum

and Micali [2], researchers have studied the relationship

between various cryptographic primitives, such as one-way

functions, pseudorandom generators, pseudorandom func-

tions, and so on, producing a wide variety of results. One

particular task which was achieved was the construction of

pseudorandom generators from one-way functions, a task

which has a history on its own. First, it was shown that one-

way permutations imply pseudorandom generators [3], [4].

Later, the result was extended to regular one-way functions

[5], and finally it was shown that arbitrary one-way functions

imply pseudorandom generators [6].

Unfortunately, the constructions given in [5] and [6] are

relatively inefficient (even though they run in polynomial

time). Suppose we instantiate the construction given in [5]

with a regular one-way functions taking n bits to n bits.

Then, it yields a pseudorandom generator whose input is

of length1 Θ̃(n3) and calls the underlying one-way function

Θ̃(n) times. The parameters in [6] are worse: if we instan-

tiate the construction with an (arbitrary) one-way function

taking n bits to n bits, we obtain a pseudorandom generator

which needs Θ̃(n8) bits of input, and which does around2

∗This work was supported by the Swiss National Science Foundation
Grant No. 200021-132508
‡ Parts of this work was done while the author was a student at ETH

Zurich. Work supported by the Excellence Scholarship and Opportunity
Programme of the ETH Zurich Foundation.

1The ˜Θ-notation ignores poly-logarithmic factors.
2We counted ˜Θ(n12) calls, but since [6] is not completely explicit

about the construction, we make no guarantee that other interpretations
are impossible. . .

Θ̃(n12) calls to f . The parameters of the security reduction

are also very weak.

Naturally, many papers improve the efficiency of these

results: [7], [8] show that the result of [6] can be achieved

with a more efficient reduction in case one assumes that the

underlying one-way function has stronger security than the

usual polynomial time security. [9] reduces the input length

of the pseudorandom generator in [5] to Θ(n log(n)). Also

it reduces the input length in [6] by a factor of Θ̃(n), and the

number of calls by a factor of Θ̃(n3). Most impressive, [10]

reduces the seed length to Θ̃(n4) and the number of calls

to Θ̃(n3), for the construction of a pseudorandom generator

from an arbitrary one-way function. Finally, [11] reduce the

seed length in this last construction to Θ̃(n3).
We remark that the main focus on the efficiency has been

on reducing the seed length. This is reasonable, as (pri-

vate) randomness is probably the most expensive resource.3

Nevertheless, one would like both the seed length and the

number of calls to be as small as possible.

B. Black-box separations

After [2], [1], it was natural to try and prove that one-

way functions do imply seemingly stronger primitives, such

as key agreement. However, all attempts in proving this

failed, and so researchers probably wondered (for a short

moment) whether in fact one-way functions do not imply

key agreement. A moment of thought reveals that this is

unlikely to be true: key-agreement schemes seem to exist,

and so in fact we believe that—consider the following as a

purely logical statement—one-way functions do imply key-

agreement.

A way out of the dilemma was found by Impagliazzo

and Rudich in a break through work [12]. They observed

3We would like to mention that in part this focus also seems to come from
the (somewhat arbitrary) fact that people usually set the security parameter
equal to the input length. For example, suppose we have a one-way function
from n to n bits with security 2n/100 (meaning that in time 2n/100 one
can invert f only with probability 2−n/100). If a construction now yields
a pseudorandom generator with m = n2 bits of input, the security can at

most be 2
√

m/100. At this point it becomes tempting to argue that because

m �→ 2
√

m/100 is a much slower growing function than n �→ 2n/100,
it is crucial to make the input length as small as possible. However, if
one introduces a security parameter k, both primitives could have security
roughly 2k . Arguing over the function which maps the input length to the
security is not a priori a good idea.

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.51

698



that the proofs of most results such as “one-way functions

imply pseudorandom generators” are, in fact, much stronger.

In particular, the main technical part of [6] shows that

there exists oracle algorithms g(f) and A(Breaker,f) with the

following two properties:

• For any oracle, g(f) is an expanding function.

• For any two oracles (Breaker, f), if Breaker distin-

guishes the output of g(f) from a random string, then

A(Breaker,f) inverts f .

Impagliazzo and Rudich then showed that the analogous

statement for the implication “one-way functions imply key-

agreement” is simply wrong, giving the first “black-box

separation”.

After the paper of Impagliazzo and Rudich, many more

black box separations have been given (too many to list

them all). We use techniques from several papers: in order

to prove that there is no black-box construction of collision

resistant hash-functions from one-way permutations, Simon

[13] introduced the method of giving specific oracles which

break the primitive to be constructed. Such oracles (usually

called Breaker) are now widely used, including in this paper.

Gennaro et al. [14] developed an “encoding paradigm”,

a technique which allows to give very strong black-box

separations, even excluding non-uniform security reductions.

This encoding paradigm has first been combined with a

Breaker oracle in [15]. In [16] a slightly different extension

of [13] is used: their technique analyzes how Breaker
behaves in case one modifies the given one-way permutation

on a single randomly chosen input. We also use this method.

Some black box separation results are (as we are) con-

cerned with the efficiency of constructing pseudorandom

generators. Among other things, Gennaro et al. [14] show

that in order to get a pseudorandom generator which expands

the input by t bits, a black-box construction needs to

do at least Ω(t/ log(n)) calls to the underlying one-way

function (this matches the combination of Goldreich-Levin

[4] with the extension given in Goldreich-Goldwasser-Micali

[17]). In [18], Viola shows that in order for a black-box

construction to expand the input by t bits, it needs to do at

least one of (a) adaptive queries, (b) sequential computation,

or (c) use Ω(t ·n log(m)) bits of input, when the underlying

one-way function maps n to m bits. This result has been

somewhat strengthened by Lu [19]. The papers [20], [21]

both study how much the stretch of a given generator can

be enlarged, as long as the queries to the given generator

are non-adaptive.

C. Contributions of this paper

A natural question to ask is: “what is the minimum seed

length and the minimal number of calls needed for a black-

box construction of a pseudorandom generator from a one-

way function?”

To the best of our knowledge, it is consistent with current

knowledge that a construction has seed length Θ(n) and does

a single call to the underlying one-way function (however,

recall that [14] show that in order to get a stretch of t bits,

at least Ω(t/ log(n)) calls need to be made).

The reason why no stronger lower bounds are known

seems to be that from a one-way permutation it is possible

to get a pseudorandom generator very efficiently by the

Goldreich-Levin theorem [4]: the input length only doubles,

and the construction calls the underlying one-way permu-

tation once. Also, almost all black-box separation results

which prove that a primitive is unachievable from one-way

functions also apply to one-way permutations. The only

exceptions to this rule we are aware of is given by [22],

[23] where it is shown that one-way permutations cannot

be obtained from one-way functions, and [24], where this

result is strengthened. However, both these results use a

technique which does not seem to apply if one wants to

give lower bounds on the efficiency of the construction of

pseudorandom generators.4

One should note that a very efficient construction of a

pseudorandom generator from a one-way function might

have implications for practice: it is not inconceivable that

in this case, practical symmetric encryption could be based

on a one-way function, at least in some special cases where

one would like a very high guarantee on the security.

We show in this paper than any construction must make

at least Ω( n
log(n) ) calls to the underlying one-way function.

While this bound is interesting even for arbitrary one-way

functions, it turns out that our proof works with some

additional work even if the one-way function is guaranteed

to be regular. In this case, the number of calls matches the

parameters in [5] (and recall that the length of the seed has

been reduced to O(n log(n)) in [9], with the same number

of calls to the one-way function).

In our theorem, we exclude a fully black-box reduction,

using the terminology of [25]. In fact, we give three results.

In our first result, we assume that the construction g(·)
when used with security parameter k only calls the under-
lying one-way function with the same security parameter k.

We believe that this is a natural assumption, as all construc-

tions we know have this property, and the underlying input

length is not immediately defined if g makes calls to f(k, ·)
for various values of k. The result is stated in Theorem 5.

Next, we study black-box constructions with the same

restriction, but where the security reduction is non-uniform.

These can be handled with the technique from [14], and in

our case it yields Theorem 7.

Finally, we remove the restriction that the construction

calls the underlying function with a fixed security parameter.

This gives Theorem 8. However, one needs to be careful

somewhat, since in this case, the construction calls the given

one-way function on a number of input lengths n, and thus

4Both proofs use the fact that a one-way permutation satisfies g(v) �=
g(v′) for any v �= v′ crucially.

699



already the expression Ω(n/ log(n)) in our lower bound

needs to be specified more exactly. Our theorem uses the
shortest input length of any call to f (i.e., our lower bound

is weakest possible in this case). Also, we remark that this

last bound does not exclude the construction of “infinitely

often pseudorandom generators”, which are secure only for

infinitely many security parameters.

II. THE MAIN THEOREM

We think of a one-way function as a family {fk}k≥0,

indexed by some security parameter k. The function fk
then takes as input a bitstring of length n(k), and outputs a

bitstring of length n′(k). Usually, the case n(k) = n′(k) = k
is considered in the literature. We want to distinguish n
and k here, as we hope this makes the discussion clearer.

However, we will still require that n is polynomially related

to k.5

Definition 1. A function n(k) : N→ N is a length function

if there exists c ∈ N such that k1/c ≤ n(k) ≤ kc, n(k) can
be computed in time kc, and n(k + 1) ≥ n(k) for any k.

In general, the length n(k) of the input of a one-way

function differs from the length n′(k) of the output. In

case n(k) > n′(k), it is shown in [26] how to obtain a

“public-coin collection of one-way functions”, where both

the input and the output length are n′(k). Such a collection

can be used with known constructions to get a pseudorandom

generator, and the number of calls will only depend on n′(k).
In case n(k) < n′(k), it is easy to see that one can also get

a“public-coin collection of one-way functions” with input

and output length 2n(k).
Therefore, we can restrict ourselves to the case

n(k) = n′(k), and see that otherwise, the parameter

min(n(k), n′(k)) is the quantity of relevance to us.

Definition 2. A one-way function f = {fk}k≥0 is a family
of functions fk : {0, 1}n(k) → {0, 1}n(k), computable in
time poly(k), such that for any algorithm A running in time
poly(k) the function mapping k to

Pr
x,A

[A(k, fk(x)) inverts fk] (1)

is negligible in k.6

A pseudorandom generator g = {gk}k≥0 is a family of
polynomial time computable functions gk : {0, 1}m(k) →

5The requirement that n(k) ≤ kc is implicit in the definition of one-way
functions, as otherwise the one-way function cannot be evaluated in time
polynomial in k. The requirement n(k) ≥ kc is different, however. For
example, suppose a family {fk}k≥0 can be evaluated in time kO(1) and

has n(k) = log2(n). Also, suppose that fk is a one-way function in the
sense that in time kO(1) it cannot be inverted with probability k−O(1) ≤
2−

√
n(k). If f is additionally regular, fewer than Ω(n/ log(n)) calls are

sufficient to construct a pseudorandom generator.
6We say that “A(fk(x)) inverts fk” if fk(A(fk(x))) = fk(x), and

write A below the symbol Pr to indicate that the probability is also over
any randomness A may use. We also assume it is clear that x is picked
from {0, 1}n(k).

{0, 1}m′(k) with m′(k) > m(k) and such that any algorithm
B running in time poly(k)

Pr
v,B

[B(k, gk(v)) = 1]− Pr
w,B

[B(k,w) = 1] (2)

is negligible in k.

We next define fully black-box constructions, but only for

the special case of importance to us. Note that we assume

that the underlying one way function is regular (a function

family {fk}k≥0 is regular if |{x′ : fk(x′) = fk(x)}| only

depends on k and not on x).

Definition 3. A fully black-box construction of a pseudo-

random generator from a regular one-way function consists
of two oracle algorithms (g,A). The construction g(f) is
a polynomial time oracle algorithm which provides, for
each length function n(k) and each �, a function g� :
{0, 1}m(�) → {0, 1}m′(�) with m′(�) > m(�). For this, g
may call f as an oracle.

Further, the security reduction A(·,·)(k, ·, ·) is a
poly(k, 1

ε )-time oracle algorithm such that for any regular
function f , any inverse polynomial function ε(�), and any
oracle Breaker for which

Pr
v,Breaker

[Breaker(�, g�(v)) = 1]− (3)

Pr
w,Breaker

[Breaker(�, w) = 1] ≥ ε(�)

for infinitely many �, then

Pr
x,A

[A(Breaker,f)(k, ε(k), fk(x)) inverts fk] (4)

is non-negligible.

Due to space restrictions we will restrict ourselves to the

(most interesting) case where g only calls f on a single

security parameter and mention the other results only in

passing.

Definition 4. A black-box construction is security parameter

restricted if g(k, ·) only calls f(k, ·) and A(k, ·) only calls
Breaker(k, ·) and f(k, ·) for any k.

Our main contribution is the following theorem:

Theorem 5. Let n(k), r(k) ∈ poly(k) be computable
in time poly(k), and assume that r(k) ∈ o( n(k)

log(n(k)) ).
There exists no security parameter restricted fully black-box
construction of a pseudorandom generator from a one-way
function which has the property that g(k, v) does at most
r(k) calls to f(k, ·).

The above discussion assumes that the adversary is uni-

form (i.e., there is a single adversary A(·,·) with oracle

access to f and Breaker). However, many black-box results

even work in case that A can be a non-uniform circuit, and

our result is no exception. We define non-uniform black-

box constructions next, and then state our second theorem

700



for non-uniform black-box adversaries (we also change the

security of the one-way function from standard security to

security s(k) in order to illustrate what results we can get

in this case).

Definition 6. A non-uniform fully black-box construction of

a pseudorandom generator from a regular one-way function

with security s(k) consists of two oracle algorithms (g,A).
The construction g(f) is a polynomial time oracle algorithm
which provides, for each k, a function gk : {0, 1}m(k) →
{0, 1}m′(k) with m′(k) > m(k). For this, gk may call fk as
an oracle, and m(k),m′(k) may depend on n(k) and n′(k).

Further, the security reduction A(·,·)(k, ·, ·) is an oracle
algorithm which does at most s(k) queries, and has the
property that for any regular function f and any oracle B
for which

Pr
v,B

[B(k, gk(v)) = 1]− Pr
w,B

[B(k, w) = 1] ≥ 1

100
(5)

for infinitely many k, there is hk ∈ {0, 1}s(k) such that

Pr
x,A

[A(B,f)(k, hk, fk(x)) inverts fk] >
1

s(k)
(6)

for infinitely many k.
Similar to before, A(k, ·, ·) only calls the oracles f(k, ·)

and B(k, ·).

Theorem 7. Let r(k), s(k), n(k) be given, and assume
r(k) < n(k)

1000 log(s(k)) for infinitely many k. Then, there is
no non-uniform security parameter restricted fully black-box
construction of a pseudorandom generator from a one-way
function with security s which has the property that g(k, v)
does at most r(k) calls to f(k, ·).

We can also study what happens with black-box construc-

tions which are not security parameter restricted. To explain

our results in this setting, we need a few more definitions.

Suppose we have given an oracle construction (g,A), and

fix the oracle f (i.e., the one-way function). For each � we

then consider the shortest call which g(�, v) makes to f for

any v:

n−f (�) := min{n(k)|∃v : g(f)(�, v) queries f(k, ·)}. (7)

Analogously, for each � we consider the maximal number

of calls g(�, v) makes to f :

rf (�) := max{r|∃v : g(f)(�, v) makes r queries to f}.
(8)

Note that both n−f and rf do in general depend on the oracle

f .

Our third main theorem is then given in the following:

Theorem 8. Fix a length function n(k). Let (g,A) be a fully
black-box construction of a pseudorandom generator from

a regular one-way function. Then, there is an oracle f for
which

rf ∈ Ω
( n−f
log(n−f )

)
. (9)

III. NOTATION AND CONVENTIONS

In the rest of the paper, we consider one fixed security

parameter k = �. Then, the input length n = n(k) of the

one-way function and the input length m = m(k) of the

pseudorandom generator are also fixed.

A. Pseudouniform functions

A pseudouniform function is a family g = {gk}k≥0 of

length preserving functions gk : {0, 1}m(k) → {0, 1}m(k)

such that the output of gk is indistinguishable from a uniform

string. An example is given by the identity function, or any

one-way permutation.

Definition 9. A function family g = {gk}k≥0 where
gk : {0, 1}m(k) → {0, 1}m(k) of poly(k)-time computable
functions is pseudouniform if, for all algorithms A running
in time poly(k) the function∣∣∣Pr

A,v
[A(k, gk(v)) = 1]− Pr

A,w
[A(k, w)] = 1

∣∣∣ (10)

is negligible in k.

If we are given a family {gk}k≥0 which is both pseu-

douniform and a one-way function, then we can obtain a

pseudorandom generator using only one call to g by the

Goldreich-Levin Theorem [4]. Conversely, given a pseudo-

random generator one can get a pseudouniform one-way

function by truncating the output.

Theorem 10. Suppose that g = {gk} is both a pseu-
douniform function and also a one-way function. Then,
hk(v, z) := (g(v), z,⊕n

i=1vizi) is a pseudorandom gener-
ator.

Conversely, if g is a pseudorandom generator with m(k)
bits of input, the truncation of g to the first m(k) bits of its
output is both pseudouniform and a one-way function.

Thus, we see that giving lower bounds on the construction

of pseudorandom generators is equivalent to giving lower

bounds on the construction of pseudouniform one-way func-

tions.

B. Normalization

Suppose we have a construction {g(f)k }k≥0 of a sup-

posedly pseudouniform one-way functions, where k is a

security parameter. We make several assumptions on the

construction which simplifies the proofs. First, we assume

that g never calls f twice with the same input, and does

exactly r calls to f . This is easy to achieve: one can

modify g to get an equivalent oracle construction with these

properties. Next, we enlarge the range of g, and assume

701



that in case two queries of f give the same answer, then g
outputs a special symbol which encodes a failure. This last

restriction is not completely trivial, as it can break some

constructions of pseudouniform functions for some choices

of underlying one-way functions. However, because of the

way we construct the oracles fk, in our case this is no

problem .

Definition 11. Let {0, 1}m∗ := {0, 1}m ∪ {(⊥, v)|v ∈
{0, 1}m}. An oracle function g(f) : {0, 1}m → {0, 1}m∗
is r-query normalized if g(v) never queries f with the same
input twice, does exactly r calls to f , and whenever two
outputs of f agree, g(f)(v) = (⊥, v).

We will write g instead of g(f) whenever f is clear from

the context. Furthermore, we let g′(v, y1, . . . , yr) be the

function which never calls f but instead just uses yi as the

reply of f to the ith query.

C. Notations

Definition 12 (The Query-sets). The set Query(g, v, f) is
{(x1, y1), . . . , (xr, yr)}, where xi is the i-th query which g
does to f in an evaluation of g(f)(v), and yi is the answer
given by f . The set Query(g′, v, y1, . . . , yr)) is defined
similarly (in particular, it also contains pairs (xi, yi)). The
sets QueryX(g, v, f) and QueryY(g, v, f) contain the x
and y-part of the pairs in Query(g, v, f).

For a pair (x∗, y∗), we define

f(x∗,y∗)(x) :=

{
y∗ if x = x∗

f(x) otherwise.
(11)

We use the following sets of functions f : {0, 1}n →
{0, 1}n. For a set Y ⊆ {0, 1}n such that |Y| divides

2n, F(Y) is the set of all regular surjective functions

f : {0, 1}n → Y . Then, Pn is the set of all bijective

functions f : {0, 1}n → {0, 1}n, i.e., the permutations. We

use P instead of Pn when n is clear from the context, and

write f ← Pn or f ← F(Y) to pick a function uniformly

from the respective set.

IV. PROOFS FOR THE CASE OF SINGLE CALL

Basic setting: By Theorem 10, it is sufficient to

consider constructions of pseudouniform one-way functions

from one-way functions. Thus, suppose a fully black-box

construction (g,A) of a pseudouniform one-way function

is given. We fix some security parameter k, and consider

g(k, ·), which only calls f(k, ·).
Our task is to come up with a pair (Breaker, f), such that

Breaker(k, ·) either inverts g or distinguishes the output of

g from a uniform random string, and yet A(Breaker,f) will

not invert f(k, ·) with noticeable probability.

A. The case of a single call

We first study the case where g(f) makes a single call to

the underlying one-way function f . To gather some intuition,

let us first consider some example constructions which make

r = 1 calls to f .

Let us take the function g : {0, 1}n → {0, 1}n which is

defined as g(v) = v, so that the function simply outputs the

input v. In this case, the function is clearly pseudouniform,

therefore Breaker will need to break the one-way property

of g. Consider the canonical breaker BreakOW presented

below which inverts g using exhaustive search.7

Algorithm BreakOW(f)(w)

for all v ∈ {0, 1}m do
if g(f)(v) = w then

return v;

return ⊥;

For the example g given above, BreakOW inverts g(f)(v)
for all v and is independent of f , so it does not help in

inverting f .

In general though, we want BreakOW to fulfill slightly

opposing goals - we want it to powerful enough to be able

to invert g(f) while at the same time it should not help with

inverting f . BreakOW as presented above might help in

inverting the function f for another g. To see this consider

the example g : {0, 1}2n → {0, 1}2n defined as

g(v, r) :=

{
(v, r) if r �= 0n

(f(v), r) otherwise.
(12)

This function is pseudouniform no matter how f is

defined. Thus, Breaker needs to invert g as before. But it is

easily seen that if BreakOW(y, 0n) returns a preimage of g,

clearly A will be able to invert f . Thus, only images (y, r)
with r �= 0n should be inverted. With this in mind consider

the following iteration of BreakOW where we add a check

to forbid such “malicious” queries.

To get some intuition on why the check in SafeToAnswer
is the correct one, consider an adversary which is trying

to find f−1(y) using BreakOW. Assume for now that f
is a permutation - we will later see that when taking the

Breaker oracle to be BreakOW we will take f to be a

permutation, so this case will suffice. The adversary has to

generate a useful w, which can be used to query BreakOW
and get some information about f−1(y). The easiest way

the adversary can generate such a w is to pick a random

permutation f ′ and a random input v′ and hope that g is

biased enough so that gf
′
(v′) = w. Moreover, since the

adversary wants to obtain information about f−1(y) it may

7Note that for this particular example, we can invert g(v) just by
outputting v since g is just the identity function. However, this particular
way of inverting g does not generalize to other constructions.

702



Algorithm BreakOW(f)(w)

procedure SafeToAnswer(w,Q):
// SafeToAnswer does not depend on f

if Pr
f ′←P,v′

[g(f
′)(v′) = w] ≥ 2−m+ n

30 or

Pr
f ′←P,v′

[ g(f
′)(v′) = w | Q = QueryY(g, v′, f ′)]

≥ 2−m+ n
30 then

return false;

return true;

for all v ∈ {0, 1}m do
if g(f)(v) = w then

if SafeToAnswer(w,QueryY(g, v, f)) then
return v;

return ⊥;

as well choose f ′ conditioned that the answer of the f ′ query

that g(v′) makes is y. We will later show that essentially

these are the only ways when an adversary can exploit

BreakOW: if it cannot do the above then it will not be

able to invert a random permutation f .

We point out that adding the SafeToAnswer check has

another side effect. Before adding the check BreakOW
was too powerful so that it also helped in inverting the

underlying function f . But after adding the check, for

certain constructions g, it cannot be used to distinguish

the output of g from uniform. For example, consider the

trivial construction g(v) = f(v). It cannot be inverted

by BreakOW and rightfully so, since if f is a one-way

function, then so is g. In these cases, we shall show later

that we can break the pseudouniformity of g.

In any case consider the following quantity p(g). This

is the probability that BreakOW inverts g(v) by returning

v (actually, not quite: BreakOW might return a different

preimage of g(v) before it enumerates v – in any case, the

probability that BreakOW inverts g is at least p(g))

p(g) := Pr
f←P

v←{0,1}m
[SafeToAnswer(g(f)(v),QueryY(g, f, v))]

It is easy to see that if g satisfies p(g) ≥ 1
2 , then

BreakOW(f) will invert g(v) with noticeable probability.

Lemma 13. Let g(·) : {0, 1}m → {0, 1}m be a construction
for a Pseudouniform one-way function. If p(g) ≥ 1

2 , then

Pr
f←P,v

[BreakOW(g(f)(v))) inverts g(f)] ≥ 1

2
.

Our next goal is to show that SafeToAnswer indeed

works: BreakOW is unlikely to help inverting f , when f is

uniformly drawn from P .

Lemma 14. Let g(·) : {0, 1}m → {0, 1}m be an ora-
cle construction of a pseudouniform one-way function. Let
Af,BreakOW be an arbitrary algorithm making at most 2

n
20

queries to f and to BreakOW. Then, the probability that A
inverts f(x) is at most

Pr
f←P,x,A

[Af,BreakOW(f(x)) inverts f ] ≤ 2−
n
30 .

To prove the above lemma we employ the technique used

by Haitner and Holenstein [16], which is a variation of the

technique used by Simon [13]. The main idea is to study

what happens if f is modified slightly by mapping a second,

randomly chosen element x∗ to y∗ where y∗ is the element

that A is trying to invert. We show that such a change will

likely go unnoticed by A(y∗), and it will not find the new

preimage. After the change, however, both preimages of y∗

are equally likely to be the original one, so A(y∗) could not

have found the original one either.

To make the above notion more precise, let us fix

now some permutation f , some y∗ ∈ {0, 1}n and some

w ∈ {0, 1}m and compare runs of BreakOW(f)(w) and

BreakOW(f(x∗,y∗))(w) for a random element x∗ ∈ {0, 1}n
(Recall that f(x∗,y∗) is the same as f except on y∗). The

next lemma then shows that the result of these two runs is

equal with high probability.

Lemma 15 (BreakOW is robust). Fix f , y∗, w. Then

Pr
x∗
[BreakOW(f)(w) �= BreakOW(f∗)(w)] ≤ 2−

4n
5

where f∗ = f(x∗,y∗).

Once we have the above lemma, it readily implies Lemma

14. The proof can be found in the full version of this paper

[27].

Next we prove Lemma 15. To simplify the notation, we

introduce the following definition for a set Qf,y∗,w. The set

Qf,y∗,w represents one of the critical cases in which the

execution of BreakOW(f)(w) and BreakOW(f∗)(w) can

differ. For the case of r = 1 call, we will show by a counting

argument that the set Qf,y∗,w is smaller than 2n/10 in size

from which Lemma 15 will follow.

Definition 16. Let g(·) : {0, 1}m → {0, 1}m be a 1-
query oracle construction. For f : {0, 1}n → {0, 1}n,
y∗ ∈ {0, 1}m, and w ∈ {0, 1}m, the set Qf,y∗,w contains
all pairs (x∗, v∗) with the following properties:

(a) g(f
∗)(v∗) = w

(b) x∗ ∈ QueryX(g, v∗, f∗), i.e., g(f
∗)(v∗) queries x∗

(c) SafeToAnswer(w,QueryY(g, v∗, f∗)),
where f∗ = f(x∗,y∗).

The next lemma proves that for all f, y∗ and w, the set

Qf,y∗,w is small in case g is a 1-query construction.

Lemma 17. Let g(·) : {0, 1}m → {0, 1}m be a 1-query
oracle construction. Then for all f ∈ P , w ∈ {0, 1}m and

703



y∗ ∈ {0, 1}n,
|Qf,y∗,w| ≤ 2n/10.

We will defer the proof of the above lemma for later and

first prove how it implies Lemma 15.

Proof of Lemma 15: Let v be the result of

BreakOW(f)(w). The value v∗ = BreakOW(f∗)(w) can

only be different from v in two cases: either v∗ occurs in

the enumeration of BreakOW after v (where we think of ⊥
as the last value which occurs in the enumeration). Then x∗

must be in Query(g, v, f). Alternatively, v∗ occurs before
v, then x∗ must be in Qf,y∗,w. Since the union of these two

sets has fewer than 2
n
5 elements the result follows.

Next we prove Lemma 17 which in the case of one call

follows from a simple counting argument.

Proof of Lemma 17: For the sake of contradiction

assume that |Qf,y∗,w| > 2n/10. Firstly note that for any

pair (v∗, x∗), x∗ is the query made by g(·)(v∗) and hence is

determined by v∗. Now pick a random v∗ ∈ {0, 1}m. The

probability that the corresponding pair (v∗, x∗) belongs to

Qf,y∗,w is at least 2−m+ n
10 . Now consider the evaluation

of g(f
∗)(v∗). Note that in the evaluation of g(f

∗)(v∗), the

answer of the query x∗ made by g is fixed to be y∗. Since

the probability that (v∗, x∗) ∈ Qf,y∗,w is at least 2−m+ n
10 ,

it follows that,

Pr
v
[g(f

∗)(v∗) = w | f∗(x∗) = y∗] > 2−m+ n
10 .

The last inequality implies that

SafeToAnswer(w,QueryY(g, v∗, f∗)) is false which

violates the condition (c) in the definition of Qf,y∗,w.

B. Breaking the Pseudouniformity

As pointed out in the last subsection, Oracle BreakOW
described above works well in the case p(g) ≥ 1

2 , but might

not be powerful enough to distinguish the output of g from

uniform for certain constructions g, such as the example

discussed before g(f)(v) = f(v). For this construction, the

problem arises since we cannot hope to invert g without

inverting f . We will show that in cases such as these (when

p(g) ≤ 1/2), we can break the pseudouniformity of g.

Let us take a closer look at what the condition p(g) ≤ 1/2
implies. In this case, once the output of the query to f made

by g is fixed to be y, certain values w are much more likely

(if v is still chosen at random). Thus, it is not too far fetched

to hope that if f is a very degenerate random function f :
{0, 1}n → Y for some set Y ⊆ {0, 1}n which is small, then

often g(f)(v) will be one of few possible values in a set

W (Y) which depends only on Y . We can then distinguish

the output of g from uniform by just verifying membership

in the set W (Y) and we can do this without even knowing

the details of f (namely, we can still pick f : {0, 1}n →
Y uniformly at random) and hence this should not help in

inverting f .

Next we formalize the above intuition. The following

lemma proves that such a set exists W (Y) exists when Y is

chosen to be very small. How small do we want Y to be ?

Note that for each fixed y, the number of w that can fail the

second condition in SafeToAnswer (namely the probability

considered in SafeToAnswer is at least 2−m+ n
30 ) can be at

most 2m−
n
30 . Hence, if there are  2n/30 elements in Y ,

W can be of size at |Y| ·2m− n
30 which is much smaller than

2n and we would be in good shape.

Lemma 18. Let g(·) : {0, 1}m → {0, 1}m be a 1-query
normalized oracle construction with p(g) ≤ 1

2 , n
100 ∈ N.

There exists Y ⊆ {0, 1}n of size |Y| = 2
n

100 and a set
W ⊆ {0, 1}m of size |W | ≤ 2m−

n
100 such that

Pr
f←F(Y)

v←{0,1}m
[g(f)(v) ∈W ] ≥ 1

2
. (13)

The full proof is omitted here, but the basic idea is to

pick Y uniformly at random, and let W be the elements

w for which ¬SafeToAnswer(w,Q) can happen for some

Q ⊆ Y . A simple counting argument shows that there cannot

be many elements w for which this is possible. Furthermore,

up to minor terms, the probability in (13) corresponds to

1− p(g).
Let g be such that p(g) ≤ 1/2. Fix the sets Y and W

and consider the following oracle BreakPU for breaking the

pseudouniformity of g. Note that the sets Y and W might

depend on g.

Algorithm BreakPUW (w)

if w ∈W then
return 1;

return 0

Since Lemma 18 gives us that |W | ≤ 2m−n/100, the

probability that a random w ∈ {0, 1}m satisfies w ∈ W
is at most 2−

n
100 . At the same time the probability that

g(f)(v) ∈ W for random v and f ← F(Y) is at least 1/2.

It follows that BreakPU breaks the pseudouniformity of g.

All that remains to prove is that BreakPU does not help

significantly in inverting a uniformly random function f :
{0, 1}n → Y . This is intuitive, since BreakPU does not

even depend on f (besides the choice of Y). The next lemma

gives a formal statement. We remark that this lemma also

follows directly from [14, Theorem 1]. To see this, note

that we can pick f as follows: first pick a random regular

function p : {0, 1}n → Y and then set f = π ◦ p for some

permutation π; by [14, Theorem 1], f is 2|Y|
(1/5)

-hard to

invert even given p.

Lemma 19. Let A be an arbitrary oracle algorithm making
at most 2

n
1000 queries, |Y| = 2

n
100 , n

1000 ∈ N. Then,

Pr
f←F(Y),x,A

[Af,BreakPU(f(x)) inverts f ] ≤ 2−
n

1000 , (14)

704



where BreakPU = BreakPUW for an arbitrary set W .

With Lemmas 13, 14, 18 and 19 in hand it is not too

difficult to prove the following theorem.

Theorem 20. Let n(k) ∈ poly(k) be computable in time
poly(k). There exists no security parameter restricted fully
black-box construction of a pseudorandom generator from a
one-way function which has the property that g(k, v) makes
at most 1 call to f(k, ·).

V. THE CASE OF r > 1 CALLS

For the case of r > 1 calls, the basic idea of the proof

remains the same as before. We will give two oracles, each

of which breaks one of the two security properties of g.

The first oracle inverts g with noticeable probability, and the

second oracle distinguishes the output of g from a uniform

random string. For each security parameter k we will then

set Breakerk to be one of these two oracles, depending on

the combinatorial structure of gk.

A. The inverting oracle

The first oracle is a generalization of BreakOW defined

before. It inverts g in some cases, and is given as algo-

rithm below, but we first explain it informally. On input

w ∈ {0, 1}m, BreakOW(w) first enumerates all possible

inputs v ∈ {0, 1}m of g in lexicographic order. For each

of them it checks whether g(f)(v) = w. If so, it checks

whether returning v could help some algorithm A to invert f .

For this, it calls the procedure SafeToAnswer. Roughly

speaking, SafeToAnswer will return false in case this fixed

w correlates strongly with some outputs y ∈ {0, 1}n of

f which occurred during the evaluation of g(f)(v). More

exactly, SafeToAnswer enumerates all possible subsets B
of the answers f gave in the evaluation of g(f)(v). It

then computes the probability that an evaluation outputs w,

conditioned on the event that the evaluation produces all

outputs in B. If this probability is much larger than 2−m,

SafeToAnswer will return false.

Algorithm BreakOW(f)(w)

procedure SafeToAnswer(w,Q):
for all B ⊆ Q do

if
Pr

f ′←P,v′
[ g(f

′)(v′) = w | B ⊆ QueryY(g, v′, f ′)]

≥ 2−m+ n
30 then

return false;

return true;

for all v ∈ {0, 1}m do
if g(f)(v) = w then

if SafeToAnswer(w,QueryY(g, v, f)) then
return v;

return ⊥;

We next define the quantity p(g). This is a lower bound

on the probability that BreakOW inverts g(v) by returning

v

p(g) := Pr
f←P

v←{0,1}m
[SafeToAnswer(g(f)(v),QueryY(g, f, v))]

(15)

It is easy to see that in case p(g) ≥ 1
2 , then BreakOW(f)

will invert g(v) with noticeable probability.

Lemma 21. Let g(·) : {0, 1}m → {0, 1}m∗ be a normalized
oracle construction. If p(g) ≥ 1

2 , then

Pr
f←P,v

[BreakOW(g(f)(v))) inverts g(f)] ≥ 1

2
. (16)

We next claim that BreakOW is unlikely to help inverting

f , when is uniformly drawn from P .

Lemma 22. Let g(·) : {0, 1}m → {0, 1}m∗ be an r-
query normalized oracle construction, r < n

100 log(2n+m) .
Let Af,BreakOW be an arbitrary algorithm making at most
2

n
20 queries to f and to BreakOW. Then, the probability

that A inverts f(x) is at most

Pr
f←P,x,A

[Af,BreakOW(f(x)) inverts f ] ≤ 2−
n
30 . (17)

To prove the above lemma recall the proof of Lemma 14.

We fix some permutation f , some y∗ ∈ {0, 1}n and some

w ∈ {0, 1}m and compare runs of BreakOW(f)(w) and

BreakOW(f(x∗,y∗))(w) for a random element x∗ ∈ {0, 1}n.

The next lemma shows that the result of these two runs is

equal with high probability in case |Qf,y∗,w| is small.

Lemma 23. Fix f , y∗, w. If |Qf,y∗,w| ≤ 2
n
10 , then

Pr
x∗
[BreakOW(f)(w) �= BreakOW(f∗)(w)] ≤ 2−

4n
5 (18)

where f∗ = f(x∗,y∗).

The next Lemma claims that with high probability over

the choice of f , the set Qf,y∗,w is small as in the case

of two calls. In the case, of one call we could prove that

Qf,y∗,w is small for every permutation f . For r larger than

1, we can only prove this with high probability over f ←
P and to prove the above lemma a concentration bound

for polynomials in the style as proven by [28] seems to

be needed. We will use a bound from [29], and show in

Section VI how it can be used to prove the next Lemma. It

turns out that this concentration bound also breaks down if

r ∈ Ω(n/ log(n)).

Lemma 24 (Concentration Lemma). Let g(·) : {0, 1}m →
{0, 1}m∗ be an r-query normalized oracle construction, r ≤

n
100 log(n) . For all (w, y∗) we have

Pr
f←P

[|Qf,w,y∗ | > 2
n
10

]
< 2−2

n
100r . (19)

705



B. The distinguishing oracle

Oracle BreakOW described above works well in case

p(g) ≥ 1
2 . Therefore, we now concentrate on the case

p(g) ≤ 1
2 . In this case, there are elements y1, . . . , yb such

that conditioned on those occurring as outputs of f , some

elements w are much more likely than others (in fact, on

a random evaluation we have probability at least 1
2 that a

subset of the y’s produced satisfies this). Thus, if f is a

function f : {0, 1}n → Y for some set Y ⊆ {0, 1}n which is

small, then often g(f)(v) will be one of few possible values.

Formally, we can prove Lemma 25 in the same spirit as

Lemma 18.

Remark. It turns out that if BreakOW inverts g(v) with

low probability, we can choose Y ⊆ {0, 1}n as small as

2Θ(n/r), and conditioned on f being from F(Y), the output

of g is very biased. Since Y is superpolynomial only as long

as r ∈ o(n/ log(n)), we see that f stops being a one-way

function once r /∈ o(n/ log(n)).

Lemma 25. Let g(·) : {0, 1}m → {0, 1}m∗ be an r-query
normalized oracle construction with p(g) ≤ 1

2 , n
1000r ∈ N.

There exists Y ⊆ {0, 1}n of size |Y| = 2
n

100r and a set
W ⊆ {0, 1}m of size |W | ≤ 2m−

n
100 such that

Pr
f←F(Y)

v←{0,1}m
[g(f)(v) ∈W ] ≥ 1

2
− r22−

n
100r (20)

Let now BreakPUW be the oracle which on input w
returns 1 if and only if w ∈ W . The next lemma states

that BreakPU(W ) does not help significantly in inverting

f .

Lemma 26. Let A be an arbitrary oracle algorithm making
at most 2

n
1000r queries, |Y| = 2

n
100r , n

1000r ∈ N. Then,

Pr
f←F(Y),x,A

[Af,BreakPU(f(x)) inverts f ] ≤ 2−
n

1000r , (21)

where BreakPU = BreakPUW for an arbitrary set W .

C. Proving the main result

The above lemmas can be used to prove Theorem 5. For

space reasons we omit it here; however, this should be pretty

obvious. The only issues are translating it to the asymptotic

version, the normalization, and then handling pseudorandom

generators via the connection to pseudouniform one-way

functions. These are, however, all minor.

VI. PROOF OF CONCENTRATION LEMMA

Due to space restrictions we can not include the proof of

Lemma 24, but in this section we provide some intuition

about the proof.

Fix (f, y∗, w), and assume that (x∗, v∗) ∈ Qf,y∗,w.

Consider the query-answer pairs {(x1, y1), . . . , (xr, yr)} =
Query(g, v∗, f(x∗,y∗)) which occur in an evaluation of

g(f(x∗,y∗))(v∗). The pair (x∗, y∗) must be in this set, as

otherwise conditions (a) or (b) of Definition 16 would not

hold, and to simplify the discussion we make the (unre-

alistic) assumption that always (x∗, y∗) = (xr, yr). Now

consider the set T = {(x1, y1), . . . , (xr−1, yr−1)}. Let us

call T an incrementor for |Qf,y∗,w|, because whenever f
satisfies f(xi) = yi for i ∈ {1, . . . , r − 1}, the set Qf,y∗,w
grows by 1.8

Now, still fixing (f, y∗, w), the total number of such

“incrementors” for |Qf,y∗,w| is at most 2(r−1)n+ n
30 . To see

this, we argue that otherwise, (for yr being the answer of

the r-th query in the evaluation)

Pr
f ′←P,v′

[gf
′
(v′) = w|yr = y∗] ≥ 2−m+ n

30 , (22)

because any of the incrementors survive9 the picking of

f with probability roughly10 2−(r−1)n. Thus, if there are

2(r−1)n+ n
30 incrementors, in expectation 2

n
30 will survive

the picking of f , and if we pick one11 of the 2
n
30 values v∗

which survived we get an element for which gf
′
(v′) = w

(conditioning on yr = y∗). Now, (22) roughly contradicts

SafeToAnswer(w,Q) for B = {y∗} (up to some issues

due to our simplifying assumption that (x∗, y∗) is always

(xr, yr), but since rr < 2n they do not matter much).

Thus, there are at most 2(r−1)n+ n
30 incrementors for

|Qf,y∗,w|, and so in expectation |Qf,w,y∗ | ≤ 2
n
30 . However,

we need to prove that the |Qf,w,y∗ | is small with (very)

high probability, and not in expectation. Luckily for us,

Kim and Vu [28] proved a concentration bound which can

be applied in our setting – translated to our setting, they

show that concentration does hold if several conditions are

given. First, it needs to hold that all probabilities checked in

SafeToAnswer are smaller than 2−m+ n
30 (which is, besides

Lemma 25, the reason that SafeToAnswer is defined in

the way it is defined). Second, they roughly require that

rr < 2n, which holds in our case, because we assume

that r /∈ Ω( n
log(n) ). Finally, they require that the events

f(x1) = y1 and f(x2) = y2 are independent—which of

course is a problem, because this does not hold in our case.

Luckily, it turns out that this last requirement can be relaxed

somewhat using a proof technique implicit in [30] (see [31],

[32]). A proof of a Kim-Vu style concentration bound in

this form was given by the first author in [29] and we use

it to prove Lemma 24. The full proof can be found in the

full version of the paper [27].

VII. ACKNOWLEDGEMENTS

We thank Colin Zheng for pointing out a mistake in an

earlier version of this paper.

8Ignoring a few reasons why this might not be true sometimes. . . like the
fact that SafeToAnswer might return false.

9Formally, surviving means that f(xi) = yi for all pairs (xi, yi) in the
incrementor.

10Ignoring very slight dependence in this discussion which arises from
the fact that f is picked as a permutation.

11Only one incrementor with a fixed v∗ can survive with our assump-
tions.

706



REFERENCES

[1] A. C. Yao, “Theory and applications of trapdoor functions
(extended abstract),” in The 23rd Annual Symposium on
Foundations of Computer Science, 1982, pp. 80–91.

[2] M. Blum and S. Micali, “How to generate cryptographically
strong sequences of pseudo-random bits,” SIAM Journal on
Computing, vol. 13, no. 4, pp. 850–864, 1984.

[3] L. A. Levin, “One-way functions and pseudorandom genera-
tors,” Combinatorica, vol. 7, no. 4, pp. 357–363, 1987.

[4] O. Goldreich and L. A. Levin, “A hard-core predicate for
all one-way functions,” in Proceedings of the Twenty-First
Annual ACM Symposium on Theory of Computing, 1989, pp.
25–32.

[5] O. Goldreich, H. Krawczyk, and M. Luby, “On the existence
of pseudorandom generators,” SIAM Journal on Computing,
vol. 22, no. 6, pp. 1163–1175, 1993.

[6] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, “A
pseudorandom generator from any one-way function,” SIAM
Journal on Computing, vol. 28, no. 4, pp. 1364–1396, 1999.

[7] I. Haitner, D. Harnik, and O. Reingold, “Efficient pseudoran-
dom generators from exponentially hard one-way functions,”
in ICALP (2), 2006, pp. 228–239.

[8] T. Holenstein, “Pseudorandom generators from one-way func-
tions: A simple construction for any hardness,” in TCC 2006,
2006, pp. 443–461.

[9] I. Haitner, D. Harnik, and O. Reingold, “On the power
of the randomized iterate,” in Advances in Cryptology —
CRYPTO 2006, ser. Lecture Notes in Computer Science,
C. Dwork, Ed., vol. 4117, 2006.

[10] I. Haitner, O. Reingold, and S. Vadhan, “Efficiency improve-
ments in constructing pseudorandom generators from one-
way functions,” in Proceedings of the Forty-Second Annual
ACM Symposium on Theory of Computing, 2010.

[11] S. P. Vadhan and C. J. Zheng, “Characterizing pseudoentropy
and simplifying pseudorandom generator constructions,” in
STOC, 2012, pp. 817–836.

[12] R. Impagliazzo and S. Rudich, “Limits on the provable
consequences of one-way permutations,” in Proceedings of
the Twenty-First Annual ACM Symposium on Theory of
Computing, 1989, pp. 44–61.

[13] D. R. Simon, “Finding collisions on a one-way street: Can
secure hash functions be based on general assumptions?” in
Advances in Cryptology — EUROCRYPT ’98, ser. Lecture
Notes in Computer Science, K. Nyberg, Ed., vol. 1403, 1998,
pp. 334–345.

[14] R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan, “Bounds on
the efficiency of generic cryptographic constructions,” SIAM
Journal of Computing, vol. 35, no. 1, pp. 217–246, 2005.

[15] I. Haitner, J. J. Hoch, O. Reingold, and G. Segev, “Finding
collisions in interactive protocols – a tight lower bound on
the round complexity of statistically-hiding commitments,”
in The 48th Annual Symposium on Foundations of Computer
Science, 2007, pp. 669–679.

[16] I. Haitner and T. Holenstein, “On the (im)possibility of key
dependent encryption,” in TCC 2009, 2009, pp. 202–219.

[17] O. Goldreich, S. Goldwasser, and S. Micali, “How to con-
struct random functions,” Journal of the ACM, vol. 33, no. 4,
pp. 792–807, 1986.

[18] E. Viola, “On constructing parallel pseudorandom generators
from one-way functions,” in IEEE Conference on Computa-
tional Complexity, 2005, pp. 183–197.

[19] C.-J. Lu, “On the complexity of parallel hardness amplifi-
cation for one-way functions,” in Proceedings of the Third
conference on Theory of Cryptography, ser. TCC’06, 2006,
pp. 462–481.

[20] J. Bronson, A. Juma, and P. A. Papakonstantinou, “Limits on
the stretch of non-adaptive constructions of pseudo-random
generators,” in TCC, 2011, pp. 504–521.

[21] E. Miles and E. Viola, “On the complexity of non-adaptively
increasing the stretch of pseudorandom generators,” in TCC,
2011, pp. 522–539.

[22] S. Rudich, “Limits on the provable consequences of one-way
functions,” Tech. Rep., 1988.

[23] J. Kahn, M. Saks, and C. Smyth, “The dual bkr inequality and
rudich’s conjecture,” Combinatorics Probability and Comput-
ing, vol. 20, no. 2, pp. 257–266.

[24] T. Matsuda and K. Matsuura, “On black-box separations
among injective one-way functions,” in TCC, 2011, pp. 597–
614.

[25] O. Reingold, L. Trevisan, and S. P. Vadhan, “Notions of
reducibility between cryptographic primitives,” in TCC 2004,
ser. Lecture Notes in Computer Science, M. Naor, Ed., vol.
2951, 2004, pp. 1–20.

[26] N. Dedic, D. Harnik, and L. Reyzin, “Saving private random-
ness in one-way functions and pseudorandom generators,” in
TCC, 2008, pp. 607–625.

[27] T. Holenstein and M. Sinha, “Constructing a pseudorandom
generator requires an almost linear number of calls,” CoRR,
vol. abs/1205.4576, 2012.

[28] J. H. Kim and V. H. Vu, “Concentration of multivariate
polynomials and its applications.” Combinatorica, vol. 20,
no. 3, pp. 417–434, 2000.

[29] T. Holenstein, “Some concentration bounds,” 2011,
manuscript.

[30] J. P. Schmidt, A. Siegel, and A. Srinivasan, “Chernoff-
hoeffding bounds for applications with limited independence,”
SIAM J. Discrete Math., vol. 8, no. 2, pp. 223–250, 1995.

[31] A. Rao, “Parallel repetition in projection games and a concen-
tration bound,” in Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing, 2008, pp. 1–10.

[32] R. Impagliazzo and V. Kabanets, “Constructive proofs of con-
centration bounds,” in APPROX-RANDOM, 2010, pp. 617–
631.

707


