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Abstract— In [1], Dodis and Wichs introduced the notion
of a non-malleable extractor. A non-malleable extractor is a
much stronger version of a seeded extractor. Dodis and Wichs
showed that such an object can be used to give optimal privacy
amplification protocols with an active adversary.

Previously, there are only two known constructions of non-
malleable extractors [2], [3]. Both constructions only work for
(n, k)-sources with k > n/2. Interestingly, both constructions
are also two-source extractors.

In this paper, we present a strong connection between non-
malleable extractors and two-source extractors. The first part
of the connection shows that non-malleable extractors can be
used to construct two-source extractors. This partially explains
why previous constructions of non-malleable extractors only
work for entropy rate > 1/2, and why explicit non-malleable
extractors for small min-entropy may be hard to get.

The second part of the connection shows that certain two-
source extractors can be used to construct non-malleable ex-
tractors. Using this connection, we obtain the first construction
of non-malleable extractors for k < n/2.

Finally, despite the lack of explicit non-malleable extractors
for arbitrarily linear entropy, we give the first 2-round privacy
amplification protocol with asymptotically optimal entropy
loss and communication complexity for (n, k) sources with
k = αn for any constant α > 0. This dramatically improves
previous results and answers an open problem in [2].

1. INTRODUCTION

The broad area of randomness extraction studies the

problem of converting a weakly random source into

a distribution that is close to the uniform distribution

in statistical distance. Over the past decades extensive

research has been conducted in this area. Among which,

a long line of research ([4], [5], [6], [7], [8] to name

a few) studies the so called “seeded extractors”, as

defined by Nisan and Zuckerman [9]. Seeded extractors

have a variety of applications in computer science. We

refer the reader to [10], [11], [12] for a survey on this

subject. Nowadays we have nearly optimal constructions

of seeded extractors [6], [7], [8].

Another line of research focuses on the problem

of extracting random bits from several independent

sources [13], [14], [15], [16], [17], [18], [19], [20].

In this case, however, the best known construction is
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far from optimal. Specifically, the probabilistic method

shows that there exists an extractor for two independent

sources on n bits with each having roughly log n bits

of entropy, while the best two-source extractor to date

can only achieve entropy slightly below n/2 [17].

The best known extractor for small entropy k requires

O(log n/ log k) independent sources [18], [19]. More-

over, it seems hard to improve these results. Especially

in the two-source case, after decades of efforts the

entropy requirement only drops from anything above

n/2 [13] to slightly below n/2 [17].

Recently, a new kind of seeded extractors, called

non-malleable extractors were introduced in [1] to give

protocols for the problem of privacy amplification with

an active adversary. We now give the definition of a non-

malleable extractor below. As a comparison, we also

give the definition of a strong seeded extractor.

Notation. We let [s] denote the set {1, 2, . . . , s}. For �
a positive integer, U� denotes the uniform distribution

on {0, 1}�, and for S a set, US denotes the uniform

distribution on S. When used as a component in a

vector, each U� or US is assumed independent of the

other components. We say W ≈ε Z if the random

variables W and Z have distributions which are ε-close

in variation distance.

Definition 1.1. The min-entropy of a random variable X
is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source,

and we say X has entropy rate H∞(X)/n.

Definition 1.2. A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a strong (k, ε)-extractor if for every (n, k)
source X and independent uniform Y on {0, 1}d,

(Ext(X,Y ), Y ) ≈ε (Um, Y ).

Definition 1.3. A function nmExt : {0, 1}n×{0, 1}d →
{0, 1}m is a (k, ε)-non-malleable extractor if, for any

(n, k) source X and any function A : {0, 1}d → {0, 1}d
such that A(y) �= y for all y, the following holds. When
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Y is independent and uniform on {0, 1}d,

(nmExt(X,Y ), nmExt(X,A(Y )), Y )

≈ε(Um, nmExt(X,A(Y )), Y ).

As we can see from the definitions, a non-malleable

extractor is a stronger version of the strong extractor,

in the sense that it requires the output to be close to

uniform even conditioned on both the seed Y and the

output nmExt(X,A(Y )) on a different but arbitrarily

correlated seed A(Y ).
The motivation to study a non-malleable extractor, the

privacy amplification problem, is a fundamental prob-

lem in symmetric cryptography that has been studied

by many researchers. Bennett, Brassard, and Robert

introduced this problem in [21]. The basic setting is that,

two parties (Alice and Bob) share an n-bit secret key X ,

which is weakly random. This could happen because the

secret comes from a password or biometric data, which

are themselves weakly random, or because an adversary

Eve managed to learn some partial information about an

originally uniform secret, for example via side channel

attacks. We measure the entropy of X by the min-

entropy defined above. The goal is to have Alice and

Bob communicate over a public channel so that they can

convert X into a nearly uniform secret key. Generally,

we also assume that Alice and Bob have local private

uniform random bits. The problem is the presence of the

adversary Eve, who can see every message transmitted

in the channel and may or may not change the messages.

We assume that Eve has unlimited computational power.

The case where Eve is passive, i.e., cannot change the

messages, can be solved simply by using the above men-

tioned strong seeded extractors. The case where Eve is

active (i.e., can change the messages in arbitrary ways),

on the other hand, is much more difficult. Historically,

Maurer and Wolf [22] gave the first non-trivial protocol

in this case. Their protocol takes one round and works

when the entropy rate of the weakly-random secret X is

bigger than 2/3. Dodis, Katz, Reyzin, and Smith [23]

later improved this result to give protocols that work

for entropy rate bigger than 1/2. One drawback in both

cases is that the final secret key R is much shorter

than the min-entropy of X . Later, Dodis and Wichs [1]

showed that no one-round protocol exists for entropy

rate less than 1/2. The first protocol that breaks the 1/2
entropy rate barrier is due to Renner and Wolf [24],

where they gave a protocol that works for essentially

any entropy rate. However their protocol takes O(s)
rounds and only achieves entropy loss O(s2), where s in

the security parameter of the protocol. Kanukurthi and

Reyzin [25] simplified their protocol, but the parameters

remain essentially the same.
In [1], Dodis and Wichs showed that explicit non-

malleable extractors can be used to give privacy am-

plification protocols that take an optimal 2 rounds

and achieve optimal entropy loss O(s). They showed

that non-malleable extractors exist when k > 2m +
3 log(1/ε) + log d + 9 and d > log(n − k + 1) +
2 log(1/ε) + 7. However, they only constructed weaker

forms of non-malleable extractors and they gave a pro-

tocol that takes 2 rounds but that still has entropy loss

O(s2). Chandran, Kanukurthi, Ostrovsky and Reyzin

[26] improved the entropy loss to O(s) but the number

of rounds becomes O(s) as well.
Dodis, Li, Wooley and Zuckerman [2] constructed the

first explicit non-malleable extractor. Their construction

works for entropy k > n/2, but they use a large

seed length d = n and the efficiency when outputting

more than log n bits relies on an unproven assumption.

Cohen, Raz, and Segev [3] later gave an alternative

construction that also works for k > n/2, but uses a

short seed length and does not rely on any unproven

assumption. The construction in [3] also allows multiple

adversarial functions {Ai}. By using the non-malleable

extractors, these two papers thus gave 2-round privacy

amplification protocols that achieve optimal entropy

loss O(s). However, since both constructions of non-

malleable extractors are only shown to work for entropy

k > n/2,1 the protocols also only work for k > n/2.

For any constant δ > 0, [2] also gave a protocol for

k = δn than runs in poly(1/δ) rounds and achieves

optimal entropy loss O(s). Recently, Li [27] introduced

the notion of a non-malleable condenser, which is a

relaxation of a non-malleable extractor. He showed that

non-malleable condensers for (n, k) sources also give

privacy amplification protocols that take an optimal 2

rounds and achieve optimal entropy loss O(s). However,

the non-malleable condensers constructed in [27] also

only work for k > n/2. Thus the natural open question

is whether we can construct non-malleable extractors or

condensers for smaller min-entropy, and whether there

are 2-round privacy amplification protocols with optimal

entropy loss for smaller min-entropy.
One interesting aspect of the two known constructions

of non-malleable extractors is that they are also both

two-source extractors. Indeed, the construction in [2] is

in fact one of the two-source extractors introduced in

[13], which requires the sources to have min-entropy

> n/2, and the construction in [3] is in fact the two-

1We note that the 1-bit case construction in [2] is a special case
of the construction in [3]. Also, it is possible that the construction in
[2] can work for entropy k ≤ n/2 (but until now nobody can prove
it), but the construction in [3] in general cannot work for k ≤ n/2.
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source extractor in [16], which requires at least one of

the sources to have min-entropy > n/2. Coincidently,

when used as non-malleable extractors, both construc-

tions also require the weak source to have min-entropy

> n/2. These facts suggest possible connections be-

tween these two kinds of extractors. However, before

this work, no such connection is known.

1.1. Our results

In this paper, we present a strong connection be-

tween non-malleable extractors and two-source extrac-

tors. First, we show that non-malleable extractors can

be used to construct two-source extractors. If the non-

malleable extractor works for small min-entropy and

has a short seed length (w.r.t. log(1/ε) where ε is the

error of the extractor), then the resulted two-source

extractor beats the best known construction of two-

source extractors.

Theorem 1.4. Assume that for any ε > 0, we have
explicit constructions of (k, ε)-non-malleable extractors
with seed length d = 2 log(1/ε)+o(n) and output length
m. Then there exists a constant δ > 0 and an explicit
construction of two source extractors that take as input
an (n, (1/2 − δ)n) source and an independent (n, k)
source, and output m bits with error 2−Ω(n).

Note that if k is small, say k = n/3 then this already

beats the best known two-source extractors, but better

results can be achieved if we have explicit constructions

of generalized non-malleable extractors. We have the

following definition (which already appears in [3]).

Definition 1.5. A function nmExt : {0, 1}n×{0, 1}d →
{0, 1}m is a (r, k, ε)-non-malleable extractor if, for any

(n, k) source X and any r function Ai : {0, 1}d →
{0, 1}d, i = 1, · · · , r such that Ai(y) �= y for all i
and y, the following holds. When Y is independent and

uniform on {0, 1}d,

(nmExt(X,Y ), {nmExt(X,Ai(Y ))}, Y )

≈ε(Um, {nmExt(X,Ai(Y ))}, Y ).

Here r is the number of adversarial seeds. Note that

traditional non-malleable extractors are just (1, k, ε)-
non-malleable extractors according to our definition. In

the full version [28] we show that for any constant r,

(r, k, ε)-non-malleable extractors exist with seed length

d > 3
2 log(n − k) + 3 log(1/ε) + O(1). Now we have

the following theorem.

Theorem 1.6. For any constant b > 2 and any constant
0 < δ < 1, there exists a constant C = C(δ) =
poly(1/δ) such that the following holds. Assume that

for any ε > 0 there exists an explicit construction
of (C, k, ε)-non-malleable extractors with seed length
d = b log(1/ε) + o(n) and output length m. Then there
exists an explicit construction of two source extractors
that take as input an (n, δn) source and an independent
(n, k) source, and output m bits with error 2−Ω(n).

Note that if we have a (C, k, ε)-non-malleable ex-

tractor for k = δn and some constant C = C(δ) =
poly(1/δ) then this will give us a two-source extrac-

tor for (n, δn) sources. If δ is small this will be a

big breakthrough for two-source extractors. This also

implies that, given current techniques, the (r, k, ε)-non-

malleable extractor in [3] is probably the best that we

can achieve.

Next, we show that in the opposite direction, certain

two-source extractors can be used to construct non-

malleable extractors. The two-source extractors we will

use are those that are constructed based on the inner

product function. More specifically, we will consider

two-source extractors of the form TExt = IP(f(X), Y ),
where IP is the inner product function over F2 and f(X)
stands for some function (encoding) of the source X .

We have the following theorem.

Theorem 1.7. Given two integers r, � such that � > r.
Assume that we have a two-source extractor TExt =
IP(f(X),W ) such that when given an (n, k)-source X
and an independent (n2, n2/(r+1)−�)-source W , TExt
outputs 1 bit with error ε. Then there exists an explicit
construction of (r, k, ε′)-non-malleable extractors that
output 1 bit with error ε′ = O(r2r−� + 2

3r
2 ε).

Using this theorem, and by combining known two-

source extractors, we obtain new and improved con-

structions of non-malleable extractors. We give the

first explicit constructions of non-malleable extractors

that work for min-entropy k < n/2. One of them is

unconditional and works for k = (1/2 − δ)n for some

universal constant δ > 0. The other is conditional but

can potentially work for k = δn for any constant δ > 0.

Specifically, we have the following theorems.

Theorem 1.8. There exists a constant 0 < δ < 1
and an explicit (k, ε)-non-malleable extractor nmExt :
{0, 1}n × {0, 1}n → {0, 1}m with k = (1/2 − δ)n,
m = Ω(n) and ε = 2−Ω(n).

Our conditional result needs to use an affine extractor.

Roughly speaking, here by an [n,m, ρ, ε] affine extrac-

tor we mean a deterministic function f : {0, 1}n →
{0, 1}m such that whenever X is the uniform distribu-

tion over some affine subspace over Fn
2 with dimension

ρn, the output is within ε to the uniform distribution
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in the �∞ norm. We let λ denote the entropy loss rate,

i.e., λ = 1 − m
ρn . We note that it is straightforward to

show by the probabilistic method that such extractors

exist for any constant ρ, λ > 0. However the state of art

constructions only achieve λ bigger than 1/2.

[29] also introduced the Approximate Duality con-

jecture (ADC), which basically says that if two inde-

pendent sources X,Y with linear entropy are such that

IP(X,Y ) is not close to uniform, then there exist two

subsources X ′ ⊂ X,Y ′ ⊂ Y with small deficiency

such that IP(X ′, Y ′) is constant. In [29] it is shown

that ADC is implied by the well-known Polynomial

Freiman-Ruzsa Conjecture in additive combinatorics.

For a formal definition, see [29] or the full version.

Theorem 1.9. Given a constant integer r, as-
sume the ADC conjecture and we have an explicit
[n,m, r+1

r+2 , 2
−m] affine extractor with m = (1 −

λ) r+1
r+2n. Then there exists a semi-explicit (r, k, ε)-non-

malleable extractor with k = (r+2)λ
1+(r+1)λn, seed length

d = r+2
r+1+(r+1)2λn− 1 and ε = 2−Ω(n).

Remark 1.10. Here we use the “semi-explicit” to mean

that the construction may run in time 2n (note that an

exhaustive search takes time 22
n

). If we have affine

extractors such that λ → 0, then we can essentially

achieve k = αn for any constant α > 0.

Finally, we give a new privacy amplification protocol

for min-entropy k = δn for any constant δ > 0. Al-

though we don’t have explicit non-malleable extractors

or condensers for such small k, our protocol simulta-

neously achieves optimal round complexity (2 rounds),

asymptotically optimal entropy loss and asymptotically

optimal communication complexity. This is the first

optimal privacy amplification protocol for arbitrarily

linear min-entropy. We have the following theorem.

Theorem 1.11. For any constant 0 < δ < 1 there exists
a constant 0 < β < 1 such that as long as s ≤ βn, there
is an efficient 2-round privacy amplification protocol for
any (n, δn) weak secret X with security parameter s,
entropy loss O(s+log n) and communication complexity
O(s+ log n).

Thus, in the case where k = δn, our result dra-

matically improves all previous results. Especially, it

improves the round complexity in [2] from poly(1/δ)
to 2, and thus answers an open problem in [2].

2. PRELIMINARIES

We often use capital letters for random variables and

corresponding small letters for their instantiations. Let

|S| denote the cardinality of the set S. All logarithms

are to the base 2.

Definition 2.1 (statistical distance). Let W and Z be

two distributions on a set S. Their statistical distance
(variation distance) is

Δ(W,Z)
def
= max

T⊆S
(|W (T )− Z(T )|) = 1

2

∑
s∈S

|W (s)− Z(s)|.

We say W is ε-close to Z, denoted W ≈ε Z, if

Δ(W,Z) ≤ ε. For a distribution D on S and a function

h : S → T , let h(D) be the distribution on T induced

by choosing x according to D and outputting h(x).

Definition 2.2. A function TExt : {0, 1}n1 ×
{0, 1}n2 → {0, 1}m is a strong two source ex-
tractor for min-entropy k1, k2 and error ε if for

every independent (n1, k1) source X and (n2, k2)
source Y , |(TExt(X,Y ), X) − (Um, X)| < ε and

|(TExt(X,Y ), Y )− (Um, Y )| < ε.

Definition 2.3. An elementary somewhere-k-source is

a vector of sources (X1, · · · , Xt), such that some Xi

is a k-source. A somewhere k-source is a convex

combination of elementary somewhere-k-sources.

Definition 2.4. A function C : {0, 1}n × {0, 1}d →
{0, 1}m is a (k → l, ε)-condenser if for every k-

source X , C(X,Ud) is ε-close to some l-source. When

convenient, we call C a rate-(k/n→ l/m, ε)-condenser.

Definition 2.5. A function C : {0, 1}n × {0, 1}d →
{0, 1}m is a (k → l, ε)-somewhere-condenser if for

every k-source X , the vector (C(X, y)y∈{0,1}d) is ε-
close to a somewhere-l-source. When convenient, we

call C a rate-(k/n→ l/m, ε)-somewhere-condenser.

Theorem 2.6 ([30]). There exists a constant α > 0
such that for any constant 0 < δ < 0.9, there is an
efficient family of rate-(δ → (1 + α)δ, ε = 2−Ω(n))-
somewhere condensers Scond : {0, 1}n → ({0, 1}m)2

where m = Ω(n).

Theorem 2.7 ([15], [30]). For any constant β, δ > 0,
there is an efficient family of rate-(δ → 1 − β, ε =
2−Ω(n))-somewhere condensers Cond : {0, 1}n →
({0, 1}m)D where D = O(1) and m = Ω(n).

Definition 2.8. The average conditional min-entropy is

defined as

H̃∞(X|W ) = − log
(
Ew←W

[
max

x
Pr[X = x|W = w]

])
2.1. BCH codes

In this paper we will only focus on BCH codes over

F2. Given two parameters m, t ∈ N, a BCH code is a
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linear code with block length n = 2m − 1, message

length roughly n − mt and distance d ≥ 2t + 1.

Specifically, we have the following theorem.

Theorem 2.9. For all integers m and t there exists an
explicit [n, n−mt, 2t+1]-BCH code2, with n = 2m−1.

Since a BCH code is a linear code, we can take

its parity check matrix. Note that this is a mt × n
matrix. Let α be a primitive element in F

∗
2m , the

i’th column of the parity check matrix is of the form

(αi, (αi)3, (αi)5, · · · , (αi)2t−1), for i = 0, 1, · · · , n −
1. Since α is a generator in F

∗
2m , equivalently, for

y ∈ F
∗
2m we can think of the y’th column to be

(y, y3, · · · , y2t−1).

3. THE CONNECTION BETWEEN NON-MALLEABLE

EXTRACTORS AND TWO-SOURCE EXTRACTORS

In this section we give an overview of the ideas that

we use to show the connection between non-malleable

extractors and two-source extractors, as well as our

improved constructions of non-malleable extractors. The

detailed constructions and analysis appear in the full

version [28].

3.1. Non-malleable extractors to two-source extractors

Given a (k, ε) non-malleable extractor nmExt with

seed length d = 2 log(1/ε) + o(n), here is how we

can get a two-source extractor. Assume that we have

an (n, k) source X and an independent (n, (1/2− δ)n)
source Y for some constant δ > 0. Our first step is to

use the 1-bit condenser in [30] to convert Y into two

sources Ȳ1, Ȳ2 such that each of them has l = Ω(n) bits

and one of them has min-entropy at least (1/2 + δ)l.
Note that for an appropriately chosen δ this is indeed

possible. Without loss of generality assume that Ȳ1 has

min-entropy at least (1/2 + δ)l.
Our key observation here is that Ȳ2 can now be

viewed as a function of Ȳ1. More precisely, we show

that the source Y is a convex combination of sources

{Y i} such that for each Y i, the corresponding Ȳ i
1

also has min-entropy at least (1/2 + δ)l, and Ȳ i
2 is a

deterministic function of Ȳ i
1 . Now this looks like the

setting of a non-malleable extractor, where we have one

seed and another correlated seed. However, there is a

small problem: Ȳ i
1 and Ȳ i

2 may be equal sometimes. To

solve this, we let Y1 = Ȳ1 ◦ 0 and Y2 = Ȳ2 ◦ 1. In this

way we guarantee that Y i
1 and Y i

2 are different, and Y i
2

2In fact, the message length may not be exactly n −mt, but for
simplicity we will assume that it is exactly n−mt. The small error
does not affect our analysis. Also, for small t the message length is
exactly n−mt.

is still a function of Y i
1 . Finally, this only increases the

length of the seed by 1.

Now we are all set, and we can take the two-

source extractor to be TExt(X,Y ) = nmExt(X,Y1) ⊕
nmExt(X,Y2). Note that the seed Y1 here is not uni-

form. However, a simple argument shows that a non-

malleable extractor with seed length d and error ε
remains a non-malleable extractor even if the seed only

has min-entropy k′, with error increased to 2d−k′
ε. In

our case, with seed length d = l + 1 = Ω(n) =
2 log(1/ε) + o(n) and k′ = (1/2 + δ)l, the error is

ε′ = 2d−k′
ε ≈ 2(1/2−δ)l2−l/2 = 2−Ω(n). By the

non-malleability of nmExt, we get that TExt(X,Y ) is

2−Ω(n)-close to uniform.

Similarly, if we have (r, k, ε)-non-malleable extrac-

tors for larger r, then we can afford to have more

correlated seeds Yi, or equivalently, more sources in the

output of the condenser. Thus we can deal with smaller

entropy in Y . For example, for any constant δ > 0, the

condensers in [15], [16], [30] allow us to convert an

(n, δn) source into a constant D number of sources such

that each of them has l = Ω(n) bits and one of them

has min-entropy at least 0.9l. If we have (D − 1, k, ε)-
non-malleable extractors with suitable parameters, then

we can get two-source extractors or an (n, δn) source

and an (n, k) source.

3.2. Two-source extractors to non-malleable extractors

As stated before, we focus on two-source extractors

of the form IP(f(X), Y ), where IP is the inner product

function. First consider the simplest function IP(X,Y ).
Note that it is a good two-source extractor. For two

independent sources on n bits, it works as long as

the sum of the entropies of the two sources is greater

than n. However, at first this function does not seem

to be a good candidate for a non-malleable extractor.

To see this, let X be a source that is obtained by

concatenating the bit 0 with Un−1, and let Y be an

independent uniform seed over {0, 1}n. Now for any

y ∈ {0, 1}n, let A(y) be y with the first bit flipped.

Thus we see that for all x in the support of X , one

has 〈x, y〉 = 〈x,A(y)〉. Therefore, the inner product

function is not a non-malleable extractor even for weak

sources with min-entropy k = n− 1.

In the above example, we have that for all x in

the support of X , IP(x, y) = IP(x,A(y)). Or equiv-

alently, IP(x, y + A(y)) = 0. How does this happen?

Looking closely at this example, our key observation

is that this is because the range of Y is too large.

Indeed, in this example the range of Y is the entire

{0, 1}n, thus for any y the adversary can choose a
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different A(y) such that y + A(y) = 10 · · · 0 so that

∀x ∈ Supp(X), IP(x, y +A(y)) = 0.

This observation suggests that we should choose the

range of Y to be a subset S ⊂ {0, 1}n, so that

for some y’s, the adversary will be unable to choose

the appropriate A(y) from S. Equivalently, we take a

shorter seed length l, choose a uniform y ∈ {0, 1}l and

map y to an element in {0, 1}n. This is essentially an

encoding. Now let us see what properties we need the

encoding to have.

We start with a construction for min-entropy k >
n/2. Assume that we have an (n, k) source X with

k = (1/2 + δ)n for some constant δ > 0. We take

an independent and uniform y ∈ {0, 1}l and encode

y to ȳ ∈ {0, 1}n. For any function A, let ȳ′ be the

encoding of A(y). We will use an injective encoding,

so that ∀y, ȳ′ �= ȳ. The output of the non-malleable

extractor is then IP(X, Ȳ ).

To show that IP(X, Ȳ ) is a non-malleable extractor, it

suffices to show that IP(X, Ȳ ) is close to uniform, and

that IP(X, Ȳ )⊕ IP(X, Ȳ ′) is close to uniform. The first

part is easy. If X has min-entropy k > n/2, then we can

take Y to be the uniform distribution over some l ≥ n/2
bits. Since the encoding is injective, Ȳ will have min-

entropy l ≥ n/2. Thus IP(X, Ȳ ) is close to uniform.

For the second part, note that IP(X, Ȳ )⊕ IP(X, Ȳ ′) =
IP(X, Ȳ + Ȳ ′). Thus now we need Ȳ + Ȳ ′ to have large

min-entropy, or at least large support size.

The ideal case would be that Ȳ + Ȳ ′ also has support

size |S| = 2l. This can be achieved if the encoding has

the following property: for every two different y1, y2,

we have that ȳ1+ȳ′1 �= ȳ2+ȳ′2, or equivalently, ȳ1+ȳ′1+
ȳ2+ ȳ′2 �= 0. Indeed, if this is true then Ȳ + Ȳ ′ also has

min-entropy l ≥ n/2, and thus IP(X, Ȳ )⊕ IP(X, Ȳ ′) is

close to uniform. Looking carefully at this property, we

see that it can be ensured (at least almost ensured, as

we will explain shortly) if we have another property: the

elements in S (when viewed as vectors in F
n
2 ) are 4-wise

linearly independent. Indeed, assume this is the case and

for some y1, y2, we have ȳ1 + ȳ′1 + ȳ2 + ȳ′2 = 0, then

the only possible situation is that ȳ′1 = ȳ2 and ȳ′2 = ȳ1.

Thus there cannot be three different y1, y2, y3 such that

ȳ1 + ȳ′1 = ȳ2 + ȳ′2 = ȳ3 + ȳ′3. Thus the min-entropy of

Ȳ + Ȳ ′ is at least l − 1.

So now the question reduces to explicitly finding a

large subset S ⊂ {0, 1}n such that the elements in S
are 4-wise linearly independent. Note that in particular

this implies that the sum of any two different pairs

of elements in S cannot be the same. Thus we have(|S|
2

) ≤ 2n. Therefore |S| can be at most roughly

2n/2. On the other hand, in order to work for any min-

entropy k > n/2, we will need l ≥ n/2 and thus

|S| = 2l ≥ 2n/2. These are very tight upper and lower

bounds. Luckily, we have explicit constructions that

meet these bounds. We will think of the elements in S as

columns in a parity check matrix of some binary linear

code. Thus we basically need a code with block length

2n/2 and message length 2n/2− n. The 4-wise linearly

independent property basically is equivalent to saying

that the code has distance at least 5. This is precisely

the [2n/2, 2n/2 − n, 5]-BCH code. Note that although

the parity check matrix has 2n/2 columns, each column

is (a, a3) for a different element a ∈ F
∗
2n/2 . Thus the

encoding from y to ȳ can be computed efficiently.

Thinking about the above encoding for a moment, one

realizes that the same encoding can be used in any two-

source extractor of the form IP(f(X), Y ). Specifically,

assume that IP(f(X), Y ) is a two-source extractor for

an (n, k) source X and an independent (n, n/2 − 1)
source Y . Then by the same argument above, if we

choose the seed Y to be the uniform distribution over

{0, 1}n/2 and encode Y to Ȳ as before, we have

that both Ȳ and Ȳ + Ȳ ′ have min-entropy at least

n/2 − 1. Thus both IP(f(X), Ȳ ) and IP(f(X), Ȳ ) ⊕
IP(f(X), Ȳ ′) are close to uniform. Therefore we get a

non-malleable extractor for min-entropy k.

By using a BCH code with larger distance, we can

extend the above argument to give a similar connec-

tion between two-source extractors and (r, k, ε)-non-

malleable extractors.

3.3. Non-malleable extractors for min-entropy k < n/2

We give the first construction of non-malleable ex-

tractors for min-entropy k < n/2 by observing that

the encoding of sources in [17] gives a function f
such that IP(f(X), Y ) is a two-source extractor for an

(n, (1/2 − δ)n) source X and an independent (n, k′)
source Y with k′ ≈ n/2.

Specifically, let X be a distribution over some vector

space F
n
q and let cX be the distribution obtained by

sampling x1, x2, · · · , xc from c independent copies of

X and computing
∑

xi. One can show that in order to

prove IP(X,Y ) is close to uniform, it suffices to prove

that IP(cX, Y ) is close to uniform with a smaller error,

for some integer c > 1. In [17], Bourgain showed that

for a weak source X with min-entropy rate 1/2− δ for

some constant δ > 0, one can encode X to Enc(X)
such that 3Enc(X) is close to having min-entropy rate

1/2+ δ. Thus IP(Enc(X), Y ) is a two-source extractor

that meets our needs.
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3.4. Non-malleable extractors for linear min-entropy

In [29], Ben-Sasson and Zewi showed that affine

extractors with large output size can be used to construct

two source extractors for min-entropy rate < 1/2.

Their “preimage construction” can potentially achieve

any constant min-entropy rate. We observe that their

encoding gives a function f such that IP(f(X), Y ) is a

two-source extractor for two independent sources with

min-entropy rate δ for any constant δ > 0. Specifically,

they showed that the affine extractor gives an injective

mapping F : {0, 1}n → {0, 1}n′
such that for any

weak source X with min-entropy δn, F (Supp(X)) is

not contained in any affine subspace of dimension say

(1 − δ/2)n′. Thus when Y is a (n′, δn′) source, we

have that IP(F (X), Y ) is non-constant. Next, similar

as in [29], the ADC conjecture implies that in fact

IP(F (X), Y ) is close to uniform. Thus IP(F (X), Y )
is a two-source extractor that meets our needs.

4. AN OPTIMAL PRIVACY AMPLIFICATION

PROTOCOL FOR k = δn

Following [25] and [2], we define a privacy ampli-

fication protocol (PA, PB). The protocol is executed

by two parties Alice and Bob, who share a secret

X ∈ {0, 1}n. An active, computationally unbounded

adversary Eve might have some partial information E
about X satisfying H̃∞(X|E) � k.

We assume that Eve has full control of the communi-

cation channel between the two parties. Alice and Bob

are assumed to have fresh, private and independent ran-

dom bits Y and W , respectively. In the protocol we use

⊥ as a special symbol to indicate rejection. At the end of

the protocol, Alice outputs a key RA ∈ {0, 1}m ∪{⊥}.
Similarly, Bob outputs a key RB ∈ {0, 1}m ∪ {⊥}. We

let E′ denote the final view of Eve, which includes E
and the communication transcripts of the protocol.

Definition 4.1. An interactive protocol (PA, PB) is a

(k,m, ε)-privacy amplification protocol if it satisfies the

following properties whenever H̃∞(X|E) ≥ k:

1) Correctness. If Eve is passive, then Pr[RA =
RB ∧ RA �=⊥ ∧ RB �=⊥] = 1.

2) Robustness. If Eve is active, Pr[RA �=
RB ∧ RA �=⊥ ∧ RB �=⊥] � ε.

3) Extraction. Given a string r ∈ {0, 1}m ∪ {⊥},
let purify(r) be ⊥ if r =⊥, and otherwise re-

place r �=⊥ by a fresh m-bit random string Um:

purify(r)← Um. We require that

Δ((RA, E
′), (purify(RA), E

′)) ≤ ε and

Δ((RB , E
′), (purify(RB), E

′)) ≤ ε

Namely, whenever a party does not reject, its key

looks like a fresh random string to Eve.

Here k −m is called the entropy loss and log(1/ε) is

called the security parameter of the protocol.

4.1. Prerequisites from previous work

Definition 4.2. A function family {MACR : {0, 1}d →
{0, 1}v} is a ε-secure one-time MAC for messages of

length d with tags of length v if given a uniform R
over {0, 1}�, for any w ∈ {0, 1}d and any function

(adversary) A : {0, 1}v → {0, 1}d × {0, 1}v ,

Pr
R
[MACR(W

′) = T ′ ∧ W ′ �= w |
(W ′, T ′) = A(MACR(w))] ≤ ε,

Theorem 4.3 ([25]). For any message length d and tag
length v, there exists an efficient family of (�dv �2−v)-
secure MACs with key length � = 2v. In particular, this
MAC is ε-secure when v = log d+ log(1/ε).
More generally, this MAC also enjoys the following
security guarantee, even if Eve has partial information
E about its key R. Let (R,E) be any joint distribution.
Then, for all attackers A1 and A2,

Pr
(R,E)

[MACR(W
′) = T ′ ∧W ′ �= W |W = A1(E),

(W ′, T ′) = A2(MACR(W ), E)] ≤
⌈
d

v

⌉
2v− ˜H∞(R|E).

Remark 4.4. Note that this MAC works as long as the

key R has average conditional min-entropy rate > 1/2.

Theorem 4.5 ([6]). For every constant α > 0, all n, k ∈
N and any ε > 0, there is an explicit strong (k, ε)-
extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d =
O(log n+ log(1/ε)) and m ≥ (1− α)k.

Theorem 4.6 ([16]). For any n1, n2, k1, k2,m and any
0 < δ < 1/2 with

• n1 ≥ 6 logn1 + 2 log n2

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 5 log(n1 − k1)
• m ≤ δmin[n1/8, k2/40]− 1

There is a polynomial time computable strong 2-
source extractor Raz : {0, 1}n1 × {0, 1}n2 → {0, 1}m
for min-entropy k1, k2 with error 2−1.5m.

Theorem 4.7. [2], [3], [27] For every constant δ > 0,
there exists a constant β > 0 such that for every n, k ∈
N with k ≥ (1/2 + δ)n and ε > 2−βn there exists an
explicit (k, ε) non-malleable extractor with seed length
d = O(log n+ log ε−1) and output length m = Ω(n).
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Quentin: Q,S0 Wendy: X, X̄ = (X1, · · · , Xt)

S0

S0−−−→
R0←−−− R0 = Raz(S0, X)

S1 = Extq(Q,R0)
S1−−−→
R1←−−− R1 = Extw(X,S1),

V1 = Extv(X1, S1)
· · ·

St = Extq(Q,Rt−1)
St−−−→

Rt = Extw(X,St),
Vt = Extv(Xt, St)

Figure 1. Alternating Extraction.

4.2. The privacy amplification protocol

We first define an alternating extraction protocol.

Alternating Extraction. Assume that we have two

parties. Quentin has a source Q and a source S0 with

entropy rate > 1/2. Wendy has a source X and a source

X̄ = (X1◦· · ·◦Xt). Suppose that (Q,S0) is kept secret

from Wendy and (X, X̄) is kept secret from Quentin.

Let s, d be two parameters for the protocol. Let Extq ,

Extw, Extv be seeded extractors as in Theorem 4.5. Let

Raz be the two-source extractor in Theorem 4.6. The

alternating extraction protocol is an interactive process

between Quentin and Wendy that runs in t+ 1 steps.

In the 0’th step, Quentin sends S0 to Wendy, Wendy

computes R0 = Raz(S0, X) and replies R0 to Quentin,

Quentin then computes S1 = Extq(Q,R0). In this

step R0, S1 each outputs d bits. In the first step,

Quentin sends S1 to Wendy, Wendy computes V1 =
Extv(X1, S1) and R1 = Extw(X,S1). She sends R1

to Quentin and Quentin computes S2 = Extq(Q,R1).
In this step V1 outputs 2t−1s bits, and R1, S2 each

outputs d bits. In each subsequent step i, Quentin sends

Si to Wendy, Wendy computes Vi = Extv(Xi, Si) and

Ri = Extw(X,Si). She replies Ri to Quentin and

Quentin computes Si+1 = Extq(Q,Ri). In step i, Vi

outputs 2t−is bits, and Ri, Si+1 each outputs d bits.

Thus, the process produces the following sequence:

S0, R0 = Raz(S0, X), S1 = Extq(Q,R0),

V1 = Extv(X1, S1), R1 = Extw(X,S1), · · · ,
St = Extq(Q,Rt−1), Vt = Extv(Xt, St), Rt = Extw(X,St).

Look-Ahead Extractor. Let Y = (Q,S0) be a seed,

the look-ahead extractor is defined as

laExt((X, X̄), Y )
def
= V1, · · · , Vt.

4.2.1. The protocol: We assume that the error ε we

seek satisfies 2−Ω(δn) < ε < 1/n. Let s be a parameter

with s = log(C ′/ε)+O(1), so that O(C ′)/2s < ε, for a

sufficiently large O(C ′) constant related to the number

of “bad” events. Let d = O(log n+s) be the seed length

of a seeded extractor as in Theorem 4.5, with error 2−2s.

We will need the following building blocks:

• Let Cond : {0, 1}n → ({0, 1}n′
)C be a rate-(δ →

0.9, 2−s)-somewhere-condenser as in Theorem 2.7.

• Let nmExt : {0, 1}n′ × {0, 1}d′ → {0, 1}m′
be

a (0.8n′, 2−s)-non-malleable extractor as in Theo-

rem 4.7 with output length m′ = 6 · 2Cs.

• Let laExt be the look-ahead extractor defined

above, with parameters (2s, d).
• Let lrMAC be the MAC as in Theorem 4.3 for d-bit

messages, with tag length 2C(3s).

Using the above building blocks, the protocol is given

in Figure 2. To emphasize the presence of Eve, we will

use ‘prime’ to denote all the protocol values seen or

generated by Bob; e.g., Bob picks W ′, but Alice sees

potentially different W , etc.

The high-level idea of the protocol is as follows. We

first use the condenser in [15], [16], [30] to convert

the shared (n, k) source X into a somewhere rate-0.9
source (X1, · · · , XC) with C = poly(1/δ) rows. In

the first round, Alice samples a fresh random string

Y1 from her private random bits and sends it to Bob,

where Bob receives a possibly modified version Y ′1 . In

the second round, Bob samples a fresh random string

W ′ from his private random bits and sends it to Alice,

where Alice receives a possibly modified version W .

We want a protocol such that if Eve does not change

Y1, then with high probability Bob can authenticate W ′

to Alice and they can both output Ext(X,W ′) as the

final outputs, by using a strong seeded extractor Ext. If

Eve does change Y1, then with high probability Alice

should be able to detect this and reject.

The first goal is relatively easy to achieve. At the

end of the first round, Alice and Bob compute Z =
Ext(X,Y1) and Z ′ = Ext(X,Y ′1) respectively, using a

strong extractor Ext. If Eve does not change Y1 then

Z = Z ′ and is private and uniform. Thus in the second

round Bob can authenticate W ′ to Alice by also sending

a tag T ′ produced by a standard MAC with Z as the key.

We now focus on the second goal. If the extractor Ext
in computing Z and Z ′ is non-malleable then this can

be done by using the protocol in [1]. However, we do

not have explicit non-malleable extractors for k = δn.

Instead, we will have Alice and Bob each produce

another variable V and V ′ respectively. We will ensure

that, if Eve changes Y1 to a different Y ′1 , then even given
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Alice: X Eve: E Bob: X

(X1, . . . XC) = Cond(X). (X1, . . . XC) = Cond(X).
Sample random Y = (Y1, Y2, Y3)
|Y1| = d, |Y3| = 30d+ 3s,
|Y2| = 4Cd+ 31d+ 4s

(Y1, Y2, Y3) −→ (Y ′1 , Y
′
2 , Y

′
3 )

Sample random W ′ with d bits.

Z′ = Ext(X;Y ′1 ) with 2C(6s) bits.
X̄ ′ = (X̄ ′

1, . . . , X̄
′
C),

where X̄ ′
i = nmExt(Xi, Y

′
1 ).

V ′ = (V ′1 , . . . , V
′
C) = laExt((X, X̄ ′), (Y ′2 , Y

′
3 ))

T ′ = lrMACZ′(W ′).
Set final RB = Ext(X;W ′).

(W,T, V̄ )←− (W ′, T ′, V ′)

Z = Ext(X;Y1) with 2C(6s) bits.
X̄ = (X̄1, . . . , X̄C),
where X̄i = nmExt(Xi, Y1).
V = (V1, . . . , VC) = laExt((X, X̄), (Y2, Y3))
If T �= lrMACZ(W ) or V �= V̄ reject.
Set final RA = Ext(X;W ).

Figure 2. 2-round Privacy Amplification Protocol for ˜H∞(X|E) ≥ δn.

T ′ and V ′, with high probability Eve cannot come up

with the correct V for Alice. If this is true then in the

second round we can have Bob also send V ′ to Alice,

where Alice receives a possibly modified version V̄ .

Alice then checks both the tag T and whether V = V̄ .

If either of them fails, Alice rejects. This will give us a

privacy amplification protocol.

The first problem with the above strategy is that now

V ′ may leak information about Z ′, thus now the MAC

key may not be uniform. This is easy to solve since

the MAC in Theorem 4.3 works as long as the key has

entropy rate > 1/2. Thus by limiting the size of V ′ to

be at most half the size of Z ′, we can ensure that if

Eve does not change Y1, Bob can still authenticate W ′

to Alice. We now explain how we produce V, V ′.
We actually have Alice produce C variables

V = (V1, · · · , VC). Similarly, Bob produces V ′ =
(V ′1 , · · · , V ′C). For this, we first choose a non-malleable

extractor and have Alice and Bob each apply the ex-

tractor to the somewhere rate-0.9 source (X1, · · · , XC),
using Y1 and Y ′1 as the seeds respectively. Let the out-

puts be X̄ = (X̄1, · · · , X̄C) and X̄ ′ = (X̄ ′
1, · · · , X̄ ′

C).
Note that one of the Xi’s, say Xg is a rate 0.9-source.

Thus we can use the non-malleable extractors in [2],

[3], [27]. Now we fix Y1, Y
′
1 , and we have that X̄g is

uniform and independent of X̄ ′
g . Thus we can fix X̄ ′

g

and X̄g is still uniform. Next, we fix Z ′. Since now

Z ′ is a deterministic function of X , as long as the size

of Z ′ is smaller than the size of X̄g , conditioned on

this fixing X̄g still has a lot of entropy left. Now to

produce V, V ′, in the first round we also have Alice

sample two other random strings (Y2, Y3) and send them

to Bob, where Bob receives (Y ′2 , Y
′
3). Note that after

we fix (Y1, Y
′
1), (Y ′2 , Y

′
3) is a deterministic function

of (Y2, Y3). We will now have Alice apply the look-

ahead extractor to (X, X̄), using (Y2, Y3) as the seed,

and output V = (V1, · · · , VC). Similarly, Bob applies

the look-ahead extractor to (X, X̄ ′), using (Y ′2 , Y
′
3) as

the seed, and output V ′ = (V ′1 , · · · , V ′C). Note that we

can indeed ensure that the size of X̄g is bigger than

Z ′, while the size of Z ′ is bigger than the size of

(V ′1 , · · · , V ′C) just by limiting the size of each V ′i .

Using properties of the alternating extraction proto-

col, we can show that Vg is close to uniform conditioned

on (V ′1 , · · · , V ′g) and Z ′. Now, we can limit the size

of (V ′g+1, · · · , V ′C) to be smaller than the size of Vg .

Thus Vg still has a lot of entropy even conditioned on

V ′ = (V ′1 , · · · , V ′C). This will ensure that with high

probability Eve cannot come up with the correct Vg .

Since we do not know which one of {X̄i} is X̄g , we

will choose (V1, · · · , VC) such that the size of VC is

say 2s, and for any i the size of Vi is twice the size

of Vi+1. In this way, no matter what g is, the size of

(V ′g+1, · · · , V ′C) is the size of Vg minus 2s. Thus Vg

still has 2s entropy left conditioned on V ′.
This gives our whole protocol. Note that the en-

tropy loss and communication complexity is O(2Cs) =
2poly(1/δ)s = O(s) for any constant δ > 0.
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Theorem 4.8. The above protocol is a 2-round (δn, ε)
privacy amplification protocol with entropy loss and
communication complexity 2poly(1/δ) log(1/ε).

The detailed proof appears in the full version [28].

5. OPEN PROBLEMS

Our result shows a connection between non-malleable

extractors and two-source extractors, and suggests that

it may be hard to construct non-malleable extractors

for small entropy with short seed length. However, it

is still quite possible that we can get explicit non-

malleable extractors for small entropy with large seed

length. Moreover, the weaker notion of non-malleable

condensers introduced in [27] is a hopeful alternative.

In our optimal privacy amplification protocol for

k = δn, the entropy loss is 2poly(1/δ)s, which has a

large hidden constant for small δ. As a comparison, the

protocol in [2] runs in poly(1/δ) rounds but only has

entropy loss poly(1/δ)s. Thus for practical purposes

it is interesting to see if we can reduce the hidden

constant. In particular, it remains an interesting open

problem to construct non-malleable extractors or non-

malleable condensers for arbitrarily linear min-entropy.
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