
How to Construct Quantum Random Functions

Mark Zhandry
Stanford University, USA
mzhandry@stanford.edu

Abstract—In the presence of a quantum adver-
sary, there are two possible definitions of security
for a pseudorandom function. The first, which we
call standard-security, allows the adversary to be
quantum, but requires queries to the function to
be classical. The second, quantum-security, allows
the adversary to query the function on a quantum
superposition of inputs, thereby giving the adver-
sary a superposition of the values of the function at
many inputs at once. Existing techniques for proving
the security of pseudorandom functions fail when
the adversary can make quantum queries. We give
the first quantum-security proofs for pseudorandom
functions by showing that some classical construc-
tions of pseudorandom functions are quantum-secure.
Namely, we show that the standard constructions of
pseudorandom functions from pseudorandom genera-
tors or pseudorandom synthesizers are secure, even
when the adversary can make quantum queries. We
also show that a direct construction from lattices is
quantum-secure. To prove security, we develop new
tools to prove the indistinguishability of distributions
under quantum queries.

In light of these positive results, one might hope
that all standard-secure pseudorandom functions are
quantum-secure. To the contrary, we show a separa-
tion: under the assumption that standard-secure pseu-
dorandom functions exist, there are pseudorandom
functions secure against quantum adversaries making
classical queries, but insecure once the adversary can
make quantum queries.

Keywords-Quantum; Pseudorandom Function

I. Introduction

In their seminal paper, Goldreich, Goldwasser, and
Micali [7] answer the question of how to construct
a function that looks random to classical adversaries.
Specifically, they define a pseudorandom function (PRF)
as a function PRF with the following property: no efficient
classical algorithm, when given oracle access to PRF, can
distinguish PRF from a truly random function. They then
construct such a pseudorandom function from pseudo-
random generators. Since then, pseudorandom functions
have also been built from pseudorandom synthesizers [11],
as well as directly from hard problems [1], [4], [6], [9], [12],
[14]. Pseudorandom functions have become an important
tool in cryptography: for example, they are used in the
construction of identification protocols, block ciphers,
and message authentication codes.

To define pseudorandom functions in the presence
of a quantum adversary, two approaches are possible.
The first is what we call standard-security: the quantum
adversary can only make classical queries to the function,
but all the computation between the queries may be
quantum. The second, which we call quantum-security,
allows the adversary to make quantum queries to the
function. That is, the adversary can send a quantum
superposition of inputs to the function, and receives a
superposition of the corresponding outputs in return.
We call pseudorandom functions that are secure against
quantum queries Quantum Pseudorandom Functions, or
QPRFs. Constructing secure QPRFs will be the focus of
this paper.
Quantum-secure pseudorandom functions (QPRFs)

have several applications. Whenever a pseudorandom
function is used in the presence of a quantum adver-
sary, security against quantum queries captures a wider
class of attacks. Thus, the conservative approach to
cryptosystem design would dictate using a quantum-
secure pseudorandom function. Further, in any instance
where a pseudorandom function might be evaluated on a
superposition, quantum-security is required. For example,
classically, pseudorandom functions work as message
authentication codes (MACs). In the quantum world,
however, it may be possible for a quantum adversary
to query the MAC on a superposition of messages, thus
necessitating the use of a quantum-secure pseudorandom
function.
Lastly, quantum-secure pseudorandom functions can be

used to simulate quantum-accessible random oracles [2].
Unlike the classical setting, where a random oracle can
be simulated on the fly, simulating a quantum-accessible
random oracle requires defining the entire function up
front before any queries are made. Zhandry [16] observes
that if the number of queries is a-priori bounded by q,
2q-wise independent functions are sufficient. However,
whenever the number of quantum queries is not known
in advance, quantum-secure pseudorandom functions
seem necessary for simulating quantum-accessible random
oracles.

A. Proving Quantum Security
Goldreich, Goldwasser, and Micali show how to build

a pseudorandom function PRF from any length-doubling

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.37

679

pseudorandom generator G. This construction is known
as the GGM construction. Pseudorandom generators can,
in turn, be built from any one-way function, as shown
by H̊astad et al. [8]. The security proof of H̊astad et al.
is entirely black-box, meaning that it carries over to the
quantum setting immediately if the underlying one-way
function is secure against quantum adversaries. However,
we will now see that the classical proof of security for the
GGM construction does not hold in the quantum world.
At a high level, implicit in the GGM construction is a

binary tree of depth n, where each leaf corresponds to
an input/output pair of PRF. To evaluate PRF, we start
at the root, and follow the path from root to the leaf
corresponding to the input. The security proof consists
of two hybrid arguments: the first across levels of the
tree, and the second across the nodes in a particular level.
The first step has only polynomially many hybrids since
the tree’s depth is a polynomial. For the second step, a
classical adversary can only query PRF on polynomially
many points, so the paths used to evaluate PRF only visit
polynomially many nodes in each level. Therefore, we only
need polynomially many hybrids for the second hybrid
argument. This allows any adversary A that breaks the
security of PRF with probability ε to be converted into an
adversary B that breaks the security ofG with probability
only polynomially smaller that ε.
In the quantum setting, A may query PRF on a

superposition of all inputs, so the response to even a single
query could require visiting all nodes in the tree. Each
level of the tree may have exponentially many nodes, so
the second hybrid argument above would need exponen-
tially many hybrids in the quantum setting. This means
B breaks the security of G with only exponentially small
probability. All existing security proofs for pseudorandom
functions from standard assumptions suffer from similar
weaknesses.

B. Our Results

We answer the question of how to construct a function
that looks random to quantum adversaries. The answer
is simple: many of the constructions of standard-secure
pseudorandom functions are in fact quantum-secure.
However, as explained above, new techniques are required
to actually prove security.
We start by showing that, given the existence of

a standard-secure pseudorandom function, there are
standard-secure pseudorandom functions that are not
quantum-secure. Thus a standard-secure PRF may not
be secure as a QPRF.
Next, for several classical constructions of pseudoran-

dom functions, we now can show how to modify the
classical security proof to prove quantum security. Our
general technique is as follows: first define a seemingly

stronger security notion for the underlying cryptographic
primitive. Next, use ideas from the classical proof to show
that any adversary A that breaks the quantum-security
of the pseudorandom function can be turned into an
adversary B that breaks this stronger notion of security
for the primitive. Lastly, use new techniques to show the
equivalence of this stronger notion of security and the
standard notion of security in the quantum setting.
We use this approach to prove the security of the

following pseudorandom functions:
• The construction from length-doubling pseudoran-
dom generators (PRGs) due to Goldreich, Gold-
wasser, and Micali [7]. Since pseudorandom gener-
ators can be built from one-way functions in the
quantum setting, this shows that one-way functions
secure against quantum adversaries imply quantum-
secure pseudorandom functions.

• The construction from pseudorandom synthesizers
due to Naor and Reingold [11].

• The direct construction based on the Learning
With Errors problem due to Banerjee, Peikert, and
Rosen [1].

C. Are Quantum Oracles Better Than Samples?
In the GGM proof, the first hybrid argument over

the levels of the tree essentially transforms an adversary
for PRF into an algorithm solving the following problem:
distinguish a random oracle from an oracle whose outputs
are random values from the underlying pseudorandom
generator. The next hybrid argument shows how to use
such an algorithm do distinguish a single random value
from a single output of the pseudorandom generator, thus
breaking the security of the pseudorandom generator.
The first hybrid argument carries over into the quan-

tum setting, but it is this second hybrid that causes
difficulties for the reasons outlined above. To complete
the security proof, we need to show that having quantum
access to an oracle whose outputs are drawn from a
distribution is no better than having access to a single
sample from the same distribution. We show exactly that:

Theorem I.1. Let D1 and D2 be efficiently sampleable
distributions on a set Y, and let X be some other set. Let
O1 and O2 be the distributions of functions from X to Y
where for each x ∈ X , Oi(x) is chosen independently ac-
cording to Di. Then if A is an efficient quantum algorithm
that uses quantum queries to distinguish oracles drawn
from O1 from oracles drawn from O2, we can construct an
efficient quantum algorithm B that distinguishes samples
from D1 and D2.

In the classical case, any algorithm A making q queries
to an oracle O only sees q outputs. Thus, given q samples
from D1 or D2, we can lazily simulate the oracles O1 or

680

O2, getting an algorithm that distinguishes q samples
of D1 from q samples of D2. A simple hybrid argument
shows how to get an algorithm that distinguishes one
sample.
In the quantum setting, any quantum algorithm A

making even a single quantum query to Oi gets to “see”
all the outputs at once, meaning we need exponentially
many samples to simulate Oi exactly. However, while we
cannot lazily simulate the oracles Oi given q samples from
Di, we can approximately simulate Oi given polynomially
many samples from Di. Basically, for each input, set the
output to be one of the samples, chosen at random from
the collection of samples. While not quite the oracle Oi,
we show that this is sufficiently indistinguishable from Oi.
Thus, we can use A to distinguish a polynomial number
of samples of D1 from the same number of samples of
D2. Like in the classical case, a simple hybrid argument
shows how to distinguish just one sample.

II. Preliminaries and Notation

We say that ε = ε(n) is negligible if, for all polynomials
p(n), ε(n) < 1/p(n) for large enough n.
For an integer k, we will use non-standard notation

and write [k] = {0, ..., k−1} to be the set of non-negative
integers less than k. We write the set of all n bit strings
as [2]n. Let x = x1...xn be a string of length n. We write
x[a,b] to denote the substring xaxa+1...xb.

A. Functions and Probabilities

Given two sets X and Y, define YX as the set of
functions f : X → Y. If a function f has maps X to
Y ×Z, we can think of f as two functions: one that maps
X to Y and one that maps X to Z. In other words, we
can equate the sets of functions (Y × Z)X and YX × ZX .
Given f ∈ YX and g ∈ ZY , let g◦f be the composition

of f and g. That is, g ◦ f(x) = g(f(x)). If F ⊆ YX , let
g ◦ F be the set of functions g ◦ f for f ∈ F . Similarly, if
G ⊆ ZY , G ◦ f is the set of functions f ◦ g where g ∈ G.
Define G ◦ F accordingly.
Given a distribution D and some event event, we write

Prx←D[event] to represent the probability that event
happens when x is drawn from D. For a given set X , we
will sometimes abuse notation and write X to denote the
uniform distribution on X .
Given a distribution D on YX and a function g ∈ ZY ,

define the distribution g ◦ D over ZX where we first
draw f from D, and output the composition g ◦ f . Given
f ∈ YX and a distribution E over ZX , define E ◦ f and
E ◦ D accordingly.
Given a distribution D on a set Y , and another set X ,

define DX as the distribution on YX where the output
for each input is chosen independently according to D.

The distance between two distributions D1 and D2
over a set X is

|D1 − D2| =
∑
x∈X

|D1(x)− D2(x)| .

If |D1 − D2| ≤ ε, we say D1 and D2 are ε-close. If
|D1 − D2| ≥ ε, we say they are ε-far.

B. Quantum Computation
Here we state some basic facts about quantum com-

putation needed for the paper, and refer the reader to
Nielsen and Chuang [15] for a more in depth discussion.

Fact 1. Any classical efficiently computable function f
can be implemented efficiently by a quantum computer.
Moreover, f can be implemented as an oracle which can
be queried on quantum superpositions.

The following is a result from Zhandry [16]:

Fact 2. For any sets X and Y, we can efficiently
“construct” a random oracle from X to Y capable of
handling q quantum queries, where q is a polynomial. More
specifically, the behavior of any quantum algorithm making
at most q queries to a 2q-wise independent function is
identical to its behavior when the queries are made to a
random function.

Given an efficiently sampleable distribution D over a
set Y , we can also “construct” a random function drawn
from DX as follows: Let Z be the set of randomness used
to sample from D, and let f(r) be the element y ∈ Y
obtained using randomness r ∈ Z. Then DX = f ◦ ZX ,
so we first construct a random function O′ ∈ ZX , and
let O(x) = f(O′(x)).
We will denote a quantum algorithm A given classical

oracle access to an oracle O as AO. If A has quantum
access, we will denote this as A|O〉.

C. Cryptographic Primitives
In this paper, we always assume the adversary is a

quantum computer. However, for any particular primitive,
there may be multiple definitions of security, based
on how the adversary is allowed to interact with the
primitive. Here we define pseudorandom functions and
two security notions, as well as two definitions of in-
distinguishability for distributions. The definitions of
pseudorandom generators and synthesizers appear in the
relevant sections.

Definition II.1 (PRF). A pseudorandom function is a
function PRF : K × X → Y, where K is the key-space,
and X and Y are the domain and range. K, X , and Y
are implicitly functions of the security parameter n. We
write y = PRFk(x).

681

Definition II.2 (Standard-Security). A pseudorandom
function PRF is standard-secure if no efficient quantum
adversary A making classical queries can distinguish
between a truly random function and the function PRFk

for a random k. That is, for every such A, there exists a
negligible function ε = ε(n) such that∣∣∣∣ Prk←K

[APRFk() = 1]− Pr
O←YX

[AO() = 1]
∣∣∣∣ < ε .

Definition II.3 (Quantum-Security). A pseudorandom
function PRF is quantum-secure if no efficient quantum
adversary A making quantum queries can distinguish
between a truly random function and the function PRFk

for a random k.

We call such quantum-secure pseudorandom functions
Quantum Random Functions, or QPRFs.
We now provide some definitions of indistinguishablility

for distributions. The standard notion of indistinguishabil-
ity is that no efficient quantum algorithm can distinguish
a sample of one distribution from a sample of the other:

Definition II.4 (Indistinguishability). Two distribu-
tions D1 and D2 over a set Y are computationally
(resp. statistically) indistinguishable if no efficient (resp.
computationally unbounded) quantum algorithm A can
distinguish a sample of D1 from a sample of D2. That is,
for all such A, there is a negligible function ε such that∣∣∣∣ Pry←D1

[A(y) = 1]− Pr
y←D2

[A(y) = 1]
∣∣∣∣ < ε .

For our work, we will also need a new, seem-
ingly stronger notion of security, which we call oracle-
indistinguishability. The idea is that no efficient algo-
rithm can distinguish between oracles whose outputs are
distributed according to either D1 or D2:

Definition II.5 (Oracle-Indistinguishability). Two dis-
tributions D1 and D2 over a set Y are computationally
(resp. statistically) oracle-indistinguishable if, for all
sets X , no efficient (resp. computationally unbounded)
quantum algorithm B can distinguish DX

1 from DX
2 using

a polynomial number of quantum queries. That is, for all
such B and X , there is a negligible function ε such that∣∣∣∣∣ Pr

O←DX
1

[B|O〉() = 1]− Pr
O←DX

2

[B|O〉() = 1]
∣∣∣∣∣ < ε .

For this paper, we will primarily be discussing com-
putationally bounded adversaries, so we will normally
take indistinguishability and oracle-indistinguishability
to mean the computational versions.
These these definitions of indistinguishability in hand,

we can now formulate Theorem I.1 as follows:

Theorem I.1. Let D1 and D2 be efficiently sampleable
distributions over a set Y. Then D1 and D2 are in-
distinguishable if and only if they are also oracle-
indistinguishable.

III. Separation Result

In this section, we show our separation result:

Theorem III.1. If secure PRFs exist, then there are
standard-secure PRFs that are not QPRFs.

Proof: Let PRF be a standard-secure pseudorandom
function with key-space K, domain X , and co-domain
Y. We will construct a new pseudorandom function
that is periodic with some large, secret period. Classical
adversaries will not be able to detect the period, and
thus cannot distinguish this new function from random.
However, an adversary making quantum queries can
detect the period, and thus distinguish our new function
from random.
Interpret X as [N], where N is the number of elements

in X . Assume without loss of generality that Y contains
at least N2 elements (if not, we can construct a new
pseudorandom function with smaller domain but larger
range in a standard way). We now construct a new
pseudorandom function PRF′

(k,a)(x) = PRFk(x mod a)
where:

• The key space of PRF′ is K′ = K × A where A =
Z∩ (N/2, N]. That is, a key for PRF′ is a pair (k, a)
where k is a key for PRF, and a is an integer in the
range (N/2, N].

• The domain is X ′ = [N ′] where N ′ is the smallest
power of 2 greater than 4N2.

The following two claims are proved in the full ver-
sion [17]:

Claim 1. If PRF is standard-secure, then so is PRF′

Sketch of Proof. Since PRF is a standard-secure
pseudorandom function, we can replace it with a truly
random function in the definition of PRF′, and no efficient
adversary making classical queries will notice. But we
are then left with a function that has a large random
period where every value in the period is chosen randomly.
This function will look truly random unless the adversary
happens to query two points that differ by a multiple
of the period. But by the birthday bound, this will only
happen with negligible probability.

Claim 2. If PRF is quantum-secure, then PRF′ is not.

Sketch of Proof. If we allow quantum queries to PRF′,
we can use the period finding algorithm of Boneh and
Lipton [3] to find a. With a, it is easy to distinguish PRF′

from a random oracle. Unfortunately, the period finding

682

algorithm requires PRF′ to have some nice properties, but
these properties are satisfied if PRF is quantum-secure.

Thus one of PRF and PRF′ is standard-secure but not
quantum-secure, as desired.
We have shown that for pseudorandom functions,

security against classical queries does not imply security
against quantum queries. In the next sections, we will
show, however, that several of the standard constructions
in the literature are nevertheless quantum-secure.

IV. Pseudorandom Functions from
Pseudorandom Generators

We give the construction of pseudorandom functions
from pseudorandom generators due to Goldreich, Gold-
wasser, and Micali [7], the so-called GGM construction.
We also prove its security in a new way that makes sense
in the quantum setting. First, we define pseudorandom
generators:

Definition IV.1 (PRG). A pseudorandom generator
(PRG) is a function G : X → Y. X and Y are implicitly
indexed by the security parameter n.

Definition IV.2 (Standard-Security). A pseudorandom
function G is standard-secure if the distributions G ◦ X
and Y are computationally indistinguishable.
Construction 1 (GGM-PRF). Let G : K → K2 be a
length-doubling pseudorandom generator. Write G(x) =
(G0(x), G1(x)) where G0, G1 are functions from K to K.
Then we define the GGM pseudorandom function PRF :
K × [2]n → K where

PRFk(x) = Gx1(...Gxn−1(Gxn(k))...) .

That is, the function PRF takes a key k in K and an
n-bit input string. It first applies G to k. It keeps the left
or right half of the output depending on whether the last
bit of the input is 0 or 1. What remains is an element
in K, so the function applies G again, keeps the left or
right half depending on the second-to-last bit, and so on.
As described in the introduction, the standard proof

of security fails to prove quantum-security. Using The-
orem I.1, we show how to work around this problem.
We defer the proof of Theorem I.1 to Section VII, and
instead assume it is true. We first define a stronger notion
of security for pseudorandom generators, which we call
oracle-security:

Definition IV.3 (Oracle-Security). A pseudorandom
generator G : X → Y is oracle-secure if the distributions
G ◦ X and Y are oracle-indistinguishable.

G ◦ X is efficiently sampleable since we can sample a
random value in X and apply G to it. Then, G ◦ X and
Y are both efficiently sampleable, so Theorem I.1 gives:

Corollary IV.4. If G is a secure PRG, then it is also
oracle-secure.

We now can prove the security of Construction 1.

Theorem IV.5. If G is a standard-secure PRG, then
PRF from Construction 1 is a QPRF.

Proof: We adapt the security proof of Goldreich et
al. to convert any adversary for PRF into an adversary
for the oracle-security of G. Then Corollary IV.4 shows
that this adversary is impossible under the assumption
that G is standard-secure.
Suppose a quantum adversary A distinguishes PRF

from a random oracle with probability ε. Define hybrids
Hi as follows: Pick a random function P ← K[2]n−i (that
is, random function from (n − i)-bit strings into K) and
give A the oracle

Oi(x) = Gx1(...Gxi(P (x[i+1,n]))...) .

H0 is the case where A’s oracle is random. When i = n,
P ← K[2]n−i is a random function from the set containing
only the empty string to K, and hence is associated with
the image of the empty string, a random element in K.
Thus Hn is the case where A’s oracle is PRF. Let εi be
the probability A distinguishes Hi from Hi+1. That is,

εi = Pr[A|Oi〉() = 1]− Pr[A|Oi+1〉() = 1] .

A simple hybrid argument shows that |∑i εi| = ε

We now construct a quantum algorithm B breaking
the oracle-security of G. B is given quantum access
to an oracle P : [2]n−1 → K2, and distinguishes
P ← (K2)[2]n−1

from P ← G ◦ K[2]n−1 . That is, B is
given either a random function from (n − 1)-bit strings
into K2, or G applied to a random function from (n − 1)-
bit strings into K, and distinguishes the two cases as
follows:

• Pick a random i in {0, ..., n − 1}
• Let P (i) : [2]n−i−1 → K2 be the oracle P (i)(x) =

P (0ix)
• Write P (i) as (P (i)

0 , P
(i)
1) where P

(i)
b : [2]n−i−1 → K

are the left and right halfs of the output of P (i).
• Construct the oracle O : [2]n → K where

O(x) = Gx1(...Gxi(P (i)
xi+1(x[i+2,n]))...) .

• Simulate A with oracle O, and output whatever A
outputs.

Notice that each quantum query to O results in one
quantum query to P , so B makes the same number of
queries that A does.
Fix i, and let Bi be the algorithm B using this i. In

the case where P is truly random, so is P (i), as are P
(i)
0

and P
(i)
1 . Thus O = Oi, the oracle in hybrid Hi. When

683

P is drawn from G ◦ K[2]n−1 , then P (i) is distributed
according to G ◦ K[2]n−i−1 , and so Pb ← Gb ◦ K[2]n−i−1 .
Thus O = Oi+1, the oracle in hybrid Hi+1. For fixed i,
we then have that the quantity

Pr
P ←(K2)[2]n−1

[B|P 〉
i () = 1]− Pr

P ←G◦K[2]n−1
[B|P 〉

i () = 1]

is equal to εi. Averaging over all i and taking the absolute
value, we have that the distinguishing probability of B,∣∣∣∣∣ Pr

P ←(K2)[2]n−1
[B|P 〉() = 1]− Pr

P ←G◦K[2]n−1
[B|P 〉() = 1]

∣∣∣∣∣ ,

is equal to ∣∣∣∣∣ 1n
∑

i

εi

∣∣∣∣∣ = ε/n .

Thus B breaks the oracle security of G with probabil-
ity only polynomially smaller than the probability A
distinguishes PRF from a random oracle.

V. Pseudorandom Functions from Synthesizers
In this section, we show that the construction of

pseudorandom functions from pseudorandom synthesizers
due to Naor and Reingold [11] is quantum-secure.

Definition V.1 (Synthesizer). A pseudorandom synthe-
sizer is a function S : X 2 → Y. X and Y are implicitly
indexed by the security parameter n.

Definition V.2 (Standard-Security). A pseudoreandom
synthesizer S : X 2 → Y is standard-secure if, for
any set Z, no efficient quantum algorithm A making
classical queries can distinguish a random function from
O(z1, z2) = S(O1(z1), O2(z2)) where Ob ← X Z . That is,
for any such A and Z, there exists a negligible function ε
such that∣∣∣∣∣∣∣ Pr

O1←X Z
O2←X Z

[AS(O1,O2)() = 1]− Pr
O←YZ×Z

[AO() = 1]

∣∣∣∣∣∣∣ < ε ,

where S(O1, O2) means the oracle that maps (z1, z2) into
S(O1(z1), O2(z2)).

Construction 2 (NR-PRF). Given a pseduorandom
synthesizer S : X 2 → X , let � be an integer and
n = 2�. We let PRFk(x) = PRF(�)

k (x) where PRF(i) :(
X 2×2i

)
× [2]2i → X is defined as

PRF(0)
a1,0,a1,1(x) = a1,x

PRF(i)
A

(i−1)
1 ,A

(i−1)
2

(x) = S(PRF(i−1)
A

(i−1)
1

(x[1,2i−1]),

PRF(i−1)
A

(i−1)
2

(x[2i−1+1,2i])) ,

where

A
(i−1)
1 = (a1,0, a1,1, a2,0, a2,1, ..., a2i−1,0, a2i−1,1)

A
(i−1)
2 = (a2i−1+1,0, a2i−1+1,1, a2,0, a2,1, ..., a2i,0, a2i,1)

That is, PRF takes a key k consisting of 2×2� elements
of X , and takes bit strings x of length 2� as input. It
uses x to select 2� of the elements in the key, and pairs
them off. It then applies S to each of the pairs, obtaining
2�−1 elements of X . Next, PRF pairs these elements and
applies S to these pairs again, and continues in this way
until there is one element left, which becomes the output.
The following theorem is proved in the full version [17]:

Theorem V.3. If S is a standard-secure synthesizer,
then PRF from Construction 2 is a QPRF.

Sketch of Proof. The proof is very similar to that
of the security of the GGM construction: we define a
new notion of security for synthesizers, called quantum-
security, and use the techniques of Naor and Reingold to
prove that quantum-security implies that Construction 2
is quantum secure. Unlike the GGM case, the equivalence
of quantum- and standard-security for synthesizers is not
an immediate consequence of Theorem I.1. Nevertheless,
we prove the equivalence, completing the proof of security
for Construction 2.

VI. Direct Construction of Pseudorandom
Functions

In this section, present the construction of pseudoran-
dom functions from Banerjee, Peikert, and Rosen [1]. We
show that this construction is quantum-secure.
Let p, q be integers with q > p. Let
x�p be the

map from Zq into Zp defined by first rounding x to the
nearest multiple of q/p, and then interpreting the result
as an element of Zp. More precisely,
x�p =
(p/q)x�
mod p where the multiplication and division in (p/q)x
are computed in R.

Construction 3. Let p, q, m, � be integers with q > p. Let
K = Z

n×m
q × (Zn×n)�. We define PRF : K × [2]� → Z

m×n
p

as follows: For a key k = (A, {Si}), let

PRFk(x) =
⌊

At
�∏

i=1
Sxi

i

⌉
p

.

The function PRF uses for a key an n × m matrix A
and � different n × n matrices Si, where elements are
integers mod q. It uses its �-bit input to select a subset
of the Si, which it multiplies together. The product is
then multiplied by the transpose of A, and the whose
result is rounded mod p.
Next is an informal statement of the security of PRF,

whose proof appears in the full version [17]:

684

Theorem VI.1. Let PRF be as in Construction 3. For an
appropriate choice of integers p, q, m, � and distribution
χ on Z, if we draw A ← Z

n×m
q and Si ← χn×n and the

Learning With Errors (LWE) problem is hard for modulus
q and distribution χ, then PRF is a QPRF.

Sketch of Proof. We follow the ideas from the previous
sections and define a new notion of hardness for LWE,
which we call oracle-hard, and show its equivalence to
standard hardness. We then show that oracle-hardness
implies Construction 3 is quantum-secure. This part is
similar to the proof of Banerjee et al., with some changes
to get it to work in the quantum setting.

VII. Distinguishing Oracle Distributions
In this section, we describe some tools for arguing

that a quantum algorithm cannot distinguish between
two oracle distributions, culminating in a proof for
Theorem I.1. Let X and Y be sets. We start by recalling
two theorems of Zhandry [16]:

Theorem VII.1. Let A be a quantum algorithm making
q quantum queries to an oracle H : YX . If we draw
H from some distribution D, then for every z, the
quantity PrH←D[A|H〉() = z] is a linear combination of
the quantities PrH←D[H(xi) = ri∀i ∈ {1, ..., 2q}] for all
possible settings of the xi and ri.

Theorem VII.2. Fix q, and let Dλ be a family of
distributions on YX indexed by λ ∈ [0, 1]. Suppose there is
an integer d such that for every 2q pairs (xi, ri) ∈ X × Y,
the function p(λ) = PrH←Dλ

[H(xi) = ri∀i ∈ {1, ..., 2q}]
is a polynomial of degree at most d in λ. Then for any
quantum algorithm A making q quantum queries, the
output distributions under Dλ and D0 are 2λd2-close.

We now show a similar result:

Theorem VII.3. Fix q, and let Er be a family of distri-
butions on YX indexed by r ∈ Z

+ ⋃{∞}. Suppose there is
an integer d such that for every 2q pairs (xi, ri) ∈ X × Y,
the function p(λ) = PrH←E1/λ

[H(xi) = ri∀i ∈ {1, ..., 2q}]
is a polynomial of degree at most d in λ. Then for any
quantum algorithm A making q quantum queries, the
output distributions under Er and E∞ are π2d3/3r-close.

Sketch of Proof. Let Dλ = E1/λ. We see that the
conditions of Theorems VII.3 and VII.2 are identical,
with the following exception: Theorem VII.2 requires Dλ

to be a distribution for all λ ∈ [0, 1], while Theorem
VII.3 only requires Dλ to be a distribution when 1/λ is
an integer (and when λ = 0). The proof is thus similar
in flavor to that of Theorem VII.2, with the following
exception: the proof of Theorem VII.2 uses well-known
bounds on polynomials f where f(x) ∈ [0, 1] for all x ∈
[0, 1]. However, we need similar bounds on polynomials f

where f(x) is only required to be in [0, 1] for x where 1/x
is an integer. Such polynomials are far less understood,
and we need to prove suitable bounds under these relaxed
assumptions. The proof is in the full version [17].

In the next section, we apply Theorem VII.3 to a new
class of distributions.

A. Small-Range Distributions
We now apply Theorem VII.3 to a new distribution on

oracles, which we call small-range distributions. Given
a distribution D on Y, define SRD

r (X) as the following
distribution on functions from X to Y:

• For each i ∈ [r], chose a random value yi ∈ Y
according to the distribution D.

• For each x ∈ X , pick a random i ∈ [r] and set
O(x) = yi.

We will often omit the domain X when is is clear from
context.
The following is proved in the full version [17]:

Lemma VII.4. Fix k. For any X , the probabilities in
each of the marginal distributions of SRD

r (X) over k inputs
are polynomials in 1/r of degree k.

An alternate view of this function is to choose g ← D[r]

and f ← [r]X , and output the composition g ◦ f . That
is, SRD

r (X) = D[r] ◦ [r]X . In other words, we choose a
random function f from X to [r], and compose it with
another random function g from [r] to Y , where outputs
are distributed according to D. We call this distribution
a small-range distribution because the set of images of
any function drawn from the distribution is bounded to
at most r points, which for r << Y will be a small subset
of the co-domain. Notice that, as r goes to infinity, f
will be injective with probability 1, and hence for each x,
g(f(x)) will be distributed independently according to
D. That is, SRD

∞(X) = DX . We can then use Theorem
VII.3 to bound the ability of any quantum algorithm to
distinguish SRD

r (X) from SRD
∞(X) = DX :

Corollary VII.5. The output distributions of a quantum
algorithm making q quantum queries to an oracle either
drawn from SRD

r (X) or DX are �(q)/r-close, where �(q) =
π2(2q)3/3 < 27q3.

We observe that this bound is tight: in the full version
we show that the quantum collision finding algorithm of
Brassard, Høyer, and Tapp [5] can be used to distinguish
SRD

r (X) from DX with optimal probability. This shows
that Theorem VII.3 is tight.

B. The Equivalence of Indistinsguishability and Oracle-
Indistinguishability
We now use the above techniques to explore the

relationship between indistinguishability and oracle-

685

indistinguishability and to prove Theorem I.1. Clearly,
oracle-indistinguishability implies standard indistin-
guishability: if A distinguishes D1 from D2, then the
algorithm B|O〉() that picks any x ∈ X and returns
A(O(x)) breaks the oracle-indistinguishability.
In the other direction, in the classical world, if B

makes q queries to O, we can simulate O using q samples,
and do a hybrid across the samples. This results in an
algorithm that breaks the standard indistinuishability.
However, in the quantum world, each query might be over
a superposition of exponentially many inputs. Therefore
there will be exponentially many hybrids, causing the
proof to fail.
In the statistical setting, this question has been

answered by Boneh et al. [2]. They show that if a
(potentially unbounded) quantum adversary making q
queries distinguishes DX

1 from DX
2 with probability ε,

then D1 and D2 must Ω(ε2/q4)-far. We now have to
tools to extend this result to the computational setting
(and improve the result for the statistical setting in the
process) by proving Theorem I.1.

Proof of Theorem I.1. Let B be an (efficient) quantum
adversary that distinguishes DX

1 from DX
2 with non-

negligible probability ε, for distributions D1 and D2 over
Y. That is, there is some set X such that∣∣∣∣∣ Pr

O←DX
1

[B|O〉() = 1]− Pr
O←DX

2

[B|O〉() = 1]
∣∣∣∣∣ = ε .

Our goal is to construct an (efficient) quantum algo-
rithm A that distinguishes a sample of D1 from a sample
of D2. To this end, choose r so that �(q)/r = ε/4, where
�(q) is the polynomial from Corollary VII.5. That is, r =
4�(q)/ε. No quantum algorithm can distinguish SRDi

r (X)
from DX

i with probability greater than �(q)/r = ε/4.
Thus, it must be that the quantity∣∣∣∣∣ Pr

O←SRD1
r (X)

[B|O〉() = 1]− Pr
O←SRD2

r (X)
[B|O〉() = 1]

∣∣∣∣∣
is at least ε/2. We now define r+1 hybrids Hi as follows:
For j = 0, ..., i − 1, draw yj from D1. For j = i, ..., r − 1,
draw yj from D2. Then give B the oracle O where for
each x, O(x) is a randomly selected yi. Hr is the case
where O ← SRD1

r , and H0 is the case where O ← SRD2
r .

Hence H0 and Hr are distinguished with probability at
least ε/2. Let

εi = Pr
O←Hi+1

[B|O〉() = 1]− Pr
O←Hi

[B|O〉() = 1]

be the probability that B distinguishes Hi+1 from Hi.
Then |∑r

i=1 εi| ≥ ε/2.
We construct an algorithm A that distinguishes be-

tween D1 and D2 with probability ε/2r. A, on inputs y,
does the following:

• Choose a random i ∈ [r].
• Construct a random oracle O0 ← [r]X .
• Construct random oracles O1 ← D

{0,...,i−1}
1 and

O2 ← D
{i+1,...,r−1}
2 .

• construct the oracle O where O(x) is defined as
follows:
– Compute j = O0(x).
– If j = i, output y.
– Otherwise, if j < i, output O1(j) and if j > i,
output O2(j).

• Simulate B with the oracle O, and output the output
of B.

Let Ai be the algorithm A using i. If y ← D1, B sees
hybrid Hi+1. If y ← D2, B sees Hi. Therefore, we have
that

Pr
y←D1

[Ai(y) = 1]− Pr
y←D2

[Ai(y) = 1] = εi .

Averaging over all i, we get that A’s distinguishing
probability, |Pry←D1 [A(y) = 1]− Pry←D2 [A(y) = 1]|, is
equal to ∣∣∣∣∣1r

r∑
i=1

εi

∣∣∣∣∣ ≥ ε

2r =
ε2

8�(q) .

Thus, A is an (efficient) algorithm that distinguishes
D1 from D2 with non-negligible probability. Hence, it
breaks the indistinguishability of D1 and D2.

Notice that by removing the requirement that B be
an efficient algorithm, we get a proof for the statistical
setting as well, so that if any computationally unbounded
quantum algorithm making q quantum queries distin-
guishes DX

1 from DX
2 with probability ε, then D1 and

D2 must be Ω(ε2/�(q)) = Ω(ε2/q3)-far, improving the
result of Boneh et al. by a factor of q.
Now that Theorem I.1 is proved, we have completed

the proof of security for the GGM construction (Construc-
tion 1) in the quantum setting. With some modifications
to the proof, we can also prove prove the quantum
security for Constructions 2 and 3, as shown in the full
version [17].

VIII. Conclusion
We have shown that not all pseudorandom functions

secure against classical queries are also secure against
quantum queries. Nevertheless, we demonstrate the secu-
rity of several constructions of pseudorandom functions
against quantum queries. Specifically, we show that the
construction from pseudorandom generators [7], the con-
struction from pseudorandom synthesizers [11], and the
direct construction based on the Learning With Errors
problem [1] are all secure against quantum algorithms
making quantum queries. We accomplish these results
by providing more tools for bounding the ability of a

686

quantum algorithm to distinguish between two oracle
distributions. We leave as an open problem proving the
quantum security of some classical uses of pseudorandom
functions. We have two specific instances in mind:

• Pseudorandom permutations (Block Ciphers) secure
against quantum queries. We know how to build
pseudorandom permutations from pseudorandom
functions in the classical setting ([10], [13]). Classi-
cally, the first step to prove security is to replace
the pseudorandom functions with truly random
functions, which no efficient algorithm can detect.
The second step is to prove that no algorithm can
distinguish this case from a truly random permu-
tation. For this construction to be secure against
quantum queries, a quantum-secure pseudorandom
function is clearly needed. However, it is not clear
how to transform the second step of the proof to
handle quantum queries.

• Message Authentication Codes (MACs) secure
against quantum queries. MACs can be built from
pseudorandom functions and proven existentially
unforgeable against a classical adaptive chosen mes-
sage attack. If we allow the adversary to ask for an
authentication on a superposition of messages, a new
notion of security is required. One possible definition
of security is that, after q queries, no adversary can
produce q+1 classical valid message/tag pairs. Given
a pseudorandom function secure against quantum
queries, proving this form of security reduces to
proving the impossibility of the following: After
q quantum queries to a random oracle O, output
q + 1 input/output pairs of O with non-negligible
probability.

Acknowledgments
We would like to thank Dan Boneh for his guidance

and many insightful discussions. This work was sup-
ported by NSF and DARPA. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the Department of Defense or the
U.S. Government.

References
[1] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom

Functions and Lattices. Advances in Cryptology —
EUROCRYPT 2012, pages 1–26, 2011.

[2] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann,
C. Schaffner, and M. Zhandry. Random Oracles in a
Quantum World. In Advances in Cryptology — ASI-
ACRYPT 2011, 2011.

[3] D. Boneh and R. J. Lipton. Quantum Cryptanalysis
of Hidden Linear Functions. Advances in Cryptology —
CRYPTO 1995, 1995.

[4] D. Boneh, H. Montgomery, and A. Raghunathan. Alge-
braic Pseudorandom Functions with Improved Efficiency
from the Augmented Cascade. Proceedings of the 17th
ACM Conference on Computer and Communications
Security (CCS), pages 1–23, 2010.

[5] G. Brassard, P. Høyer, and A. Tapp. Quantum Algo-
rithm for the Collision Problem. ACM SIGACT News
(Cryptology Column), 28:14–19, 1997.

[6] Y. Dodis and A. Yampolskiy. A Verifiable Random
Function with Short Proofs and Keys. Public Key
Cryptography, 2005.

[7] O. Goldreich, S. Goldwasser, and S. Micali. How to
Construct Random Functions. Journal of the ACM
(JACM), 33(4):792–807, 1986.

[8] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A
pseudorandom generator from any one-way function.
SIAM J. Comput., 28(4):1364–1396, 1999.

[9] A. B. Lewko and B. Water. Efficient Pseudorandom
Functions From the Decisional Linear Assumption and
Weaker Variants. Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security (CCS),
pages 1–17, 2009.

[10] M. Luby and C. Rackoff. How to construct pseudorandom
permutations from pseudorandom functions. SIAM J.
Comput., 17(2):373–386, Apr. 1988.

[11] M. Naor and O. Reingold. Synthesizers and Their Appli-
cation to the Parallel Construction of Pseudo-Random
Functions. Proceedings of the 36th IEEE Symposium on
Foundations of Computer Science (FOCS), 1995.

[12] M. Naor and O. Reingold. Number-Theoretic Construc-
tions of Efficient Pseudo-Random Functions. Proceedings
of the 38th IEEE Symposium on Foundations of Computer
Science (FOCS), 51(2):231–262, 1997.

[13] M. Naor and O. Reingold. On the Construction of
Pseudorandom Permutations : Luby-Rackoff Revisited.
Journal of Cryptology, (356):29–66, 1999.

[14] M. Naor, O. Reingold, and A. Rosen. Pseudo-Random
Functions and Factoring. Proceedings of the 32nd Annual
ACM Symposium on the Theory of Computing (STOC),
pages 1–23, 2000.

[15] M. A. Nielsen and I. Chuang. Quantum Computation
and Quantum Information. American Journal of Physics,
70(5):558, 2000.

[16] M. Zhandry. Secure Identity-Based Encryption in the
Quantum Random Oracle Model. In Advances in
Cryptology — CRYPTO 2012, 2012. Full version available
at the Cryptology ePrint Archives: http://eprint.iacr.org/
2012/076/.

[17] M. Zhandry. How to Construct Quantum Random Func-
tions, April 2012. Full version available at the Cryptology
ePrint Archives: http://eprint.iacr.org/2012/182/.

687

