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Abstract—A class of valued constraint satisfaction problems
(VCSPs) is characterised by a valued constraint language, a
fixed set of cost functions on a finite domain. An instance of
the problem is specified by a sum of cost functions from the
language with the goal to minimise the sum. This framework
includes and generalises well-studied constraint satisfaction
problems (CSPs) and maximum constraint satisfaction prob-
lems (Max-CSPs).

Our main result is a precise algebraic characterisation of
valued constraint languages whose instances can be solved
exactly by the basic linear programming relaxation. Using this
result, we obtain tractability of several novel and previously
widely-open classes of VCSPs, including problems over valued
constraint languages that are: (1) submodular on arbitrary
lattices; (2) bisubmodular (also known as k-submodular) on
arbitrary finite domains; (3) weakly (and hence strongly) tree-
submodular on arbitrary trees.

Keywords-valued constraint satisfaction; fractional polymor-
phisms; fractional homomorphisms; submodularity; bisubmod-
ularity; linear programming

I. INTRODUCTION

The constraint satisfaction problem (CSP) provides a com-

mon framework for many theoretical and practical problems

in computer science. An instance can be vaguely described

as a set of variables to be assigned values from the domains

of the variables so that all constraints are satisfied [45]. The

CSP is NP-complete in general and thus we are interested in

restrictions which give rise to tractable classes of problems.

Following Feder & Vardi [22], we restrict the constraint

language; that is, all constraint relations in a given instance

must belong to a fixed, finite set of relations on the do-

main. The most successful approach to classifying language-

restricted CSPs is the so-called algebraic approach [7], [30],

[31], which has led to several complexity classifications [1],

[4], [6], [8] and algorithmic characterisations [2], [28] going

beyond the seminal work of Schaefer [47].

Motivated by reasons both theoretical (optimisation prob-

lems are different from decision problems) and practical

(many problems are over-constrained and hence have no

solution, or under-constrained and hence have many so-

lutions), we study valued constraint satisfaction problems

(VCSPs) [5], [48]. A valued constraint language is a finite

set of cost functions on the domain, and a VCSP instance is

given by a weighted sum of cost functions from the language

with the goal to minimise the sum. (CSPs correspond to

the case when the range of all cost functions is {0,∞},
and Max-CSPs correspond to the case when the range of

all cost functions is {0, 1}.1) The VCSP framework is very

robust and has also been studied under different names such

as Min-Sum problems, Gibbs energy minimisation, Markov

Random Fields, Conditional Random Fields and others in

different contexts in computer science [16], [41], [50].

Given the generality of the VCSP, it is not surprising that

only few complexity classifications are known. In particular,

only Boolean (on a 2-element domain) languages [12], [17]

and conservative (containing all {0, 1}-valued unary cost

functions) languages [37] have been completely classified

with respect to exact solvability. On the algorithmic side,

most known tractable languages are somewhat related to

submodular functions on distributive lattices [11], [12], [33],

[37]. An alternative approach for solving VCSPs is using

linear programming (LP) and semidefinite programming

(SDP); these have been used mostly for approximation [3],

[19], [40], [46].

Contribution

We study the power of the basic linear programming
relaxation (BLP). Our main result (Theorem 3.1) is a precise

characterisation of valued constraint languages for which

BLP is a decision procedure. In more detail, we characterise

valued constraint languages over which VCSP instances

can be solved exactly by the BLP, i.e., when the BLP has

integrality gap 1. The characterisation is algebraic in terms

of fractional polymorphisms [10].

Our work is the first link between solving VCSPs exactly

using LP and the algebraic machinery for VCSPs introduced

by Cohen et al. in [9], [10], [13]. Part of the proof is inspired

by the characterisation of width-1 CSPs [20], [22]. One of

the main technical contributions is a construction of symmet-

ric fractional polymorphisms of all arities (Theorem 3.5).

1With respect to exact solvability, Max-CSPs (“maximising the number
of satisfied constraints”) are polynomial-time equivalent to Min-CSPs
(“minimising the number of unsatisfied constraints”). Therefore, with
respect to exact solvability, Max-CSPs are polynomial-time equivalent to
{0, 1}-valued VCSPs.

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.25

669



This result allows us to demonstrate that several valued

constraint languages are covered by our characterisation

and thus are tractable; that is, VCSP instances over these

languages can be solved exactly using BLP. New tractable

languages include: (1) submodular languages on arbitrary
lattices; (2) bisubmodular (also known as k-submodular)

languages on arbitrary finite domains; (3) weakly (and hence

strongly) tree-submodular languages on arbitrary trees. The

complexity of (subclasses of) these languages has been

mentioned explicitly as open problems in [21], [27], [36],

[38]. More generally, we show that any valued constraint

language with a binary multimorphism in which at least

one operation is a semi-lattice operation is tractable (cf.

Section V). Our results cover all known tractable finite-

valued constraint languages.

Related work

Apart from identifying tractable classes of CSPs and

VCSPs with respect to exact solvability, the approximability

of Max-CSPs has attracted a lot of attention [18], [32], [34].

Under the assumption of the unique games conjecture [35],

Raghavendra showed that the basic SDP relaxation solves

all tractable finite-valued VCSPs [46].2 Very recently, Max-

CSPs that are robustly approximable have been characterised

as those having bounded width [3], [19], [40]. Specifically,

Kun et al. studies the question of which Weighted Max-

CSPs3 can be robustly approximated using BLP [40]. Their

result is related but incomparable to ours as it applies to

robust approximability and not to exact solvability, except

for the special case of width-1 CSPs. In particular, “solving”

(“deciding”) for us means finding an optimum solution to a

VCSP instance, which is an optimisation problem, whereas

“solving” in [40] means (ignoring their results on robust

approximability, which do not apply here) the basic LP

formulation of a CSP instance finds a solution if one exists.4

We remark that our tractability results apply to the min-

imisation problem of VCSP instances (i.e., the objective

function is given by a sum of “local” cost functions) but

not to objective functions given by an oracle. In particular,

submodular functions given by an oracle can be minimised

on distributive lattices [29], [49], diamonds [39], and several

constructions on lattices preserving tractability have been

identified [38], but it is widely open what happens on

non-distributive lattices. Similarly, bisubmodular functions

given by an oracle can be minimised in polynomial-time

on domains of size 3 [25], but the complexity is open on

domains of larger size [27]. It is known that strongly tree-

submodular functions given by an oracle can be minimised

2Max-CSPs (={0, 1}-valued VCSPs) and finite-valued VCSPs, respec-
tively, are called CSPs and Generalised CSPs (GCSPs), respectively, in [46].

3In Weighted Max-CSPs, every constraint f is {0, cf}-valued, where cf

is a positive constant. Weighted Max-CPSs are a special case of VCSPs.
4Note that CSPs are defined as {0, 1}-valued in [40] and not as {0,∞}-

valued, as in this paper. This is needed for the LP formulation and the
measure of approximability. After all, [40] deals with Max-CSPs.

in polynomial time on binary trees [36], but the complex-

ity is open on general (non-binary) trees. Similarly, it is

known that weakly tree-submodular functions given by an

oracle can be minimised in polynomial time on chains and

forks [36], but the complexity on (even binary) trees is open.

Extending the notion of (generalised) arc consistency for

CSPs [24], [42] and several previously studied notions of

arc consistencies for VCSPs [15], Cooper et al. introduced

optimal soft arc consistency (OSAC) [14], which is a linear

program relaxation of a given VCSP instance. Since OSAC

is is a tighter relaxation than BLP, all tractable classes iden-

tified in this paper are solved by OSAC as well. Similarly,

since the basic SDP relaxation from [46] is tighter than BLP,

all tractable cases identified in this paper are solved by it as

well.

II. PRELIMINARIES

The set of non-negative rational numbers is denoted by

Q≥0. A signature τ is a set of function symbols f , each with

an associated positive arity, ar(f). A valued τ -structure
A (also known as a valued constraint language, or just a

language) consists of a domain D = D(A), together with

a function fA : Dar(f) → Q≥0, for each function symbol

f ∈ τ . (To be precise, these are finite-valued structures. In

Section IV, we will extend Q≥0 with infinity.)

Let A be a valued τ -structure. An instance of VCSP(A) is

given by a valued τ -structure I . A solution to I is a function

h : D(I) → D(A), its measure given by
∑

f∈τ,x̄∈D(I)ar(f)

f I(x̄)fA(h(x̄)).

The goal is to find a solution of minimum measure. This

measure will be denoted by OptA(I).5

For an m-tuple t̄, we denote by {t̄} the set of elements

in t̄. Furthermore, we denote by [t̄] the multiset of elements

in t̄.

A. Fractional Homomorphisms

Let A and B be valued structures over the same signature

τ . Let BA denote the set of all functions from D(A)
to D(B). A fractional homomorphism from A to B is a

function ω : BA → Q≥0, with
∑

g∈BA ω(g) = 1, such that

for every function symbol f ∈ τ and tuple ā ∈ D(A)ar(f),

it holds that ∑
g∈BA

ω(g)fB(g(ā)) ≤ fA(ā),

where the functions g are applied component-wise.

We write A →f B to indicate the existence of a fractional

homomorphism.

Proposition 2.1: Assume that A →f B. Then OptA(I) ≥
OptB(I), for every instance I .

5We note that the range of the functions in the valued structure A is
Q≥0 for traditional reasons, but all results hold true with Q as well.
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Proof: Let ω be a fractional homomorphism from A
to B, let X = D(I) and let h : X → A be an arbitrary

solution. Then,
∑
f,x̄

f I(x̄)fA(h(x̄)) ≥
∑
f,x̄

f I(x̄)
∑

g∈BA

ω(g)fB(g(h(x̄)))

=
∑

g∈BA

ω(g)
∑
f,x̄

f I(x̄)fB(g(h(x̄))),

where the sums are over f ∈ τ and x̄ ∈ Xar(f). Hence,

there exists a g ∈ BA such that the measure of the solution

g ◦h to I as an instance of VCSP(B) is no greater than the

measure of the solution h to I as an instance of VCSP(A).

B. Fractional Polymorphisms

Let A be a valued τ -structure, and let D = D(A). An

m-ary operation on D is a function g : Dm → D. Let

O(m)
D denote the set of all m-ary operations on D. An m-ary

fractional operation is a function ω : O(m)
D → Q≥0. Define

‖ω‖1 :=
∑

g ω(g). An m-ary fractional operation ω is called

an m-ary fractional polymorphism [10] if ‖ω‖1 = 1 and

for every function symbol f ∈ τ and tuples ā1, . . . , ām ∈
Dar(f), it holds that

∑

g∈O(m)
D

ω(g)fA(g(ā1, . . . , ām)) ≤ 1
m

m∑
i=1

fA(āi). (1)

The set {g | ω(g) > 0} of operations is called the support of

ω and is denoted by supp(ω). An operation g is idempotent
if g(x, . . . , x) = x. A fractional operation is idempotent

if all operations in its support are idempotent. Let Sm be

the symmetric group on {1, . . . , m}. An m-ary operation

g is symmetric if for every permutation π ∈ Sm, we

have g(x1, . . . , xm) = g(xπ(1), . . . , xπ(m)). A fractional

operation is symmetric if all operations in its support are

symmetric.

The superposition, h[g1, . . . , gn], of an n-ary opera-

tion h with n m-ary operations g1, . . . , gn is the m-

ary operation defined by h[g1, . . . , gn](x1, . . . , xm) =
h(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)). A set of operations

is called a clone if it contains all projections and is closed

under superposition. The smallest clone that contains a set

of operations F is called the clone generated by F . We say

that an operation f is generated by F if it is contained in

the clone generated by F .

Definition 1: The superposition, ω[g1, . . . , gn], of an

n-ary fractional operation ω with n m-ary operations

g1, . . . , gn is the m-ary fractional operation ω′, where

ω′(h′) =
∑

h:h′=h[g1,...,gn]

ω(h).

In general ω′ is not a fractional polymorphism, even when

ω is, but ‖ω′‖1 = ‖ω‖1 and ω′ satisfies the following

inequality:
∑

h′∈O(m)
D

ω′(h′)fA(h′(ā1, . . . , ām))

=
∑

h∈O(n)
D

ω(h)fA(h[g1, . . . , gn](ā1, . . . , ām))

≤ 1
n

n∑
i=1

fA(gi(ā1, . . . , ām)), (2)

for every f ∈ τ and ā1, . . . ām ∈ Dar(f).

C. The Multiset-Structure Pm(A)
Let A be a valued τ -structure, D = D(A), and let

m ≥ 1. We define the multiset-structure6 Pm(A) as the

valued structure with domain
((

D
m

))
, where

((
D
m

))
denotes

the multisets of elements from D of size m, and for every

k-ary function symbol f ∈ τ , and α1, . . . , αk ∈
((

D
m

))
,

fP m(A)(α1, . . . , αk) =
1
m

min
t̄i∈Dm:[t̄i]=αi

m∑
i=1

fA(t̄1[i], . . . , t̄k[i]).

The following lemma follows from the definitions.

Lemma 2.2: Let A be a valued structure and m > 1. Then

Pm(A) →f A if and only if A has an m-ary symmetric

fractional polymorphism.

D. The Basic Linear Programming Relaxation

Let I and A be valued structures over a common finite

signature τ . Let X = D(I) and D = D(A). The basic
LP relaxation (BLP) (sometimes also called the standard,

or canonical LP relaxation) has variables λf,x̄,σ for f ∈ τ ,

x̄ ∈ Xar(f), σ : {x̄} → D; and variables μx(a) for x ∈
X, a ∈ D.

min
∑
f,x̄

∑
σ:{x̄}→D

f I(x̄)fA(σ(x̄))λf,x̄,σ

s.t.
∑

σ:σ(x)=a

λf,x̄,σ = μx(a) ∀f ∈ τ, x̄ ∈ Xar(f),

x ∈ {x̄}, a ∈ D∑
a∈D

μx(a) = 1 ∀x ∈ X

0 ≤ λ, μ ≤ 1
(3)

For any fixed A, BLP is polynomial in the size of a given

VCSP(A) instance. Let IP be the program obtained from (3)

together with the constraints that all variables take values

in the range {0, 1} rather than [0, 1]. This is an integer

programming formulation of the original VCSP instance.

The interpretation of the variables in IP is as follows:

μx(a) = 1 iff variable x is assigned value a; λf,x̄,σ = 1
iff constraint f on scope x̄ is assigned tuple σ(x̄). LP (3)

is now a relaxation of IP and the question of whether (3)

6A similar structure for {0,∞}-valued languages was introduced in [40].
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solves a given VCSP instance I is the question of whether

IP has integrality gap 1.

III. CHARACTERISATION

Definition 2: Let BLP(I, A) denote the optimum of (3).
We say that BLP solves VCSP(A) if BLP(I, A) = OptA(I)
for every instance I of VCSP(A).

Theorem 3.1 (Main): Let A be a valued structure over a

finite signature. TFAE:

(i) BLP solves VCSP(A).
(ii) For every m > 1, Pm(A) →f A.

(iii) For every m > 1, A has an m-ary symmetric fractional

polymorphism.

(iv) For every n > 1, A has a fractional polymorphism

ωn such that supp(ωn) generates an n-ary symmetric

operation.

When A has symmetric fractional polymorphisms of all

arities, then solving the BLP provides the optimum value

of the VCSP instance. To find an optimal assignment, we

apply self-reduction: The idea is to successively try each

possible value for a variable and solve the new LP. Once

the new optimum matches the original one, we proceed with

the next variable. To make sure that optimal solutions in

the new instance actually obtain the optimum of the new

LP, we need the symmetric fractional polymorphisms of A
to be idempotent. This can be guaranteed if the support

of any unary fractional polymorphism of A contains only

injective operations. The latter can be showed to hold in an

appropriate substructure of A. Details will be provided in

the full version of this paper.

The rest of this section is devoted to proving Theorem 3.1.

We start with proving (ii) ⇒ (i).
Theorem 3.2: Assume that Pm(A) →f A for every m >

1. Then BLP solves VCSP(A).
Proof: Let λ∗, μ∗ be an optimal solution to (3). Let M

be a positive integer such that M · λ∗ and M · μ∗ are both

integral.

Let ν : X → ((
D
M

))
be defined by mapping x to the

multiset in which the elements are distributed according to

μ∗x, i.e., the number of occurrences of a in ν(x) is equal to

M · μ∗x(a) for each a ∈ D.

Let f be a k-ary function symbol in τ , and consider the

sum of all terms of the objective function in which f occurs:

∑
x̄

f I(x̄)
( ∑

σ:{x̄}→D

λ∗f,x̄,σfA(σ(x̄))
)
.

Now, write

M ·
∑

σ:{x̄}→D

λ∗f,x̄,σfA(σ(x̄)) = fA(ā1) + · · ·+ fA(āM ),

where the āi ∈ Dk are such that a λ∗f,x̄,σ-fraction are equal

to σ(x̄) and let ā′i = (ā1[i], . . . , āM [i]) for i = 1, . . . , k.

∑
σ:{x̄}→D

λ∗f,x̄,σfA(σ(x̄)) =
1
M

M∑
i=1

fA(āi)

=
1
M

M∑
i=1

fA(ā′1[i], . . . , ā
′
k[i])

≥ 1
M

min
t̄i∈DM :[t̄i]=[ā′i]

M∑
i=1

fA(t̄1[i], . . . , t̄k[i])

= fP M (A)(ν(x̄)),

where the last equality follows as the number of a’s in ā′i
is M ·∑σ:σ(x̄[i])=a λ∗f,x̄,σ = M · μ∗x̄[i](a).

We now have

BLP (I, A) =
∑
f,x̄

∑
σ:{x̄}→D

f I(x̄)fA(σ(x̄))λ∗f,x̄,σ

=
∑

f∈τ,x̄

f I(x̄)
( ∑

σ:{x̄}→D

λ∗f,x̄,σfA(σ(x̄))
)

≥
∑

f∈τ,x̄

f I(x̄)fP M (A)(ν(x̄))

≥ OptP M (A)(I).

It follows that OptA(I) ≥ BLP (I, A) ≥ OptP M (A)(I).
Since PM (A) →f A, the result then follows from Proposi-

tion 2.1.

To prove (i) ⇒ (ii), we need the following variant of

Farkas’ Lemma, due to Gale [26] (cf. Mangasarian [43]).

Lemma 3.3: Let A ∈ Rm×n and b̄ ∈ R
m. Then exactly

one of the two holds:

• Ax̄ ≤ b̄ for some x̄ ∈ R
n; or

• AT ȳ = 0, b̄T ȳ = −1 for some ȳ ∈ R≥0.

Theorem 3.4: Let A be a valued structure and assume

that BLP solves VCSP(A). Then Pm(A) →f A for every

m > 1.

Proof: Let τ be the signature of A and let D = D(A).
We prove the contrapositive. Assume that there is an integer

m > 1 such that Pm(A) does not have a fractional

homomorphism to A. Let Ω denote the set of functions from((
D
m

))
to D. We are assuming that the following system of

inequalities does not have a solution ω : Ω → Q≥0.
∑
g∈Ω

ω(g)fA(g(ᾱ)) ≤ fP m(A)(ᾱ) ∀f ∈ τ, ᾱ ∈ ((
D
m

))ar(f)

∑
g∈Ω

ω(g) = 1

ω(g) ≥ 0 ∀g ∈ Ω.

In order to apply Lemma 3.3, we rewrite the equality∑
g ω(g) = 1 into two inequalities

∑
g ω(g) ≤ 1 and

−∑
g ω(g) ≤ −1. The last set of inequalities are rewritten

to the form −ω(g) ≤ 0 for each g ∈ Ω. We have one

variable for each inequality, i.e., y(f, ᾱ) for f ∈ τ , and
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ᾱ ∈ ((
D
m

))ar(f)
. Additionally, we have two variables z+, z−

for the two inequalities involving the constant 1 and one

variable w(g) for each g ∈ Ω.
∑
f,ᾱ

y(f, ᾱ)fA(g(ᾱ)) + z+ − z− − w(g) = 0

∑
f,ᾱ

y(f, ᾱ)fP m(A)(ᾱ) + z+ − z− = −1

y, z+, z−, w ≥ 0

We can isolate z+ + z− in the last equality,

z+ + z− = −1−
∑
f,ᾱ

y(f, ᾱ)fP m(A)(ᾱ),

which substituted into the first set of equalities implies that

there is a solution y(f, ᾱ), w(g) such that, for each g ∈ Ω,
∑
f,ᾱ

y(f, ᾱ)fA(g(ᾱ)) = w(g) + 1 +
∑
f,ᾱ

y(f, ᾱ)fP m(A)(ᾱ).

We therefore find that there is a solution to the following

system:
∑
f,ᾱ

y(f, ᾱ)fA(g(ᾱ)) >
∑
f,ᾱ

y(f, ᾱ)fP m(A)(ᾱ) ∀g ∈ Ω

y(f, ᾱ) ≥ 0 ∀f, ᾱ. (4)

Let I be the following instance on variables
((

D
m

))
. For

each k-ary function symbol f ∈ τ , and ᾱ ∈ ((
D
m

))ar(f)
,

define

f I(ᾱ) = y(f, ᾱ).

We now give a solution λ, μ to the basic LP (3) with

an objective value equal to the right-hand side of (4). Each

variable μα(a) is assigned the value of the multiplicity of a
in α divided by m. Given f, ᾱ, let t̄1, . . . , t̄k ∈ Dm be such

that fP m(A)(ᾱ) = 1
m

∑m
i=1 fA(t̄1[i], . . . , t̄k[i]), and assign

values to the λ-variables as follows:

λf,ᾱ,σ =
1
m
|{i | σ(ᾱ[j]) = t̄j [i] for all j}|

Note that
∑

σ:σ(ᾱ[j])=a λf,ᾱ,σ = μᾱ[j](a) for all 1 ≤
j ≤ k and a ∈ D. Furthermore, λ is defined so that

fP m(A)(ᾱ) =
∑

σ:{ᾱ}→D fA(σ(ᾱ))λf,ᾱ,σ . Hence, the vari-

ables λ, μ satisfy the basic LP (3), and we have

BLP (I, A) ≤
∑
f,ᾱ

f I(ᾱ)
∑

σ:{ᾱ}→D

fA(σ(ᾱ))λf,ᾱ,σ

=
∑
f,ᾱ

f I(ᾱ)fP m(A)(ᾱ), (5)

where the sums are over f ∈ τ and ᾱ ∈ ((
D
m

))ar(f)
.

It now follows from (4) and (5) that the measure of

any solution g :
((

D
m

)) → D to I is strictly greater than

BLP(I, A). Consequently, BLP does not solve VCSP(A).

Lemma 2.2 proves (ii) ⇔ (iii).

Since (iii) ⇒ (iv) follows trivially, it remains to show

that (iv) ⇒ (iii).
Theorem 3.5: Let A be a valued structure and assume

that for every n > 1, A has a fractional polymorphism ωn

that generates an n-ary symmetric operation. Then, for every

m > 1, A has an m-ary symmetric fractional polymorphism.

Proof: For an m-ary operation g, let g̃ denote the

equivalence class of g under the relation:

g ∼ g′ ⇔ ∃π ∈ Sm : g(x1, . . . , xm) = g′(xπ(1), . . . , xπ(m)).

Note that we have |g̃| = 1 if and only if g is symmetric.

We say that a fractional operation ω is weight-symmetric
if ω(g) = ω(g′) whenever g ∼ g′.

We construct an m-ary symmetric fractional polymor-

phism by building a rooted tree in a number of stages. At

each stage of the construction, every node u of the tree

contains an m-ary weight-symmetric fractional operation

with support on a single equivalence class of ∼. For a node

u, we will also denote this fractional operation by u. Since

u is weight-symmetric, it follows that u(g) = u(g′) for all

g, g′ ∈ supp(u). This common weight for the operations in

the support of u will be denoted by w(u). A node u with

|supp(u)| = 1 will be called final.
The following invariants are maintained throughout the

construction.

(a) Every non-leaf node has at least one final child.

(b) For every node u, we have w(u) > 0.

(c) For every non-leaf node v,
∑

u is a child of v

‖u‖1 = ‖v‖1.

(d) For every non-leaf node v, every f ∈ τ , and all tuples

ā1, . . . , ām ∈ Dar(f),
∑

g

v(g)fA(g(ā1, . . . , ām))

≥
∑

u is a child of v

∑
g

u(g)fA(g(ā1, . . . , ām)).

We say that a leaf u is covered (by v), and that v is a
covering node (of u) if supp(u) = supp(v) for some (proper)

descendant u of v. We say that v is a minimal covering node

if no descendant of v is a covering node.

At the beginning of the construction, the tree consists of a

single root r with supp(r) being the set of m-ary projections

and w(r) = 1
m . We then apply the following two steps:

• Expansion: A leaf u that is not final and not covered

is chosen to be expanded. This amounts to adding a

finite non-empty set of children to u while maintaining

the invariants. The expansion step is repeated until no

longer applicable.

• Pruning: A leaf that is not final and covered is removed

together with a number of internal nodes while main-

taining the invariants. The pruning step is repeated until

no longer applicable.
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Since there is a finite number of m-ary operations, and

hence a finite number of equivalence classes of ∼, it follows

that, eventually, every leaf in the tree that is not final must

be covered. Hence, the expansion step is only applicable a

finite number of times.

Each round of pruning shrinks the tree by at least one

node, but no final leaf is ever removed. Therefore we

eventually obtain a tree containing only final leaves, at which

time the pruning step is no longer applicable. Let L be the

set of leaves in the final tree. By repeated application of

invariant (d), starting from the root,
∑

u∈L u is then an m-

ary symmetric fractional polymorphism.

Expansion

We expand a leaf u with |supp(u)| = n as follows: Let ω
be a k-ary fractional polymorphism of A such that supp(ω)
generates an n-ary symmetric operation t.

We will define a sequence of m-ary weight-symmetric

fractional operations νi, each with ‖νi‖1 = ‖u‖1. Let ν0 =
u. Assume that νi−1 has been defined for some i ≥ 1. Let

li−1 = min{νi−1(g) | g ∈ supp(νi−1)} be the minimum

weight of an operation in the support of νi−1. The fractional

operation νi is obtained by subtracting from νi−1 an equal

amount of weight from each operation in supp(νi−1) and

adding this weight as superpositions of ω by all possible

choices of operations in νi−1. The amount subtracted from

each operation is 1
2 li−1 so that every operation in supp(νi−1)

is also in supp(νi).
Formally νi is defined as follows:

νi = νi−1 − li−1

2
χi−1 +

li−1

2
ηi−1,

where χi−1 is the (normalised) indicator function of the set

supp(νi−1) and, with K = |supp(νi−1)|k,

ηi−1 =
1
K

∑
g1,...,gk∈supp(νi−1)

ω[g1, . . . , gk].

By definition ‖νi‖1 = ‖νi−1‖1 = ‖u‖1. To verify that

νi is weight-symmetric, it suffices to verify that ηi−1 is

weight-symmetric. Let g by any m-ary operation of the

form g = h[g1, . . . , gk] and let g ∼ g′. Let π ∈ Sm

be such that g(x1, . . . , xm) = g′(xπ(1), . . . , xπ(m)) and

define g′j(x1, . . . , xm) = gj(xπ(1), . . . , xπ(m)) for 1 ≤ j ≤
k. Since νi−1 is weight-symmetric, it follows that gi ∈
supp(νi−1) if and only if g′i ∈ supp(νi−1). Therefore the

terms ω(h)h[g1, . . . , gk] in ηi−1 such that g = h[g1, . . . , gk]
are in bijection with the terms ω(h)h[g′1, . . . , g

′
k] such that

g′ = h[g′1, . . . , g
′
k]. So the fractional operation ηi−1 assigns

the same weight to g and g′.
Let e be an expression for t consisting of superpositions

of projections and operations from supp(ω). We recursively

define the nested depth, d = d(e), of e as follows:

d(p) = 0 for every projection p; and d(h[g1, . . . , gk]) =
1 + max1≤i≤k d(gi).

Let supp(u) = {g1, . . . , gn}. Using supp(ν0) = supp(u)
and the fact that supp(νi) contains all superpositions of

operations in supp(νi−1), it follows that t[g1, . . . , gn] ∈
supp(νd). Now, we add a child v to u for every equivalence

class in the set {g̃ | g ∈ supp(νd)}. For an added child v
with supp(v) = g̃, we let w(v) = νd(g).

Invariant (a) holds as t[g1, . . . , gn] ∈ supp(νd) is symmet-

ric: for all π ∈ Sm there is a π′ ∈ Sn such that

t[g1, . . . , gn](xπ(1), . . . , xπ(m))
= t[gπ′(1), . . . , gπ′(n)](x1, . . . , xm)
= t[g1, . . . , gn](x1, . . . , xm).

Invariants (b) and (c) hold by construction. We now claim

that for each i ≥ 1, we have
∑

g νi(g)fA(g(ā1, . . . , ām)) ≤∑
g νi−1(g)fA(g(ā1, . . . , ām)), for all f ∈ τ and

ā1, . . . ām ∈ Dar(f). From this it follows that invariant (d)

also holds after expanding u.

To see why the claim holds, compare the last two terms

in the definition of νi using inequality (2):

∑
g

χi−1(g)fA(g(ā1, . . . , ām))

=
1
K

∑
g1,...,gk∈supp(νi−1)

1
k

k∑
i=1

fA(gi(ā1, . . . , ām))

≥
∑

h

ηi−1(h)fA(h(ā1, . . . , ām)).

Pruning

The pruning step maintains an additional invariant,

namely that every leaf that is not final is covered. Pruning

is accomplished as follows. Pick a minimal covering node

v. Let ν = νv + ν⊥ be the fractional operation induced by

the leaves in the subtree rooted at v, where νv is the part

of ν with the same support as v and ν⊥ is the part of ν
with support disjoint from v. Inductively, by invariant (d),

we have

∑
g

v(g)fA(g(ā1, . . . , ām))

≥
∑

g

(νv(g) + ν⊥(g))fA(g(ā1, . . . , ām)),

for all f ∈ τ and ā1, . . . ām ∈ Dar(f). Since v and νv

are weight-symmetric with identical support, it follows that

v − νv is also weight-symmetric, hence v − νv ≡ κ · v
for κ = ‖v − νv‖1/‖v‖1. By invariant (a) the node v is

guaranteed to have at least one final child (leaf). Hence, by

invariant (b), ν⊥ is not identically 0. By induction on (c), it

follows that ‖v‖1 > ‖νv‖1, so κ > 0. We therefore have

∑
g

v(g)fA(g(ā1, . . . , ām)) ≥
∑

g

1
κ

ν⊥(g)fA(g(ā1, . . . , ām)).
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Remove all nodes below v and add a new child u to v for

every equivalence class in the set {g̃ | g ∈ supp(ν⊥)}. For

an added child u with supp(u) = g̃, we let w(u) = 1
κν⊥(g).

Invariant (a) holds since any symmetric operation in the

support of ν must lie in the support of ν⊥. Clearly w(u) > 0
for each new node u, so invariant (b) holds. Furthermore,

∑
u is a child of v

‖u‖1 =
1
κ
‖ν⊥‖1 =

1
κ
‖ν − νv‖1 = ‖v‖1,

so invariant (c) holds. Invariant (d) holds by construction.
Only nodes in the subtree rooted at v have been removed

and every child added to v has the same support as a previous

leaf of this subtree. Every such leaf u that was not final was

covered by a node above v in the tree. Hence, all leaves in

the tree that are not final are still covered.

IV. GENERAL-VALUED STRUCTURES

The valued structures we have dealt with so far were in

fact finite-valued; i.e., for each function symbol f ∈ τ , the

range of fA was Q≥0. We now discuss how our result can

be extended to the general-valued case, in which for each

function symbol f ∈ τ , the range of fA is Q≥0 = Q≥0 ∪
{∞}. (We define c +∞ = ∞ + c = ∞ for all c ∈ Q≥0,

and 0∞ = ∞0 = 0.)
Inspired by the OSAC algorithm [14], the algorithm for

general-valued structures, denoted by BLPg , works in two

stages. Firstly, the instance is made arc consistent using

a standard arc consistency algorithm [24] (more details

below).7 Secondly, BLP (i.e., linear program (3) from Sec-

tion II-D) is solved.
Definition 3: Let A be a general-valued τ -structure, and

let D = D(A). An m-ary operation g : Dm → D
is a polymorphism of A if for every function symbol

f ∈ τ and tuples ā1, . . . , ām ∈ Dar(f), it holds that

Feas(fA(g(ā1, . . . , ām))) ≤ ∑m
i=1 Feas(fA(āi)), where

Feas(∞) =∞ and Feas(c) = 0 for any c ∈ Q≥0.
From Definition 3, if ω is a fractional polymorphism of

a general-valued structure A, then every g ∈ supp(ω) is a

polymorphism of A. In fact, any operation g that is generated

by supp(ω) is a polymorphism of A. (For finite-valued

structures, trivially, every operation g is a polymorphism.)
Arc consistency (also known as (1, k)-consistency) [24]

is a decision procedure for precisely those {0,∞}-valued

structures A that are closed under a set function g : 2D(A) \
{∅} → D(A) [20], [22]. This condition has recently been

shown to be equivalent to the requirement that A should

have symmetric polymorphisms of all arities [40].
The idea behind arc consistency is to prune the domains

of the variables so that domain values without any support

are removed. In particular, using the same notation as in

Section II-D, we initialise u(x) = D for every x ∈ X .8 The

7The algorithm from [24] is sometimes called the generalised arc
consistency algorithm to emphasise the fact that it works for CSPs of
arbitrary arities, not only for binary CSPs [42].

8Note that u(x) is the effective domain of variable x.

arc consistency algorithm consists in repeating the following

step until convergence: if there is x ∈ X and a ∈ u(x) and

f ∈ τ and x̄ ∈ Xar(f) with x ∈ {x̄} such that there is no

h(x̄) with h(x) = a satisfying fI(x̄)fA(h(x̄)) < ∞ and

h(xi) ∈ u(xi) for xi ∈ {x̄}, then remove a from u(x).
After the arc consistency step, BLPg is identical to BLP,

but only remaining domain values are used for respective

variables. In particular, variables ux(a) are defined only for

a ∈ u(x), variables λf,x̄,σ are defined only for σ satisfying

σ(xi) ∈ u(xi) for every xi ∈ {x̄}, and similarly for the

sums in (3) ranging over σ and a.

Our main theorem (Theorem 3.1) also holds for general-

valued structures:

Theorem 4.1: Let A be a general-valued structure over a

finite signature. TFAE:

(i) BLPg solves VCSP(A).
(ii) For every m > 1, Pm(A) →f A.

(iii) For every m > 1, A has an m-ary symmetric fractional

polymorphism.

(iv) For every n > 1, A has a fractional polymorphism

ωn such that supp(ωn) generates an n-ary symmetric

operation.

Proof: Note that (ii) implies that A has symmetric

polymorphisms of all arities. This follows from Lemma 2.2,

which holds for general-valued structures, and the above-

mentioned fact that any g ∈ supp(ω), where ω is a fractional

polymorphism of A, is a polymorphism of A. The same

argument guarantees symmetric polymorphisms of all arities

in (iii) and (iv); in (iv), we use that fact than any operation

generated by supp(ωn) is a polymorphism of A.

Theorem 3.2 proves (ii) ⇒ (i) since the assumption of

having symmetric polymorphisms of all arities guarantees

a feasible solution to (3). From the discussion above on

arc consistency, if BLPg solves VCSP(A), then A has

symmetric polymorphisms of all arities since arc consistency

decides the existence of a finite-valued solution. Further-

more, the proof of Theorem 3.4 shows that having symmetric

polymorphisms of all arities but not having a fractional

homomorphism Pm(A) →f A implies that BLPg does not

solve VCSP(A). This gives (i) ⇒ (ii). (ii) ⇔ (iii) and

(iii) ⇔ (iv) are proved the same way as in Theorem 3.1,

by Lemma 2.2 and Theorem 3.5, respectively.

Remark 1: BLPg for general-valued structures uses the

arc consistency algorithm [24] and BLP. Since Kun et

al. [40] have shown that BLP solves CSPs (i.e., {0,∞}-
valued VCSPs), if represented by {0, 1}-valued structures,

of width 1 – thus providing an alternative to the standard

arc consistency algorithm [24] – a different approach is to

combine Theorem 3.1 from this paper with [40] and solve

general-valued structures using only BLP with an amended

objective function which takes care of infinite costs using a

large (but polynomial), instance-dependent constant.
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V. TRACTABLE VALUED CONSTRAINT LANGUAGES

As before, we denote D = D(A). A special case of

fractional polymorphisms are multimorphisms [12]. A binary

multimorphism 〈g1, g2〉 of a valued structure A is a binary

fractional polymorphism ω of A such that ω(g1) = ω(g2) =
1/2, where g1, g2 : D2 → D. For a binary multimor-

phism 〈g1, g2〉, the fractional polymorphism inequality (1)

simplifies to, for every function symbol f ∈ τ and tuples

ā1, ā2 ∈ Dar(f),

fA(g1(ā1, ā2)) + fA(g2(ā1, ā2)) ≤ fA(ā1) + fA(ā2).

A semi-lattice operation is an associative, commutative,

and idempotent operation. Since any semi-lattice operation

generates symmetric operations of all arities, we get:

Corollary 5.1 (of Theorem 4.1): Let A be a valued struc-

ture with a binary multimorphism 〈g1, g2〉 where either g1

or g2 is a semi-lattice operation. Then A is tractable.

We now give examples of valued structures (i.e., valued

constraint languages) defined by such binary multimor-

phisms.

Example 1: Let (D;∧,∨) be an arbitrary lattice on D.

Assume that a valued structure A has the multimorphism

〈∧,∨〉. Then VCSP(A) is tractable. The tractability of A
was previously known only for distributive lattices [29], [49]

and diamonds [39], see also [38].

Example 2: A pair of operations 〈g1, g2〉 is called a

symmetric tournament pair (STP) if both g1 and g2 are

commutative, conservative (g1(x, y) ∈ {x, y} and g2(x, y) ∈
{x, y} for all x, y ∈ D), and g1(x, y) �= g2(x, y) for all

x, y ∈ D. Let A be a finite-valued structure with an STP

multimorphism 〈g1, g2〉. It is known that if a finite-valued

structure admits an STP multimorphism, it also admits

a submodularity multimorphism. This result is implicitly

contained in [11].9 Therefore, BLP solves any instance from

VCSP(A).
Example 3: Assume that a valued structure A is bisub-

modular [25]. This means that D = {0, 1, 2} and A has a

multimorphism 〈min0, max0〉 [12], where min0(x, x) = x
for all x ∈ D and min0(x, y) = 0 for all x, y ∈ D,x �= y;

max0(x, y) = 0 if 0 �= x �= y �= 0 and max0(x, y) =
max(x, y) otherwise, where max returns the larger of its

two arguments with respect to the normal order of integers.

Since min0 is a semi-lattice operation, A is tractable. The

tractability of (finite-valued) A was previously known only

using a general algorithm for bisubmodular functions given

by an oracle [25], [44].

Example 4: Assume that a valued structure A is weakly
tree-submodular on an arbitrary tree [36]. The meet (which

9The STP might contain cycles, but [11, Lemma 7.15] tells us that on
cycles we have, in the finite-valued case, only unary functions. Since an
acyclic tournament is equivalent to a total order on the domain and unary
functions are submodular for all possible domain orderings, it follows that
the functions admitting the STP must be submodular with respect to some
total order.

is defined as the highest common ancestor) is again a

semi-lattice operation. The same holds for strongly tree-
submodular structures since strong tree-submodularity im-

plies weak tree-submodularity [36]. The tractability of

weakly tree-submodular valued structures was previously

known only for chains and forks [36]. The tractability of

strongly tree-submodular valued structures was previously

known only for binary trees [36].

Example 5: Note that the previous example applies to

all trees, not just binary ones. In particular, it applies to

the tree consisting of one root with k children. This is

equivalent to structures with D = {0, 1, . . . , k} and the

multimorphism 〈min0, max0〉 from Example 3. This is a nat-

ural generalisation of submodular (k = 1) and bisubmodular

(k = 2) functions, known as k-submodular functions [27].

The tractability of k-submodular valued structures for k > 2
was previously open.

Example 6: Let b and c be two distinct elements of D
and let (D; <) be a partial order which relates all pairs

of elements except for b and c. A pair 〈g1, g2〉, where

g1, g2 : D2 → D are two binary operations, is a 1-defect
multimorphism if g1 and g2 are both commutative and satisfy

the following conditions:

• If {x, y} �= {b, c}, then g1(x, y) = x∧y and g2(x, y) =
x ∨ y.

• If {x, y} = {b, c}, then {g1(x, y), g2(x, y)} ∩ {x, y} =
∅, and g1(x, y) < g2(x, y).

The tractability of valued structures that have a 1-defect

multimorphism has recently been shown in [33]. We now

show that valued structures with a 1-defect multimorphism

are solvable by BLPg .

Without loss of generality, we assume that g1(b, c) < b, c
and write g = g1. (Otherwise, g2(b, c) > b, c, and g2 is used

instead.) Using g, we construct a symmetric m-ary operation

f(x1, . . . , xm).
Let f1, . . . , fM be the M =

(
m
2

)
terms g(xi, xj). Let f =

g(f1, g(f2, . . . , g(fM−1, fM ) . . . )). There are three possible

cases:

• {b, c} �⊆ x1, ..., xm. Then g acts as ∧, which is a semi-

lattice operation, hence so does f .

• {b, c} ⊆ {x1, ..., xm} and g(b, c) ≤ x1, . . . , xm. Then

fi = g(b, c) for some 1 ≤ i ≤ M , and g(fi, fj) =
g(b, c) for all 1 ≤ j ≤ M , so f(x1, . . . , xm) = g(b, c).

• {b, c} ⊆ {x1, . . . , xm} and there is a variable xp for

some 1 ≤ p ≤ m such that xp ≤ g(b, c) and xp ≤
x1, . . . , xm. Then g(xp, xq) = xp for all 1 ≤ q ≤ m
so fi = xp for some 1 ≤ i ≤ M and g(fi, fj) = xp

for all 1 ≤ j ≤ M , so f(x1, . . . , xm) = xp.

VI. CONCLUSIONS

We have characterised precisely for which valued struc-

tures the basic linear programming relaxation (BLP) is

a decision procedure. This implies tractability of several
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previously open classes of VCSPs including several gen-

eralisations of submodularity. In fact, BLP solves all known
tractable finite-valued structures.

The main result does not give a decidability criterion for

testing whether a valued structure is solvable by BLP; the

so-called meta problem. This is left as future work.

An intriguing open question is whether our tractability

results hold in the oracle-value model; that is, for objective

functions which are not given explicitly as a sum of func-

tions, but only by an oracle. For instance, the maximisation
problem for submodular functions on distributive lattices,

known to be NP-complete, allows for good approximation

algorithms in both models [23].

ACKNOWLEDGMENTS

We thank Andrei Krokhin for many valuable comments

on an earlier draft of this manuscript, Prasad Raghavendra

for explaining his results, and Páidı́ Creed for helpful discus-
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