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Abstract—We present an optimal, combinatorial 1-1/e ap-
proximation algorithm for monotone submodular optimization
over a matroid constraint. Compared to the continuous greedy
algorithm (Calinescu, Chekuri, Pal and Vondrak, 2008), our
algorithm is extremely simple and requires no rounding. It
consists of the greedy algorithm followed by local search. Both
phases are run not on the actual objective function, but on a
related non-oblivious potential function, which is also monotone
submodular.

In our previous work on maximum coverage (Filmus and
Ward, 2011), the potential function gives more weight to
elements covered multiple times. We generalize this approach
from coverage functions to arbitrary monotone submodular
functions. When the objective function is a coverage function,
both definitions of the potential function coincide. The param-
eters used to define the potential function are closely related
to Pade approximants of exp(x) evaluated at x = 1. We use
this connection to determine the approximation ratio of the
algorithm.

Keywords-approximation algorithms; submodular functions;
matroids; local search

I. INTRODUCTION

We consider the problem of maximizing a monotone sub-
modular function 𝑓 , subject to a single matroid constraint.
Formally, let 𝒰 be a set of elements and let 𝑓 : 2𝒰 → ℝ≥0

be a function assigning a value to each subset of 𝒰 . We say
that 𝑓 is submodular if

𝑓(𝐴) + 𝑓(𝐵) ≥ 𝑓(𝐴 ∪𝐵) + 𝑓(𝐴 ∩𝐵)
for all 𝐴,𝐵 ⊆ 𝒰 . If additionally, 𝑓(𝐴) ≤ 𝑓(𝐵) whenever
𝐴 ⊆ 𝐵, we say that 𝑓 is monotone submodular. Submodular
functions exhibit (and are, in fact, alternately characterized
by) the property of diminishing returns—if 𝑓 is submodular
then 𝑓(𝐴+𝑥)−𝑓(𝐴) ≤ 𝑓(𝐵+𝑥)−𝑓(𝐵) whenever 𝐵 ⊆ 𝐴
and 𝑥 ∕∈ 𝐴.1 Hence, they are useful for modeling various
economic and game-theoretic scenarios, as well as various
combinatorial problems. In a general monotone submodular
maximization problem, we are given a value oracle for 𝑓

1For an element 𝑥 and a set 𝐴, we use the shorthand 𝐴+ 𝑥 for the set
𝐴 ∪ {𝑥} and 𝐴− 𝑥 for the set 𝐴 ∖ {𝑥}.

and a membership oracle for some distinguished collection
ℐ ⊆ 2𝒰 of feasible sets, and our goal is to find a member
of ℐ that maximizes the value of 𝑓 .

We consider the restricted setting of monotone submodu-
lar matroid maximization, in which ℐ is a matroid. Matroids
are intimately connected to combinatorial optimization: the
problem of optimizing a linear function over a hereditary set
system (a set system closed under taking subsets) is solved
optimally for all possible functions by the standard greedy
algorithm if and only if the set system is a matroid [9], [27].

In the case of a monotone submodular objective function,
the standard greedy algorithm, which chooses at each step
the element yielding the largest increase in 𝑓 while main-
taining independence, is (only) a 1/2-approximation [17].
Recently, Calinescu et al. [6], [7], [29] have developed a
(1−1/𝑒)-approximation for this problem via the continuous
greedy algorithm, which is essentially a steepest descent
algorithm running in continuous time (in practice, a suitably
discretized version is used), producing a fractional solution.
This solution is rounded using pipage rounding [1] or swap
rounding [8].

Feige [10] shows that improving the bound (1 − 1/𝑒)
is NP-hard. Nemhauser and Wolsey [24] show that any
improvement over (1−1/𝑒) requires an exponential number
of queries in the value oracle setting. Vondrák [30] further
shows that even when the submodular function 𝑓 has re-
stricted curvature, the approximation ratio attained by the
continuous greedy algorithm is the best possible.

A. Our contribution

In this paper, we propose a conceptually simple ran-
domized polynomial time local search algorithm for the
problem of monotone submodular matroid maximization.
Like the continuous greedy algorithm, our algorithm deliv-
ers the optimal (1 − 1/𝑒)-approximation. However, unlike
the continuous greedy algorithm, our algorithm is entirely
combinatorial, in the sense that it deals only with integral
solutions and hence involves no rounding procedure. As
such, we believe that the algorithm may serve as a gateway

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.55

659



to further improved algorithms in contexts where pipage
rounding and swap rounding break down, such as submod-
ular maximization subject to multiple matroid constraints.

Our main results are a combinatorial 1− 1/𝑒− 𝜖 approx-
imation algorithm running in randomized time �̃�(𝜖−3𝑛4𝑢),
and a combinatorial 1 − 1/𝑒 approximation algorithm run-
ning in randomized time �̃�(𝑛7𝑢2), where 𝑛 is the rank of
the given matroid and 𝑢 is the size of its ground set. In
the full version of the paper, we estimate the runtime of the
continuous greedy algorithm, which turns out to be a factor
of �̃�(𝑛) faster than our algorithm.

Our approach is based on non-oblivious local search, a
technique first proposed by Alimonti [2] and by Khanna,
Motwani, Sudan and Vazirani [20]. In classical (or, oblivi-
ous) local search, the algorithm starts at an arbitrary solu-
tion, and proceeds by iteratively making small changes that
improve the objective function, until no such improvement
can be made. The locality ratio of a local search algorithm
is min 𝑓(𝑆)/𝑓(𝑂), where 𝑆 is a solution that is locally-
optimal with respect to the small changes considered by the
algorithm, 𝑂 is a global optimum, and 𝑓 is the objective
function. The locality ratio provides a natural, worst-case
guarantee on the approximation performance of the local
search algorithm.

In many cases, oblivious local search may have a very
poor locality ratio, implying that a locally-optimal solution
may be of significantly lower quality than the global opti-
mum. For example, for submodular matroid maximization,
the locality ratio of an algorithm changing a single element
at each step is 1/2 [17]. Non-oblivious local search attempts
to avoid this problem by making use of a secondary potential
function to guide the search. By carefully choosing this
auxiliary function, we ensure that poor local optima with
respect to the original objective function are no longer local
optima.

In previous work [15], we designed an optimal non-
oblivious local search algorithm for maximum coverage over
a matroid. The non-oblivious potential function used in [15]
gives more weight to elements appearing multiple times.
In the present work, we extend this approach to general
monotone submodular functions. This presents two chal-
lenges: defining a non-oblivious potential function without
reference to elements, and analyzing the resulting algorithm.
In order to define the potential function in general, we
use a definition of the potential function from [15] which
doesn’t refer to elements. Instead, the potential function
aggregates the information by applying the objective func-
tion to all subsets of the input, weighted according to their
size. Intuitively, the resulting potential function gives extra
weight to solutions that contain a large number of good sub-
solutions, or alternatively, remain good solutions on average
even when elements are randomly removed. An appropriate
setting of the weights yields a function which coincides with
the previous definition for coverage functions, but still makes

sense for arbitrary monotone submodular functions.
The analysis of the algorithm in [15] is relatively straight-

forward. For each type of element in the universe of the
coverage problem, we must prove a certain inequality among
the coefficients defining the potential function. In the general
setting, however, we need to construct a proof using only the
inequalities given by monotonicity and submodularity. The
resulting proof is non-obvious and delicate. For the proof
to work, a certain sequence defined by a recurrence relation
needs to be non-decreasing. The locality ratio can then be
read off the sequence. We describe a way to construct the
sequence using the recurrence relation so that it is non-
decreasing. In order to show that the resulting performance
ratio is at least 1− 1/𝑒, we use an explicit formula for the
sequence in terms of Padé approximants of 𝑒𝑥.

B. Related work

Fisher, Nemhauser and Wolsey [17], [25] analyze greedy
and local search algorithms for submodular maximization
subject to various constraints, including single and multiple
matroid constraints, obtaining some of the earliest results in
the area including a 1/(𝑘+1)-approximation for monotone
submodular maximization subject to 𝑘 matroid constraints.
A recent survey by Goundan and Schulz [19] reviews many
results pertaining to the greedy algorithm for submodular
maximization.

More recently, Lee, Sviridenko and Vondrák [23] consider
the problem of both monotone and non-monotone submod-
ular maximization subject to multiple matroid constraints,
attaining a 1/(𝑘 + 𝜖)-approximation for monotone submod-
ular maximization subject to 𝑘 ≥ 2 constraints using local
search. Feldman et al. [14] show that a local search algorithm
attains the same bound for the related class of 𝑘-exchange
systems, which includes the intersection of 𝑘 strongly base
orderable matroids, as well as the independent set problem in
(𝑘+1)-claw free graphs. Further work by Ward [31] shows
that a non-oblivious local search routine attains an improved
2/(𝑘 + 3)− 𝜖 approximation for this class of problems.

In the case of unconstrained non-monotone maximization,
Feige, Mirrokni and Vondrák [11] give a 2/5 approximation
via a randomized local search algorithm, and give an upper
bound of 1/2 in the value oracle model. Gharan and Vondrák
[18] improved the algorithmic result to 0.41 by enhanc-
ing the local search algorithm with ideas borrowed from
simulated annealing. Feldman, Naor and Schwarz [13] later
improved this to 0.42 by using a variant of the continuous
greedy algorithm. Buchbinder, Feldman, Naor and Schwarz
have recently obtained an optimal 1/2 algorithm [5].

In the setting of constrained non-monotone submodular
maximization, Lee et al. [22] give a 1/(𝑘 + 2 + 1/𝑘 +
𝜖) approximation subject to 𝑘 matroid constraints and a
1/(5− 𝜖) approximation for 𝑘 knapsack constraints. Further
work by Lee, Sviridenko and Vondrák [23] improves the
approximation ratio in the case of 𝑘 matroid constraints to
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1/(𝑘+1+1/(𝑘−1)+𝜖). Feldman et al. [14] attain this ratio
for non-monotone maximization in 𝑘-exchange systems. In
the case of a single matroid constraint, Feldman, Naor and
Schwarz [12] obtain a 1/𝑒 approximation by using a version
of the continuous greedy algorithm. They additionally unify
various applications of the continuous greedy and obtain im-
proved approximations for non-monotone submodular max-
imization subject to a matroid constraint or 𝑂(1) knapsack
constraints.

C. Follow-up work

A set function 𝑓 has curvature 𝑐 if for all 𝐴 and 𝑥 /∈ 𝐴,

𝑓(𝐴+ 𝑥) ≥ 𝑓(𝐴) + (1− 𝑐)𝑓({𝑥}).
The parameter 𝑐 ranges in [0, 1]. If a function has curvature
𝑐 then it also has curvature 𝑐′ for any 𝑐′ ≥ 𝑐. Any monotone
function has curvature 1, and if a normalized function has
curvature 0 then it is linear.

Vondrák [30] showed that the continuous greedy algo-
rithm achieves an approximation ratio of (1 − 𝑒−𝑐)/𝑐, and
proved that this is optimal for the value oracle model. In [16]
we generalize our framework to general curvature, achieving
the same approximation ratio. In contrast to Vondrák’s
algorithm, ours requires knowledge of 𝑐.

II. THE ALGORITHM

Our non-oblivious local search algorithm is Algorithm 1.
The input to the algorithm is a matroid ℳ, a monotone sub-
modular function 𝑓 , an error parameter 𝜖0, and a sampling
parameter 𝑁 . The matroid ℳ is given as a universe 𝒰 and
a collection of independent sets ℐ ⊆ 2𝒰 , itself given as an
independence oracle (an oracle deciding whether 𝑆 ∈ ℐ for
an arbitrary subset 𝑆 ⊆ 𝒰 ). Throughout the paper, we let 𝑛
denote the rank of ℳ and 𝑢 = ∣𝒰∣.

Theorem V.5 will show how to choose 𝜖0 and 𝑁 in order
to obtain (with high probability) an approximation ratio as
close to 1− 1/𝑒 as desired. Theorem V.6 shows how to use
the algorithm as a black-box in order to remove the small
extra factor 𝜖 from the approximation ratio to yield a clean
(1− 1/𝑒)-approximation algorithm.

The algorithm makes repeated calls to the function 𝑔,
defined in Lemma V.2. The function 𝑔 is an approximation
to the function 𝑔, which is defined in Section III using a
sequence of coefficients 𝛽(𝑚)

𝑘 . These, in turn, are defined
by coefficients 𝛾(𝑚)

𝑘 , whose construction is detailed in
Section III. The function 𝑔 is calculated by taking 𝑁 inde-
pendent samples from a particular random process defined
in Lemma V.2 and so depends implicitly on the parameter
𝑁 .

The purpose of the greedy phase is to produce a set
𝑆init with non-negligible 𝑔(𝑆init). This will allow us to
bound the number of iterations in the main loop. Instead
of running the greedy phase with the function 𝑔, we could
also run it with 𝑓 , obtaining marginally inferior results. An

Input: ℳ = (𝒰 , ℐ), 𝑓, 𝜖0, 𝑁
Let 𝑆init be the result of running the standard greedy
algorithm on (ℳ, 𝑔);
𝑆 ← 𝑆init;
repeat

foreach element 𝑎 ∈ 𝑆 and 𝑏 ∈ 𝒰 ∖ 𝑆 do
𝑆′ ← 𝑆 − 𝑎+ 𝑏;
if 𝑆′ ∈ ℐ and 𝑔(𝑆′) > (1 + 𝜖0)𝑔(𝑆) then
𝑆 ← 𝑆′;
break;

until No exchange is made;
return 𝑆;

Algorithm 1: The non-oblivious local search algorithm

even simpler approach is to “guess” a set 𝑆1 such that
𝑔({𝑆1}) ≥ max 𝑔(𝑆)/𝑛, at a multiplicative 𝑂(𝑛 log 𝑛) cost
in the runtime.

The rest of the paper is organized as follows. Section III
defines the function 𝑔 and gives several of its properties that
will be used in the following proofs. Section IV determines
the locality ratio of the algorithm under the assumption
that 𝑔 is computed exactly (i.e. that 𝑔 = 𝑔). Section
V shows how this assumption can be removed by using
a polynomial-time sampling procedure to estimate 𝑔 and
gives a complete analysis of the runtime and approximation
ratio of Algorithm 1 when this procedure is used. Finally,
section VI discusses future work.

In the following sections, we shall repeatedly make use
of the following general property of submodular functions,
given in [23].

Lemma II.1 (Lemma 1.1 in [23]). Let 𝑓 be a submodular
function on 𝒰 . Let 𝐶, 𝑆 ⊆ 𝒰 , and {𝑇𝑖}𝑙𝑖=1 be a collection
of subsets of 𝐶 ∖𝑆 such that each element of 𝐶 ∖𝑆 appears
in exactly 𝑘 of the subsets 𝑇𝑖. Then,

𝑙∑
𝑖=1

[𝑓(𝑆 ∪ 𝑇𝑖)− 𝑓(𝑆)] ≥ 𝑘 [𝑓(𝑆 ∪ 𝐶)− 𝑓(𝑆)] .

III. THE NON-OBLIVIOUS POTENTIAL FUNCTION

We now define our non-oblivious potential function 𝑔.
Borrowing intuition from the coverage case [15], we seek
a function that gives extra weight to solutions that will
have more flexibility in future iterations of the local search
procedure. One way to do this is to incorporate the value of
all subsets of a solution 𝑆 into the value of 𝑔(𝑆). Then, we
can give some extra value to solutions that contain a large
number of good sub-solutions.

With this in mind, we define 𝑔(𝑆) to be a weighted
combination of the values 𝑓(𝑇 ) for all 𝑇 ⊆ 𝑆. The extra
weight that a subset 𝑇 contributes will depend on both the
size of 𝑇 and the size of the solution 𝑆 on which we are
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evaluating 𝑔. Our function 𝑔 has the general form

𝑔(𝑆) =

∣𝑆∣∑
𝑘=1

∑
𝑇∈(𝑆𝑘)

𝛽
(∣𝑆∣)
𝑘(∣𝑆∣
𝑘

) 𝑓(𝑇 ) =
∣𝑆∣∑
𝑘=1

𝛽
(∣𝑆∣)
𝑘 𝔼

𝑇∈(𝑆𝑘)
𝑓(𝑇 ).

(1)

Here, 𝛽
(∣𝑆∣)
𝑘

(∣𝑆∣𝑘 )
is the weight given to the value 𝑓(𝑇 ) for

any subset 𝑇 of size 𝑘. Alternatively, we can think of 𝑔 as
computing the expected value of 𝑓 on a uniformly random
subset of 𝑆 of size 𝑘, for each 0 ≤ 𝑘 ≤ ∣𝑆∣, and then
weighting the expectations by 𝛽(∣𝑆∣)𝑘 , for 0 ≤ 𝑘 ≤ ∣𝑆∣. Note
that the coefficients 𝛽 depend on the size of ∣𝑆∣; that is, we
have a separate sequence of coefficients 𝛽(𝑚)

0 , . . . , 𝛽
(𝑚)
𝑚 for

each value of 𝑚 (where 𝑚 corresponds here to the size of
the set 𝑆 on which 𝑔 is being evaluated).

In order to complete the definition of our non-oblivious
local search algorithm, we must “only” specify appropriate
values for these coefficients. We now turn to this task.

In later proofs, it will be more convenient to work with
expressions of the form 𝛾

(𝑚)
ℓ = ℓ𝛽

(𝑚)
ℓ . Furthermore, our

analysis will make use of the additional coefficients 𝛾(𝑚)
0

and 𝛾(𝑚)
𝑚+1 for each value of 𝑚 ≥ 0, although they are not

used by the function 𝑔. We now define the coefficients.
The values for 𝛾(𝑚)

ℓ are given by the initial conditions

𝛾
(𝑚)
0 = 1, 𝛾

(𝑚)
𝑚+1 = 𝑒 (𝛾-BASE)

for all 𝑚 ≥ 0, and the upward recurrence

𝛾
(𝑚)
ℓ = 𝑚

(
𝛾
(𝑚−1)
ℓ − 𝛾(𝑚−1)

ℓ−1

)
(𝛾-UP)

for 𝑚 ≥ 1, and 1 ≤ ℓ ≤ 𝑚.
In the remainder of this section, we focus on proving

several properties of the resulting coefficient sequences.
These properties will be used in our analysis of Algorithm
1. In Lemmas III.1 and III.2, we derive a recurrence and a
closed formula for each sequence 𝛾(𝑚) = 𝛾

(𝑚)
0 , . . . , 𝛾

(𝑚)
𝑚+1.

In Lemma III.3, we show that each sequence 𝛾(𝑚) is non-
decreasing. Finally, in Lemma III.4 we derive an upper
bound for the sum of each sequence 𝛾(𝑚).

Lemma III.1. For each 𝑚 ≥ 1, the sequence 𝛾(𝑚) satisfies
the recurrence:

ℓ𝛾
(𝑚)
ℓ+1 = (2ℓ−𝑚)𝛾

(𝑚)
ℓ + (𝑚− ℓ+ 1)𝛾

(𝑚)
ℓ−1 (𝛾-REC)

for 1 ≤ ℓ ≤ 𝑚.

Proof: We proceed by induction on 𝑚. In the case that
𝑚 = 1, we must only show that (𝛾-REC) is valid for ℓ = 1.
In this case, (𝛾-REC) becomes

𝛾
(1)
2 = 𝛾

(1)
1 + 𝛾

(𝑚)
0 .

This equation follows directly from (𝛾-BASE) and (𝛾-UP),
which give 𝛾(1)0 = 1, 𝛾(1)2 = 𝑒, and 𝛾(1)1 = (𝑒− 1).

In the general case that 𝑚 > 1 we consider 3 subcases
based on the value of ℓ. When ℓ = 1, we have ℓ𝛾(𝑚)

ℓ+1 = 𝛾
(𝑚)
2 ,

which is equal to

𝑚(𝛾
(𝑚−1)
2 − 𝛾(𝑚−1)

1 ) by 𝛾-UP

= 𝑚
[
(2−𝑚+ 1)𝛾

(𝑚−1)
1

+ (𝑚− 1)𝛾
(𝑚−1)
0 − 𝛾(𝑚−1)

1

] ind. hyp.

= 𝑚
[
(1−𝑚+ 1)𝛾

(𝑚−1)
1

− (1−𝑚+ 1)𝛾
(𝑚−1)
0 + 𝛾

(𝑚−1)
0

] algebra

= (1−𝑚+ 1)𝛾
(𝑚)
1 +𝑚𝛾

(𝑚)
0 by 𝛾-UP and 𝛾-BASE

= (2ℓ−𝑚)𝛾
(𝑚)
ℓ + (𝑚− ℓ+ 1)𝛾

(𝑚)
0 since ℓ = 1.

When ℓ = 𝑚, we have ℓ𝛾(𝑚)
ℓ+1 = 𝑚𝛾

(𝑚)
𝑚+1, which is equal to

𝑚𝛾(𝑚−1)
𝑚 by 𝛾-BASE

= 𝑚
[
𝑚𝛾(𝑚−1)

𝑚 − (𝑚− 1)𝛾(𝑚−1)
𝑚

]
algebra

= 𝑚
[
𝑚𝛾(𝑚−1)

𝑚 − (𝑚− 1)𝛾
(𝑚−1)
𝑚−1 − 𝛾(𝑚−1)

𝑚−2

]
ind. hyp.

= 𝑚
[
𝑚(𝛾(𝑚−1)

𝑚 − 𝛾(𝑚−1)
𝑚−1 ) + 𝛾

(𝑚−1)
𝑚−1 − 𝛾(𝑚−1)

𝑚−2

]
algebra

= 𝑚𝛾(𝑚)
𝑚 + 𝛾

(𝑚)
𝑚−1 by 𝛾-UP

= (2ℓ−𝑚)𝛾
(𝑚)
𝑚−1 + (𝑚− ℓ+ 1)𝛾

(𝑚)
𝑚−1 since ℓ = 𝑚.

Finally, when 2 ≤ ℓ ≤ 𝑚− 1, we have ℓ𝛾(𝑚)
ℓ+2 equal to

𝑚(ℓ𝛾
(𝑚−1)
ℓ+1 − ℓ𝛾(𝑚−1)

ℓ ) by 𝛾-UP

= 𝑚
[
(2ℓ−𝑚+ 1)𝛾

(𝑚−1)
ℓ

+ (𝑚− ℓ)𝛾(𝑚−1)
ℓ−1 − ℓ𝛾(𝑚−1)

ℓ

] ind. hyp.

= 𝑚
[
(2ℓ−𝑚)𝛾

(𝑚−1)
ℓ

+ (𝑚− ℓ)𝛾(𝑚−1)
ℓ−1 − (ℓ− 1)𝛾

(𝑚−1)
ℓ

] algebra

= 𝑚
[
(2ℓ−𝑚)𝛾

(𝑚−1)
ℓ + (𝑚− ℓ)𝛾(𝑚−1)

ℓ−1

− (2ℓ−𝑚− 1)𝛾
(𝑚−1)
ℓ−1 − (𝑚− ℓ+ 1)𝛾

(𝑚−1)
ℓ−2

]ind. hyp.

= 𝑚
[
(2ℓ−𝑚)𝛾

(𝑚−1)
ℓ + (𝑚− ℓ+ 1)𝛾

(𝑚−1)
ℓ−1

− (2ℓ−𝑚)𝛾
(𝑚−1)
ℓ−1 − (𝑚− ℓ+ 1)𝛾

(𝑚−1)
ℓ−2

] algebra

= (2ℓ−𝑚)𝛾
(𝑚)
ℓ + (𝑚− ℓ+ 1)𝛾

(𝑚)
ℓ−1. by 𝛾-UP

Additionally, it can be shown that the coefficients are
given by the following closed formula.

Lemma III.2. For all 𝑚 ≥ 1, and 1 ≤ ℓ ≤ 𝑚 we have

𝛾
(𝑚)
ℓ = (−1)ℓ

𝑚−1∑
𝑘=0

𝑚!

𝑘!

[
(−1)𝑘(𝑚−1−𝑘

ℓ−1−𝑘

)
𝑒− (

𝑚−1−𝑘
ℓ−1

)]
.
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Proof: By induction on 𝑚, using (𝛾-BASE) and (𝛾-UP).

Now, we show that the coefficient sequence 𝛾(𝑚) =

𝛾
(𝑚)
0 , . . . , 𝛾

(𝑚)
𝑚+1 is non-decreasing for each value of 𝑚. Our

proof makes use of a surprising relationship between the
coefficients 𝛾 and the Padé approximants to the exponential
function 𝑒𝑥. A comprehensive overview of the theory of
Padé approximants is given by Baker and Graves-Morris [3].
We shall need only need a few fundamental results from the
area, which we now state.

We are primarily concerned with the Padé approximants
of the function 𝑒𝑥. These were among the first rigorously
studied Padé approximants: a full treatment of the function
𝑒𝑥 appears in Padé’s thesis [26, Part 2, Section 4].2

The [𝜇/𝜈] Padé approximant to the function 𝑒𝑥 is given
by the rational function 𝑅[𝜇/𝜈](𝑥) = 𝑃[𝜇/𝜈](𝑥) /𝑄[𝜇/𝜈](𝑥),
whose numerator and denominator are given by the polyno-
mials:

𝑃[𝜇/𝜈](𝑥) =

𝜇∑
𝑘=0

𝑥𝑘(𝜇+ 𝜈 − 𝑘)!𝜇!
𝑘!(𝜇+ 𝜈)!(𝜇− 𝑘)! ,

𝑄[𝜇/𝜈](𝑥) =

𝜈∑
𝑘=0

(−𝑥)𝑘(𝜇+ 𝜈 − 𝑘)!𝜈!
𝑘!(𝜇+ 𝜈)!(𝜈 − 𝑘)! .

The following formula gives the error in the approximant
𝑅[𝜇/𝜈].

𝑒𝑥𝑄[𝜇/𝜈](𝑥)− 𝑃[𝜇/𝜈](𝑥)

= (−1)𝜈 𝑥
𝜇+𝜈+1

(𝜇+ 𝜈)!

∫ 1

0

𝑒𝑥𝑡𝑡𝜈(1− 𝑡)𝜇 𝑑𝑡. (2)

We can restate the explicit formula from Lemma III.2 in
terms of Padé numerators and denominators to obtain the
following expression for 𝛾(𝑚)

ℓ :

(−1)ℓ−1𝑚!
(
𝑚−1
ℓ−1

) [
𝑒𝑄[𝑚−ℓ/ℓ−1](1)− 𝑃[𝑚−ℓ/ℓ−1](1)

]
.
(3)

Using (3), we can now prove our second main result
regarding the 𝛾 sequences.

Lemma III.3. For any 𝑚 ≥ 1, the sequence 𝛾(𝑚) =

𝛾
(𝑚)
0 , 𝛾

(𝑚)
1 , . . . , 𝛾

(𝑚)
𝑚+1 is non-decreasing.

Proof: Consider 𝛾(𝑚)
ℓ and 𝛾(𝑚)

ℓ−1 for some 𝑚 ≥ 1 and
1 ≤ ℓ ≤ 𝑚+ 1. By definition, we then have

𝛾
(𝑚+1)
ℓ = (𝑚+ 1)

(
𝛾
(𝑚)
ℓ − 𝛾(𝑚)

ℓ−1

)
,

and so 𝛾(𝑚)
ℓ ≥ 𝛾

(𝑚)
ℓ−1 if and only if 𝛾(𝑚+1)

ℓ ≥ 0. We now
show that this must be the case for all 𝑚 ≥ 1 and 1 ≤ ℓ ≤

2A more recent derivation of the approximants to 𝑒𝑥 and the stated error
formula can be found in Baker and Graves-Morris [3, Sections 1.2 and
10.3]. Concise statements of all the properties we use may also be found
in Underhill and Wragg [28].

𝑚+ 1. From (3) we have:

𝛾
(𝑚+1)
ℓ

= (−1)ℓ−1(𝑚+ 1)!
(

𝑚
ℓ−1

)
⋅ [𝑄[𝑚+1−ℓ/ℓ−1](1)𝑒− 𝑃[𝑚+1−ℓ/ℓ−1](1)

]
= (−1)ℓ−1(𝑚+ 1)!

(
𝑚
ℓ−1

)

⋅
[
(−1)ℓ−1

(𝑚+ 1)!

∫ 1

0

𝑒𝑡𝑡ℓ−1(1− 𝑡)𝑚+1−ℓ 𝑑𝑡

]

=
(

𝑚
ℓ−1

) ∫ 1

0

𝑒𝑡𝑡ℓ−1(1− 𝑡)𝑚+1−ℓ 𝑑𝑡,

where we have used the formula (2) in the second line. Now,
we note that the integral above must be non-negative, since
its integrand is non-negative on the entire interval [0, 1].
Thus, 𝛾(𝑚+1)

ℓ ≥ 0.
Finally, we bound the sum of the sequence 𝛾(𝑚). This

bound will be useful for several of our results in later
sections.

Lemma III.4. Define 𝛼𝑚 =
∑𝑚

𝑘=1 𝛽
(𝑚)
𝑘 . For all 𝑚 ≥ 1,

𝛼𝑚 = 𝑂(log𝑚).

Proof: From Lemma III.3, we have 𝛾(𝑚)
𝑘 ≤ 𝛾(𝑚)

𝑚+1 = 𝑒
for all 𝑘 ≤ 𝑚+ 1. Therefore,

𝛼𝑚 =

𝑚∑
𝑘=1

𝛾
(𝑚)
𝑘

𝑘
≤ 𝑒

𝑚∑
𝑘=1

1

𝑘
= 𝑂(log𝑚).

We have now completed our definition of 𝑔, and given
the necessary properties of the coefficient sequences 𝛾(𝑚).
We additionally note that if 𝑓 is monotone submodular then
so is 𝑔. Moreover if 𝑓 is a coverage function, then 𝑔 agrees
with the non-oblivious potential function defined in [15] (a
full proof of these facts can be found in [16]).

IV. LOCALITY RATIO

In this section, we derive a bound on the locality ratio
of Algorithm 1, under the assumption that 𝑔 is computed
exactly (i.e. that 𝑔 = 𝑔). In the next section, we show how
to remove this assumption, by using a sampling procedure.
Consider an instance (𝒰 , ℐ, 𝑓) with optimal solution 𝑂
(without loss of generality, a base), and let 𝑆 be the solution
produced by the algorithm. Then, note that ∣𝑆∣ = ∣𝑂∣ = 𝑛.
Moreover, for every 𝑎 ∈ 𝑆 and for every 𝑏 ∈ 𝒰 ∖ 𝑆 such
that 𝑆 − 𝑎+ 𝑏 ∈ ℐ , we have

(1 + 𝜖0)𝑔(𝑆) ≥ 𝑔(𝑆 − 𝑎+ 𝑏).
Since both 𝑂 and 𝑆 are bases, a theorem of Brualdi [4]

shows that there exists a bijection 𝜋 : 𝑆 → 𝑂 such that
𝑆 − 𝑥 + 𝜋(𝑥) is a base of ℳ for all 𝑥 ∈ 𝑆. We index the
elements of 𝑆 = {𝑠1, . . . , 𝑠𝑛} arbitrarily, and then for each
element 𝑠𝑖 ∈ 𝑆, we define 𝑜𝑖 = 𝜋(𝑠𝑖). This bijection, used
here to index the sets of 𝑂 and 𝑆, is essentially the only
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property of matroids that we require for the remainder of
our analysis.

For a set of indices 𝐼 ⊆ [𝑛], we use the notation 𝑆𝐼
(respectively, 𝑂𝐼 ) to denote the set {𝑠𝑖 : 𝑖 ∈ 𝐼} (respectively,
{𝑜𝑖 : 𝑖 ∈ 𝐼}). The notation [𝑛] itself is shorthand for
{1, . . . , 𝑛}.

It will be convenient to work with the following symmet-
ric notation. Let 𝑙, 𝑏, 𝑔 be non-negative integers satisfying
𝑙 + 𝑏 ≤ 𝑛 and 𝑔 + 𝑏 ≤ 𝑛. Then, we define 𝑋𝑙,𝑏,𝑔 to
be the multiset of sets (𝑆𝐿 ∪ 𝑂𝐺) for all distinct 𝐿, 𝐺,
satisfying ∣𝐿∣ = 𝑙 + 𝑏, ∣𝐺∣ = 𝑔 + 𝑏, ∣𝐿 ∩ 𝐺∣ = 𝑏.
That is, 𝑋𝑙,𝑏,𝑔 is the collection of all sets containing 𝑙 + 𝑏
elements from 𝑆, and 𝑔 + 𝑏 elements from 𝑂, where 𝑏 of
the elements have the same index in both 𝑆 and 𝑂.3 We
have ∣𝑋𝑙,𝑏,𝑔∣ =

(
𝑛
𝑙

)(
𝑛−𝑙
𝑔

)(
𝑛−𝑙−𝑔

𝑏

)
. We define 𝐹𝑙,𝑏,𝑔 to be the

expected value of a uniformly random set in 𝑋𝑙,𝑏,𝑔:

𝐹𝑙,𝑏,𝑔 =
1

∣𝑋𝑙,𝑏,𝑔∣
∑

𝑎∈𝑋𝑙,𝑏,𝑔

𝑓(𝑎).

We adopt the convention that 𝐹𝑙,𝑏,𝑔 = 0 if one of 𝑙, 𝑏, 𝑔
is negative. The proof of Theorem IV.3 makes use two
inequalities following from local optimality, the definition of
𝑔 and the submodularity of 𝑓 . Our first ancillary inequality
simply re-expresses the (approximate) local optimality of 𝑆
in our symmetric notation:

Lemma IV.1.

𝜖0𝑛

𝑛∑
𝑘=1

𝛽
(𝑛)
𝑘 𝐹𝑘,0,0 +

𝑛∑
𝑖=1

𝛾
(𝑛)
𝑘 (𝐹𝑘,0,0 − 𝐹𝑘−1,0,1) ≥ 0.

Proof: Note that 𝑆−𝑠𝑖+𝑜𝑖 is a base for all 1 ≤ 𝑖 ≤ 𝑛.
Since 𝑆 is an 𝜖0-approximate local optimum, we must have
(1+ 𝜖0)𝑔(𝑆) ≥ 𝑔(𝑆− 𝑠𝑖+ 𝑜𝑖) for all such 𝑖. Summing over
1 ≤ 𝑖 ≤ 𝑛 gives:

𝜖0𝑛𝑔(𝑆) + 𝑛𝑔(𝑆)−
𝑛∑

𝑖=1

𝑔(𝑆 − 𝑠𝑖 + 𝑜𝑖) ≥ 0. (4)

From the definition of 𝑔 and 𝐹 , it follows that 𝑔(𝑆) =∑𝑛
𝑘=1 𝛽

(𝑛)
𝑘 𝐹𝑘,0,0. We now focus on the final summation in

inequality (4), and consider the coefficients of each term in
the summation. First, we consider an arbitrary set in 𝑋𝑘,0,0.
This set has the form 𝑆𝐼 where ∣𝐼∣ = 𝑘, and appears as a
subset of 𝑆−𝑠𝑖+𝑜𝑖 for each value of 𝑖 ∕∈ 𝐼 . Thus, it appears

in the sum with total weight (𝑛 − 𝑘)𝛽
(𝑛)
𝑘

(𝑛𝑘)
=

(𝑛−𝑘)𝛽
(𝑛)
𝑘

∣𝑋𝑘,0,0∣ .

Next, we consider an arbitrary set in 𝑋𝑘−1,0,1. This set
has the form 𝑆𝐼 + 𝑜𝑖 for some 𝐼 with ∣𝐼∣ = 𝑘 − 1 and
𝑖 ∕∈ 𝐼 . Each such set appears as a subset of 𝑆 − 𝑠𝑖 + 𝑜𝑖 for
exactly one value of 𝑖 and so appears in the sum with total

3We adopt that convention that if we have some element 𝑥 in 𝑆 ∩ 𝑂,
then sets containing 𝑥 will appear multiple times in 𝑋𝑙,𝑏,𝑔 , once when 𝑥
is treated as an element of 𝑆 and once when it is treated as an element of
𝑂. This will obviate the need to consider specially the intersection 𝑆 ∩𝑂
in our analysis.

weight 𝛽
(𝑛)
𝑘

(𝑛𝑘)
=

𝑘𝛽
(𝑛)
𝑘

𝑛(𝑛−1
𝑘−1)

=
𝑘𝛽

(𝑛)
𝑘

∣𝑋𝑘−1,0,1∣ . It follows that the final

summation is equivalent to
𝑛∑

𝑘=1

(𝑛− 𝑘)𝛽(𝑛)𝑘 𝐹𝑘,0,0 + 𝑘𝛽
(𝑛)
𝑘 𝐹𝑘−1,0,1.

The claim follows from the definition 𝛾(𝑛)𝑘 = 𝑘𝛽
(𝑛)
𝑘 .

In order to reduce the inequality from Lemma IV.1 to
a statement relating 𝑓(𝑆) and 𝑓(𝑂), we shall need to use
the following general inequality, which follows from the
submodularity and monotonicity of 𝑓 .

Lemma IV.2. For ℓ satisfying 0 ≤ ℓ ≤ 𝑛,

(𝑛−ℓ)𝐹ℓ,0,1+ℓ𝐹ℓ−1,0,1 ≥ ℓ𝐹ℓ−1,0,0+(𝑛−ℓ−1)𝐹ℓ,0,0+𝑓(𝑂).

Proof: In order to prove Lemma IV.2, we first prove
two smaller inequalities. Consider a set 𝑆𝐿, where ∣𝐿∣ = ℓ.
From Lemma II.1, we have∑

𝑖∈[𝑛]∖𝐿
[𝑓(𝑆𝐿 + 𝑜𝑖)− 𝑓(𝑆𝐿)]

≥ 𝑓(𝑆𝐿 ∪𝑂[𝑛]∖𝐿)− 𝑓(𝑆𝐿). (5)

Additionally, we have∑
𝑖∈𝐿

[𝑓(𝑆𝐿 − 𝑠𝑖 + 𝑜𝑖)− 𝑓(𝑆𝐿 − 𝑠𝑖)]

≥
∑
𝑖∈𝐿

[𝑓(𝑆𝐿 + 𝑜𝑖)− 𝑓(𝑆𝐿)]

≥ 𝑓(𝑆𝐿 ∪𝑂𝐿)− 𝑓(𝑆𝐿), (6)

where the first inequality follows from the decreasing
marginals characterization of submodularity and the second
from Lemma II.1.4

Adding (5) and (6), we obtain:∑
𝑖∕∈𝐿

[𝑓(𝑆𝐿+𝑜𝑖)−𝑓(𝑆𝐿)] +
∑
𝑖∈𝐿

[𝑓(𝑆𝐿−𝑠𝑖+𝑜𝑖)−𝑓(𝑆𝐿−𝑠𝑖)]

≥ 𝑓(𝑆𝐿 ∪𝑂[𝑛]∖𝐿) + 𝑓(𝑆𝐿 ∪𝑂𝐿)− 2𝑓(𝑆𝐿)

≥ 𝑓(𝑆𝐿 ∪𝑂)− 𝑓(𝑆𝐿)
≥ 𝑓(𝑂)− 𝑓(𝑆𝐿), (7)

where the second inequality follows from submodularity of
𝑓 and the last from monotonicity of 𝑓 . Inequality (7) is
valid for any particular assignment of values from [𝑛] to
the indices of 𝑆 and 𝑂. Averaging over all possible such
assignments, we obtain the inequality

(𝑛− ℓ)(𝐹ℓ,0,1 − 𝐹ℓ,0,0) + ℓ(𝐹ℓ−1,0,1 − 𝐹ℓ−1,0,0)

≥ 𝑓(𝑂)− 𝐹ℓ,0,0,

which is equivalent to the inequality stated in the Lemma.

4Note that we must have 𝑠𝑖 = 𝑜𝑖 for each element 𝑠𝑖 ∈ 𝑆 ∩𝑂. For all
such elements, we have 𝑓(𝑆𝐿 − 𝑠𝑖 + 𝑜𝑖)− 𝑓(𝑆𝐿 − 𝑠𝑖) = 0, and so we
can disregard all such elements in the summation in (6).
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We are now ready to prove our main result for this section.

Theorem IV.3. Suppose 𝑂 is a global optimum of 𝑓 and
that 𝑆 is an 𝜖0-approximate local optimum of 𝑔. Then,

(1 +𝑂(𝜖0𝑛 log 𝑛)) ⋅ 𝑒 ⋅ 𝑓(𝑆) ≥ (𝑒− 1) ⋅ 𝑓(𝑂).
Proof: Consider the inequality given in Lemma IV.1.

From the monotonicity of 𝑓 , we have 𝐹𝑘,0,0 ≤ 𝐹𝑛,0,0 for
all 𝑘 ≤ 𝑛. Lemma III.4 implies that:

𝜖0𝑛𝑔(𝑆) = 𝜖0𝑛
𝑛∑

𝑘=1

𝛽
(𝑛)
𝑘 𝐹𝑘,0,0

≤ 𝜖0𝑛
𝑛∑

𝑘=1

𝛽
(𝑛)
𝑘 𝐹𝑛,0,0 = 𝑂(𝜖0𝑛 log 𝑛)𝐹𝑛,0,0.

Furthermore, since 𝐹0,0,0 = 𝑓(∅) ≥ 0 and 𝐹−1,0,1 = 0, we
have 𝛾(𝑛)0 (𝐹0,0,0−𝐹−1,0,0) ≥ 0. These inequalities, together
with Lemma (IV.1), imply

𝑂(𝜖0𝑛 log 𝑛)𝐹𝑛,0,0 +
𝑛∑

𝑘=0

𝛾
(𝑛)
𝑘 (𝐹𝑘,0,0−𝐹𝑘−1,0,1) ≥ 0. (8)

Since 𝛾(𝑛) is non-decreasing, we have (𝛾
(𝑛)
ℓ+1 − 𝛾(𝑛)ℓ ) ≥ 0

for all 0 ≤ ℓ ≤ 𝑛. Multiplying the inequality from Lemma
IV.2 by (𝛾

(𝑛)
ℓ+1 − 𝛾(𝑛)ℓ ) gives

(𝛾
(𝑛)
ℓ+1 − 𝛾(𝑛)ℓ )

⋅ [(𝑛−ℓ)𝐹ℓ,0,1 + ℓ𝐹ℓ−1,0,1 − ℓ𝐹ℓ−1,0,0 − (𝑛−ℓ−1)𝐹ℓ,0,0]

≥ (𝛾
(𝑛)
ℓ+1 − 𝛾(𝑛)ℓ ) ⋅ 𝑓(𝑂), (9)

for each ℓ ∈ {0, . . . , 𝑛}. We claim that the inequality that
results from adding the 𝑛 + 1 inequalities given by (9) to
inequality (8) is the desired inequality.

We first consider all terms of the form 𝐹𝑘,0,0. For 0 ≤
𝑘 ≤ 𝑛− 1, the coefficient of 𝐹𝑘,0,0 is

𝛾
(𝑛)
𝑘 − (𝑛− 𝑘 − 1)(𝛾

(𝑛)
𝑘+1 − 𝛾(𝑛)𝑘 )− (𝑘 + 1)(𝛾

(𝑛)
𝑘+2 − 𝛾(𝑛)𝑘+1)

= (𝑛− 𝑘)𝛾(𝑛)𝑘 + (2𝑘 − 𝑛+ 2)𝛾
(𝑛)
𝑘+1 − (𝑘 + 1)𝛾

(𝑛)
𝑘+2 = 0,

where the final equality follows from (𝛾-REC). The coeffi-
cient of 𝐹𝑛,0,0 = 𝑓(𝑆) is

𝑂(𝜖0𝑛 log 𝑛) + 𝛾
(𝑛)
𝑛 + 𝛾

(𝑛)
𝑛+1 − 𝛾(𝑛)𝑛

= 𝑂(𝜖0𝑛 log 𝑛) + 𝛾
(𝑛)
𝑛+1 = (1 +𝑂(𝜖0𝑛 log 𝑛)) ⋅ 𝑒.

Now, we consider all terms of the form 𝐹𝑘−1,0,1. For 1 ≤
𝑘 ≤ 𝑛, the coefficient of 𝐹𝑘−1,0,1 is

− 𝛾(𝑛)𝑘 + (𝑛− 𝑘 + 1)(𝛾
(𝑛)
𝑘 − 𝛾(𝑛)𝑘−1) + 𝑘(𝛾

(𝑛)
𝑘+1 − 𝛾(𝑛)𝑘 )

= 𝑘𝛾
(𝑛)
𝑘+1 − (2𝑘 − 𝑛)𝛾(𝑛)𝑘 − (𝑛− 𝑘 + 1)𝛾

(𝑛)
𝑘−1 = 0,

where the final equality follows from (𝛾-REC). Additionally,
𝐹−1,0,1 = 0 by definition. Finally, the coefficient of 𝑓(𝑂) is

𝑛∑
𝑘=0

(𝛾
(𝑛)
𝑘+1 − 𝛾(𝑛)𝑘 ) = 𝛾

(𝑛)
𝑛+1 − 𝛾(𝑛)0 = 𝑒− 1.

V. ESTIMATING 𝑔

Each evaluation of 𝑔(𝑆) requires evaluating 𝑓 on all
subsets of 𝑆, and so we cannot compute 𝑔 directly without
using an exponential number of calls to the value oracle 𝑓 .
Fortunately, we can estimate 𝑔(𝑆) by sampling.

Suppose that ∣𝑆∣ = 𝑚, and recall that 𝛼𝑚 =
∑𝑚

𝑘=1 𝛽
(𝑚)
𝑘 .

We define the random set 𝑋 using the following two step
experiment. First, let 𝐿 be a random variable taking value 𝑘
with probability 𝛽(𝑚)

𝑘 /𝛼𝑚. Then, choose 𝑋 as a uniformly
random subset of 𝑆 of size 𝐿. Then, from the linearity of
expectations we have 𝛼𝑚 𝔼 𝑓(𝑋) = 𝑔(𝑆). We now estimate
the error incurred when 𝑔 is estimated by taking 𝑁 samples.

We will need the following result, which follows directly
from Lemma II.1.

Lemma V.1. Let 𝑓 be a non-negative submodular function,
and let 𝑆 be a set of size 𝑚. For 𝑘 in the range 1 ≤ 𝑘 ≤ 𝑚,
define 𝐹 (𝑘) = 𝔼 𝑓(𝑋𝑘), where 𝑋𝑘 is a uniformly random
subset of 𝑆 of size 𝑘. Then 𝐹 (𝑘) ≥ (𝑘/𝑚)𝑓(𝑆).

Proof: Each element 𝑥 ∈ 𝑆 appears in exactly
(
𝑚−1
𝑘−1

)
=

𝑘
𝑚

(
𝑚
𝑘

)
of the sets in

(
𝑆
𝑘

)
. From Lemma II.1, we then have:

𝐹 (𝑋𝑘) =
1(
𝑚
𝑘

) ∑
𝑇∈(𝑆𝑘)

[𝑓(𝑇 )− 𝑓(∅)]

≥ 1(
𝑚
𝑘

) 𝑘
𝑚

(
𝑚

𝑘

)
[𝑓(𝑆)− 𝑓(∅)] ≥ 𝑘

𝑚
𝑓(𝑆).

We can now estimate the error arising from the sampling
process.

Lemma V.2. Let 𝑆 be a set of size 𝑚. Let 𝑁 be a positive
integer, and 𝑋1, . . . , 𝑋𝑁 be 𝑁 i.i.d. random samples drawn
from the distribution for 𝑋 . Define 𝑔 = 1

𝑁

∑𝑁
𝑖=1 𝛼𝑚𝑓(𝑋𝑖).

For every 𝜖 > 0,

Pr[∣𝑔(𝑆)− 𝑔(𝑆)∣ > 𝜖𝑔(𝑆)] ≤ 2 exp

(
−Ω

(
𝜖2𝑁

log2𝑚

))
.

Proof: From Lemma III.3 we have 𝛾(𝑚)
𝑘 ≥ 𝛾(𝑚)

0 = 1
for all 𝑘. Thus, Lemma V.1 gives

𝑔(𝑆) =

𝑚∑
𝑘=1

𝛽
(𝑚)
𝑘 𝔼 𝑓(𝑋𝑘) ≥

𝑚∑
𝑘=1

𝑘

𝑚
𝛽
(𝑚)
𝑘 𝑓(𝑆)

=

𝑚∑
𝑘=1

𝛾
(𝑚)
𝑘

𝑚
𝑓(𝑆) ≥

𝑚∑
𝑘=1

1

𝑚
𝑓(𝑆) = 𝑓(𝑆). (10)

Since 𝑓(𝑋𝑖) ≤ 𝑓(𝑆) for all 𝑖 by monotonicity, Hoeffd-
ing’s bound gives that Pr[∣𝑔(𝑆)−𝑔(𝑆)∣ > 𝜖𝑔(𝑆)] is at most:

2 exp

(
−2𝜖2𝑔(𝑆)2𝑁

𝛼2
𝑚𝑓(𝑆)

2

)
≤ 2 exp

(
−2𝜖2𝑁

𝛼2
𝑚

)

where the inequality follows from (10). The claim then
follows Lemma III.4, which bounds 𝛼𝑚.
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We now suppose that Algorithm 1 uses the function 𝑔
from the Lemma V.2, where the number of samples 𝑁 is
a parameter of the algorithm. We shall translate the bound
from Theorem IV.3, which supposed that 𝑔 was computed
exactly, into a bound for the resulting algorithm. First, we
prove the following elementary result, relates local optima
of 𝑔 to those of the sampled function 𝑔.

Lemma V.3. Let 𝛿 ≤ 1/2. Suppose that ∣𝑔(𝐴) − 𝑔(𝐴)∣ ≤
𝛿𝑔(𝐴), ∣𝑔(𝐵) − 𝑔(𝐵)∣ ≤ 𝛿𝑔(𝐵) and (1 + 𝛿)𝑔(𝐴) ≥ 𝑔(𝐵).
Then (1 + 7𝛿)𝑔(𝐴) ≥ 𝑔(𝐵).

Proof: The premises imply

(1 + 𝛿)2𝑔(𝐴) ≥ (1 + 𝛿)𝑔(𝐴) ≥ 𝑔(𝐵) ≥ (1− 𝛿)𝑔(𝐵).
Therefore

(1 + 𝛿)2

1− 𝛿 𝑔(𝐴) ≥ 𝑔(𝐵).
The expression on the left is bounded by

(1 + 𝛿)2

1− 𝛿 = 1 +
𝛿(3 + 𝛿)

1− 𝛿 ≤ 1 + 7𝛿,

since the function (3+𝛿)/(1−𝛿) is increasing and 𝛿 ≤ 1/2.

We also need to know the approximation ratio of the
greedy algorithm when 𝑔 is used instead of 𝑔. Similar results
appear in Goundan and Schulz [19] and Calinescu et al. [7],
though with a different kind of approximate oracle.

Lemma V.4. Let 𝑆init = {𝑠1, . . . , 𝑠𝑛} satisfy

(1 + 𝜂)𝑔(𝑆[𝑘]) ≥ 𝑔(𝑆[𝑘−1] + 𝑥)

for all 𝑘 ∈ [𝑛] and all 𝑥 ∈ 𝒰 such that 𝑆[𝑘−1] + 𝑥 ∈ ℐ . Let
𝐺 be the maximum value taken by 𝑔 on ℐ . Then

𝑔(𝑆init) ≥ 𝐺

2 + 𝑛𝜂
.

Proof: Our proof will use the fact (proved formally in
[16]) that 𝑔 is monotone and submodular. Suppose 𝐺 =
𝑔(𝑂). As in Section IV, we index the elements of 𝑂 so that
𝑜𝑖 = 𝜋(𝑠𝑖) for all 𝑖 ∈ [𝑛]. Then, 𝑆[𝑘−1] + 𝑜𝑘 ∈ ℐ for all
𝑘 ∈ [𝑛] and

(1 + 𝜂)

𝑛∑
𝑘=1

𝑔(𝑆[𝑘]) ≥
𝑛∑

𝑘=1

𝑔(𝑆[𝑘−1] + 𝑜𝑘).

Since 𝑔(𝑆[𝑘]) ≤ 𝑔(𝑆init) by monotonicity, this implies

(1 + 𝑛𝜂)𝑔(𝑆init) ≥ 𝑛𝜂𝑔(𝑆init) +
𝑛∑

𝑘=1

[𝑔(𝑆[𝑘])− 𝑔(𝑆[𝑘−1])]

≥
𝑛∑

𝑘=1

[𝑔(𝑆[𝑘−1] + 𝑜𝑘)− 𝑔(𝑆[𝑘−1])]

≥
𝑛∑

𝑘=1

[𝑔(𝑆init + 𝑜𝑘)− 𝑔(𝑆init)]

≥ 𝑔(𝑆init ∪𝑂)− 𝑔(𝑆init)
≥ 𝑔(𝑂)− 𝑔(𝑆init),

where we have used decreasing marginals in the third
inequality, Lemma II.1 in the fourth, and monotonicity in
the last. Rearranging,

(2 + 𝑛𝜂)𝑔(𝑆init) ≥ 𝑔(𝑂).

Now, we are ready to prove our main theorems regarding
the runtime and approximation performance of Algorithm 1.

Theorem V.5. There is a global constant 𝐶1 > 0 such that
the following is true. Given 𝜖 > 0, set the parameters of
Algorithm 1 as follows:

𝜖0 =
𝜖

𝑛 log 𝑛
, 𝑁 = 𝐶1𝜖

−2
0 log2 𝑛 log(𝜖−1𝑛2𝑢 log 𝑛).

With probability 1− 𝑜(1), Algorithm 1 is a (1− 1
𝑒 −𝑂(𝜖))-

approximation algorithm, running in time �̃�(𝜖−3𝑛4𝑢).

Proof: We analyze the algorithm under the assumption
that whenever we evaluate 𝑔(𝑆), the value we obtain satisfies

(1− 𝜖0)𝑔(𝑋) ≤ 𝑔(𝑋) ≤ (1 + 𝜖0)𝑔(𝑋).

Later we will show that this happens with probability 1 −
𝑜(1). We can assume that 𝜖 = 𝑂(1).

Let 𝑂 be the optimal solution for the instance we are
considering and let 𝑆 be the solution produced by the
algorithm. Lemma V.3 shows that 𝑆 is an 𝑂(𝜖0)-approximate
local optimum of 𝑔. Theorem IV.3 then shows that

𝑓(𝑆) ≥
(
1− 1

𝑒

)
𝑓(𝑂)−𝑂(𝜖0𝑛 log 𝑛)𝑓(𝑆)

≥
(
1− 1

𝑒
−𝑂(𝜖0𝑛 log 𝑛)

)
𝑓(𝑂)

=

(
1− 1

𝑒
−𝑂(𝜖)

)
𝑓(𝑂).

We now bound the number of improvements our algorithm
can make. Let 𝐺 be the maximum value taken by 𝑔 on ℐ.
Applying Lemma V.4 with 1 + 𝜂 = (1 + 𝜖0)/(1 − 𝜖0) =
1 +𝑂(𝜖0), we deduce

𝑔(𝑆init) ≥ (1− 𝜖0)𝑔(𝑆init) ≥ 𝐺

2 +𝑂(𝑛𝜖0)
.

Every time the algorithm applies an improvement, it must
improve 𝑔(𝑆) by at least a factor of (1 + 𝜖0). Furthermore,
𝑔(𝑆) ≤ (1 + 𝜖0)𝐺 for all 𝑆 we consider. Thus, the number
of improvements Algorithm 1 can make is at most:

log1+𝜖0

(1 + 𝜖0)𝐺

𝑔(𝑆init)
≤ (1 + 𝜖0) log1+𝜖0(2 +𝑂(𝑛𝜖0))

= 𝑂(𝜖−1
0 ) = 𝑂(𝜖−1𝑛 log 𝑛).

Finally, we derive a bound on the number of samples
needed to ensure that with high probability ∣𝑔(𝑋)−𝑔(𝑋)∣ ≤
𝜖0𝑔(𝑋) for all sets considered by the algorithm. The initial
greedy step requires at most 𝑛𝑢 total evaluations of 𝑔, and
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each improvement step requires at most 𝑛𝑢 evaluations.
Thus, the algorithm requires 𝐶1𝜖

−1𝑛2𝑢 log 𝑛 total evalua-
tions of 𝑔 for some constant 𝐶1. Define

𝑁 = Θ(𝜖−2
0 log2 𝑛 log(𝜖−1𝑛2𝑢 log 𝑛))

= Θ(𝜖−2𝑛2 log4 𝑛 log(𝜖−1𝑛2𝑢 log 𝑛)).

Lemma V.2 shows that the probability that for a given set
𝑋 , ∣𝑔(𝑋)−𝑔(𝑋)∣ > 𝜖0𝑔(𝑋) is 𝑜((𝜖−1𝑛2𝑢 log 𝑛)−1). Hence
this never happens for any set considered by the algorithm
with probability 1− 𝑜(1).

The final algorithm requires a total of �̃�(𝜖−3𝑛4𝑢) calls
to the value oracle for 𝑓 and 𝑂(𝜖−1𝑛2𝑢 log 𝑛) calls to the
independence oracle for ℳ. Its runtime is proportional to
the total number of oracle calls to 𝑓 .

We can remove the 𝜖 from our approximation ratio by
using a partial enumeration technique described by Khuller
et al. [21] and employed by Calinescu et al. [6]. Effectively,
we try to “guess” a single set in the optimal solution, and
then run Algorithm 1 on an instance in which all solutions
contain this set. We then iterate over all possible guesses.

Formally, for a matroid ℳ = (𝒰 , ℐ) and an element 𝑥 ∈
𝒰 , the contracted matroid ℳ/𝑥 is a matroid on 𝒰 − 𝑥 in
which a set 𝐴 is independent if and only if 𝐴 + 𝑥 ∈ ℐ.
Similarly, for 𝑥 ∈ 𝒰 we define the contracted function 𝑓𝑥(𝐴)
on 𝒰 − 𝑥 by 𝑓𝑥(𝐴) = 𝑓(𝐴+ 𝑥)− 𝑓({𝑥}) and note that if
𝑓 is monotone submodular, then so is 𝑓𝑥.

Algorithm 2 simply runs Algorithm 1 with suitable pa-
rameters on the instance ℳ/𝑥, 𝑓𝑥 for each 𝑥 ∈ ℱ , and
returns the best resulting solution. The following theorem

Input: ℳ = (𝒰 , ℐ), 𝑓
for 𝑥 ∈ 𝒰 do

Let 𝜖 = 𝐶2𝑛
−1;

Set 𝜖0 and 𝑁 as in Theorem V.5;
Let 𝑆𝑥 be the result of running Algorithm 1 on
(ℳ/𝑥, 𝑓𝑥, 𝜖0, 𝑁);

Let 𝑦 = argmax𝑥∈𝒰 𝑓(𝑆𝑥 + 𝑥);
return 𝑆𝑦 + 𝑦

Algorithm 2: Clean 1− 1/𝑒 approximation algorithm

follows easily from the analysis of Calinescu et al. [7]. We
present a proof here for the sake of completeness.

Theorem V.6. With probability 1 − 𝑜(1), Algorithm 2 is a
(1− 1

𝑒 )-approximation algorithm running in time �̃�(𝑛7𝑢2).

Proof: Consider an instance (ℳ, ℐ), where 𝑛 is the
rank ofℳ. Let 𝑂 be some optimal solution for this instance,
and 𝑦 = argmax𝑥∈𝑂 𝑓({𝑥}). Submodularity implies that
𝑓(𝑂) ≤ ∑

𝑥∈𝑂 𝑓({𝑥}) ≤ 𝑛𝑓({𝑦}). Furthermore, Theorem
V.5 shows that each call to Algorithm 1 is a (1−1/𝑒−𝑂(𝜖))-
approximation algorithm with probability 1 − 𝑜(1). Thus,

with probability 1− 𝑜(1) we have

𝑓𝑦(𝑆𝑦) ≥
(
1− 1

𝑒
−𝑂(𝜖)

)
𝑓𝑦(𝑂 − 𝑦).

Let 𝑆 be the solution produced by Algorithm 2 on (ℳ, ℐ).
Then, 𝑓(𝑆) ≥ 𝑓(𝑆𝑦 + 𝑦), and

𝑓(𝑆𝑦 + 𝑦) = 𝑓({𝑦}) + 𝑓𝑦(𝑆𝑦)
≥ 𝑓({𝑦}) +

(
1− 1

𝑒
−𝑂(𝜖)

)
𝑓𝑦(𝑂 − 𝑦)

= 𝑓({𝑦}) +
(
1− 1

𝑒
−𝑂(𝜖)

)
(𝑓(𝑂)− 𝑓({𝑦}))

≥
(

1

𝑒𝑛
+ 1− 1

𝑒
− 𝐶2𝐶3

𝑛

)
𝑓(𝑂),

for some constant 𝐶3, with probability 1−𝑜(1). By choosing
an appropriate constant 𝐶2, we can ensure that 𝐶2𝐶3 ≤ 𝑒−1.
Then, 𝑓(𝑆) ≥ (1−1/𝑒)𝑓(𝑂) as desired. Algorithm 2 makes
𝑢 calls to Algorithm 1, each taking time �̃�(𝜖−3𝑛4𝑢) =
�̃�(𝑛7𝑢), so its runtime is �̃�(𝑛7𝑢2).

VI. FUTURE WORK

An immediate open question is whether our algorithm can
be made deterministic, even if only for particular classes
of functions. If 𝑓 is a coverage function, we have already
shown [15] that 𝑔 can be computed explicitly. However, this
result required access to the representation of 𝑓 and so is not
possible in the general value oracle model. Even reducing the
amount of sampling needed to compute 𝑔 would be useful,
as it would improve the runtime of the algorithm.

A more general question is whether this approach can
be extended to other submodular maximization problems,
including non-monotone maximization or maximization over
multiple matroid constraints. A major difficulty in extending
the continuous greedy algorithm to this latter case is that the
rounding phase does not generalize to multiple matroids. As
our technique does not require any rounding, it is a natural
candidate for improvement in this area.

Finally, we ask whether it is possible to match the
improved performance of the continuous greedy algorithm
for other problems, or restricted settings by combinatorial
algorithms similar to our own. For example, in [16] we show
that a variant of our algorithm matches the performance
of the continuous greedy algorithm in the case that the
curvature of the submodular function is constrained. It is
unclear, however, whether our algorithm may match or
improve results for other applications of the continuous
greedy algorithm, say those presented in [12].
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