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Abstract—For fixed compact connected Lie groups H ⊆ G, we
provide a polynomial time algorithm to compute the multiplicity
of a given irreducible representation of H in the restriction of
an irreducible representation of G. Our algorithm is based on a
finite difference formula which makes the multiplicities amenable
to Barvinok’s algorithm for counting integral points in polytopes.

The Kronecker coefficients of the symmetric group, which
can be seen to be a special case of such multiplicities, play an
important role in the geometric complexity theory approach to
the P vs. NP problem. Whereas their computation is known to be
#P-hard for Young diagrams with an arbitrary number of rows,
our algorithm computes them in polynomial time if the number
of rows is bounded. We complement our work by showing that
information on the asymptotic growth rates of multiplicities in
the coordinate rings of orbit closures does not directly lead
to new complexity-theoretic obstructions beyond what can be
obtained from the moment polytopes of the orbit closures. Non-
asymptotic information on the multiplicities, such as provided
by our algorithm, may therefore be essential in order to find
obstructions in geometric complexity theory.

I. INTRODUCTION

The decomposition of Lie group representations into ir-

reducible sub-representations is a fundamental problem of

mathematics with a variety of applications to the sciences.

In atomic and molecular physics (Clebsch–Gordan series), as

well as in high-energy physics, this problem has been studied

extensively [1–3], perhaps most famously in Ne’eman and

Gell-Mann’s eight-fold way of elementary particles [4–6]. In

pure mathematics, the combinatorial resolution of the problem

of decomposing tensor products of irreducible representations

of the unitary group by Knutson and Tao has been a recent

highlight with a long history of research [7, 8]. More recently,

the theories of quantum information [9–11], computation and

complexity [12], as well as the geometric complexity theory

approach to the P vs. NP problem [13–15] have brought

the representation theory of Lie groups to the attention of the

computer science community.

In this paper, we study the problem of computing multiplic-

ities of Lie group representations:

Problem I.1 (Subgroup Restriction Problem). Let f : H → G
be a homomorphism between compact connected Lie groupsH
and G. The subgroup restriction problem for f is to determine
the multiplicity mλ

μ of the irreducible H-representation VH,μ

in the irreducible G-representation VG,λ when given as input
the highest weights μ and λ (specified as bitstrings containing
their coordinates with respect to fixed bases of fundamental
weights, see §V).

The name subgroup restriction problem comes from the

archetypical case where the map f is induced by the inclusion

of a subgroup H ⊆ G. Problem I.1 is also known as

the branching problem. The main result of this paper is a

polynomial-time algorithm for Problem I.1:

Theorem I.2. For any homomorphism f : H → G be-
tween compact connected Lie groups H and G, there is a
polynomial-time algorithm for the subgroup restriction prob-
lem for f .

Indeed, we describe a concrete algorithm (Algorithm V.1).

In particular, for any fixed λ and μ the stretching function

k �→ mkλ
kμ can be evaluated in polynomial time.

Corollary I.3. For any homomorphism f : H → G between
compact connected Lie groups H and G, positivity of the
coefficients mλ

μ can be decided in polynomial time.

Mulmuley conjectures that deciding positivity of the mul-

tiplicities mλ
μ is possible in polynomial time if the group

homomorphism f is also part of the input [16]. Corollary I.3

can be regarded as supporting evidence that this conjecture

might in fact be true for general f (note that for specific

families of homomorphisms, such as those corresponding

to the Littlewood–Richardson coefficients, positivity can be

decided in polynomial time [8, 17]). However, any approach

to deciding positivity that proceeds by computing the actual

multiplicities is of course expected to fail, since the latter

problem is well-known to be #P-hard [18, 19].

We establish Theorem I.2 by deriving a novel formula

for the multiplicities mλ
μ (Theorem IV.2), which is obtained

in three steps: First, we restrict from the group G to its

maximal torus TG; the corresponding weight multiplicities

can be computed efficiently by using the classical Kostant

multiplicity formula [20, 21] or in fact by evaluating a single

vector partition function [22–24] (§II). Second, we restrict

all weights to a maximal torus TH of H . Third, we recover

the multiplicity of an irreducible H-representation by using
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a finite-difference formula (Proposition III.1). By carefully

combining the first two steps, Problem I.1 can be reduced to

counting integral points in certain rational convex polytopes

of bounded dimension, which can be done efficiently by using

Barvinok’s algorithm [25–27] (see also [28–30]).
The multiplicity formula itself has intrinsic interest beyond

its application to algorithmics. One insight that is immediate

from our result is the piecewise quasi-polynomial nature of

the multiplicities mλ
μ (Corollary IV.3).

Let us now turn to the computation of the Kronecker
coefficients gλ,μ,ν , which arise in the decomposition of tensor

products of irreducible representations of the symmetric group

Sk [31]:

[λ]⊗ [μ] =
⊕
ν

gλ,μ,ν [ν],

where we denote by [λ] the irreducible representation of

Sk labeled by the Young diagram λ with k boxes (§VI).

Kronecker coefficients are notoriously difficult to study, and

finding an appropriately strong combinatorial interpretation is

one of the outstanding problems of classical representation

theory. They appear naturally in geometric complexity theory,

where their efficient computation has been subject to various

conjectures [16], as well as in quantum information theory in

the context of the marginal problem and coding theory [10,

11, 32–35].
Using Schur–Weyl duality, the Kronecker coefficients for

Young diagrams with a bounded number of rows can be equiv-

alently characterized in terms of a single subgroup restriction

problem for compact connected Lie groups (§VI). Therefore,

by Theorem I.2 they can also be computed efficiently:

Corollary I.4. For any fixed d ∈ Z>0, there exists a
polynomial-time algorithm for computing the Kronecker coef-
ficient gλ,μ,ν given as input Young diagrams λ, μ and ν with
at most d rows. That is, the algorithm runs in O(poly(log k))
where k is the number of boxes of the Young diagrams.

Corollary I.5. Positivity of Kronecker coefficients for Young
diagrams with a bounded number of rows can be decided in
polynomial time.

By specializing our technique, we get a clean closed-form

expression for the Kronecker coefficients (Proposition VI.1),

which not only nicely illustrates its effectiveness, but also

implies piecewise quasi-polynomiality for bounded height (a

feature that has only been noticed in a special case [36]).

Moreover, it is immediate from our formula that the problem

of computing Kronecker coefficients with unbounded height

is in GapP, as first proved in [19].
Similar conclusions can be drawn for the plethysm coef-

ficients, which can also be formulated in terms of subgroup

restriction problems [37]. Like the Kronecker coefficients, they

play a fundamental role in geometric complexity theory [15,

38] and quantum information theory [11, 39].

In practice, our algorithms appear to be rather fast as long

as the rank of the Lie group G is not too large. In the case

of Kronecker coefficients for Young diagrams with two rows,

we can easily go up to k = 108 boxes using commodity

hardware. In contrast, all other software packages known to the

authors cannot go beyond only a moderate number of boxes

(k = 102 on the same hardware as used above). Moreover,

by distributing the computation of weight multiplicities onto

several processors, we have been able to compute Kronecker

coefficients for Young diagrams with three rows and k = 105

boxes in a couple of minutes.1 We hope that our algorithm will

provide a useful tool in experimental mathematics, theoretical

physics, and geometric complexity theory.

Our final result concerns the asymptotics of multiplicities in

the general algebro-geometric setup of the geometric complex-

ity theory approach to proving the VP �= VNP conjecture,

an algebraic version of the P �= NP conjecture. Recall that, in

a nutshell, this approach amounts to showing that for certain

pairs of projective subvarieties X and Y one is not contained

in the other; this would then imply complexity-theoretic lower

bounds. Both the permanent vs. determinant problem, which

is equivalent to the VP vs. VNP problem [40], as well as the

complexity of matrix multiplication [41] can be formulated in

this framework [13–15, 42]. More concretely, let us denote by

mH,X,k(μ) the multiplicity of the dual of an irreducible H-

representation VH,μ in the k-th graded part of the coordinate

ring ofX , and similarly for Y (cf. §VII for precise definitions).

Then,

X ⊆ Y ⇒ mH,X,k(μ) ≤ mH,Y,k(μ) (I.1)

for all μ and k ≥ 0. Therefore, the existence of μ and k such

that mH,X,k(μ) > mH,Y,k(μ) proves that X �⊆ Y ; such a

pair (μ, k) is called an obstruction [14]. One can relax this

implication further and instead compare the support of the

multiplicity functions,

X ⊆ Y ⇒ (mH,X,k(μ) �= 0⇒ mH,Y,k(μ) �= 0) .

Since computing multiplicities in general coordinate rings is a

difficult problem, it is natural to instead study their asymptotic

behavior. Following an idea of Strassen [43], it has been

proposed in [42] to consider the moment polytope,

ΔX :=

∞⋃
k=1

{μ

k
: mH,X,k(μ) �= 0

}
,

which is a compact convex polytope that represents the asymp-

totic support of the stretching function. Moment polytopes do

have a geometric interpretation, which should facilitate their

computation [44]. Clearly,

X ⊆ Y ⇒ ΔX ⊆ ΔY . (I.2)

However, preliminary results suggest that the right-hand side

moment polytope ΔY might be trivially large in the cases of

interest [15, 42, 45, 46], and therefore insufficient for finding

complexity-theoretic obstructions.

1A preliminary implementation of the algorithm is available upon request
from the authors.
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It has therefore recently been suggested to study the asymp-
totic growth of multiplicities (e.g., [47, §2.2]). The natural

object is the Duistermaat–Heckman measure, which is defined

as the weak limit

DHX := lim
k→∞

1

kdX

∑
μ∈Λ∗

H,+

mH,X,k(μ) δμ/k, (I.3)

where dX ∈ Z≥0 is the appropriate exponent such that DHX

is a non-zero finite measure [48]. The Duistermaat–Heckman

measure has a continuous density function fX with respect

to Lebesgue measure on the moment polytope; it is sup-

ported on the entire moment polytope (both statements follow

from the main result of [48]). For well-behaved varieties,

Duistermaat–Heckman measures have a geometric interpreta-

tion [49–55], which makes their computation potentially much

more tractable [56–58] (this connection is however less clear

in the singular cases relevant to geometric complexity theory).

In this context, our main technical result is the following (see

§VII for the proof):

Theorem I.6. The exponent dX is equal to dimX − RX ,
where RX is the number of positive roots of H that are not
orthogonal to all points of the moment polytope ΔX .

The significance of Theorem I.6 is that the order of

growth of the “smoothed” multiplicities, as captured by the

Duistermaat–Heckman measures, does only depend on the

dimension of the orbit closures and on their moment polytopes.

Now suppose that we are in the situation that X and Y
cannot be separated by using moment polytopes, i.e., ΔX ⊆
ΔY . For the orbit closures X and Y that one tries to separate

in geometric complexity theory, one can show that dimX <
dimY [15, 42]. Then, X ⊆ Y would imply that dX < dY
(Corollary VII.4). But this means that we cannot deduce from

(I.1) and (I.3) a criterion of the form

X ⊆ Y ⇒ fX(μ) ≤ fY (μ) (∀μ),
since in order to take the weak limit we need to divide

by different powers of k. Therefore, Duistermaat–Heckman

measures do not directly give rise to new obstructions, indi-

cating that a more refined understanding of the behavior of

multiplicities in coordinate rings might be required.

II. PRELIMINARIES

In this paper we will use basic notions of the theory of

compact Lie groups [37, 59–61]. Let G be a compact con-

nected Lie group with Lie algebra g. We fix a maximal torus

TG ⊆ G and denote by tG its Lie algebra, the corresponding

Cartan subalgebra. We write ΛG = ker exp
∣∣
tG

for the integral

lattice and Λ∗G for the weight lattice, which we can consider as

a subset of t∗G. The Weyl group WG acts on t∗G by reflections

through the hyperplanes orthogonal to the roots. Let us choose

a set of positive roots RG,+ ⊆ Λ∗G. This determines a positive

Weyl chamber t∗G,+, as well as a basis of fundamental weights

{ωG
1 , . . . , ω

G
rG}, where rG = dimTG is the rank of the Lie

group, and the Weyl vector ρ = 1
2

∑
α∈RG,+

α. The set of

dominant weights Λ∗G,+ is by definition the intersection of the

weight lattice and the positive Weyl chamber.
The fundamental theorem of the representation theory of

compact connected Lie groups is the fact that the irreducible

(complex) representations of G can be labeled by their highest
weight λ ∈ Λ∗G,+ [61]; for every element λ ∈ Λ∗G,+ there ex-

ists a unique irreducible representation VG,λ with this highest

weight. Given an arbitrary finite-dimensional (complex) G-

representation V , we can always decompose it into irreducible

sub-representations V ∼= ⊕
λ∈Λ∗

G,+
mG,V (λ)VG,λ. We shall

call the function mG,V thus defined the highest weight multi-
plicity function.

If we restrict the representation to the maximal torus, we can

similarly decompose into irreducible representations. Since TG

is a compact Abelian group, we can always jointly diagonalize

its action, and it follows that the irreducible representations

are one-dimensional. The joint eigenvalues can be encoded

as a weight β ∈ Λ∗G, and we will denote the corresponding

irreducible representation of TG by Cβ . The decomposition

V ∼= ⊕
β∈Λ∗

G
mTG,V (β)Cβ then defines the weight multiplic-

ity function mTG,V . We also set [k] = {1, . . . , k}, and write

f ∼ g for the asymptotic equivalence limk→∞ f(k)/g(k) = 1.
An equivalent way of encoding weight multiplicities is in

terms of the (formal) character,

chV =
∑
β

mTG,V (β) e
β ,

which can be understood as the generating function of mTG,V .

Formally, chV is an element of the group ring Z[Λ∗G], which

consists of (finite) linear combinations of basis elements eβ

subject to the relation eβeβ
′
= eβ+β′

. The character of an

irreducible representation VG,λ is given by the Weyl character
formula [61, p. 319],

chVG,λ =

∑
w∈WG

det(w) ew(λ+ρ)

eρ
∏

α∈RG,+
(1− e−α)

. (II.1)

Observe that we have

1∏
α∈RG,+

(1− e−α)
=

∏
α∈RG,+

(
1 + e−α + e−2α + . . .

)
=

∑
β∈Λ∗

G

φRG,+
(β)e−β ,

(II.2)

where φRG,+
is the Kostant partition function given by the

formula

φRG,+
(β) = #{(xj) ∈ Z

|RG,+|
≥0 :

∑
j

xjαj = β}. (II.3)

That is, φRG,+
counts the number of ways that a weight can

be written as a sum of positive roots (this number is always

finite since the positive roots span a proper cone). It follows

directly from (II.1) and (II.2) and that

chVG,λ =
∑

w∈WG

det(w)
∑

β∈Λ∗
G

φRG,+
(β)ew(λ+ρ)−ρ−β

=
∑

β∈Λ∗
G

∑
w∈WG

det(w)φRG,+
(w(λ+ ρ)− ρ− β)eβ .
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In other words, the multiplicity of a weight β in an irreducible

representation VG,λ is given by the well-known Kostant mul-
tiplicity formula [20],

mTG,VG,λ
(β) =

∑
w∈WG

det(w)φRG,+
(w(λ+ρ)−ρ−β). (II.4)

For any fixed group G, the Kostant partition function can

be evaluated efficiently by using Barvinok’s algorithm [25],

since it amounts to counting points in a convex polytope

in an ambient space of fixed dimension. Therefore, weight

multiplicities for fixed groups G can be computed efficiently.

This idea has been implemented by Cochet [21] to compute

weight multiplicities for the classical Lie algebras (using the

method presented in [30] instead of Barvinok’s algorithm). We

remark that the problem of computing weight multiplicities is

of course the special case of Problem I.1 where H is the

maximal torus TG ⊆ G.

Weight Multiplicities as a Single Partition Function

If G is semisimple, we can find s, t ∈ Z≥0 and group

homomorphisms A : Zs → Zt and B : Λ∗G ⊕ Λ∗G → Zt such

that

mTG,VG,λ
(β) = φA

(
B

(
λ
β

))
(∀λ ∈ Λ∗G,+, β ∈ Λ∗G), (II.5)

where φA is the vector partition function defined by

φA(y) = #{x ∈ Zs
≥0 : Ax = y}. (II.6)

Note that this improves over the Kostant multiplicity formula

(II.4), where weight multiplicities are expressed as an alternat-

ing sum over vector partition functions. In particular, (II.5) is

an evidently positive formula. It has been established by Billey,

Guillemin, and Rassart for the Lie algebra su(d) [22], and was

later extended to the general case by Bliem [23] by considering

Littelmann patterns [62] instead of Gelfand–Tsetlin patterns

[63].

The assumption of semisimplicity for (II.5) is not a restric-

tion. Indeed, if G is a general compact connected Lie group

then its Lie algebra can always decomposed as

g = [g, g]⊕ z, (II.7)

where the commutator [g, g] is the Lie algebra of a compact

connected semisimple Lie group Gss, and where z the Lie

algebra of the center Z(G) of G [61, Corollary 4.25]. Let

us choose a maximal torus TGss
of Gss that is contained in

TG. Consider now an irreducible G-representation VG,λ with

highest weight λ. By Schur’s lemma, each element in Z(G)
acts by a scalar. Therefore, all weights β that appear in the

weight-space decomposition have the same restriction to z. It
follows that

mTG,VG,λ
(β) =

{
mTGss ,VGss,λss

(βss) if λz = βz,

0 otherwise,
(II.8)

where we write μss and μz for the restriction of a weight μ
to the Cartan subalgebra of [g, g] and to z, respectively. These
multiplicities can therefore be evaluated by using (II.5).

III. THE FINITE DIFFERENCE FORMULA

Let V be an arbitrary finite-dimensional representation

of the compact, connected Lie group G. Clearly, we can

compute the weight multiplicity function mTG,V from the

highest weight multiplicity function mG,V by using any of the

classical formulas (II.1) and (II.4), or by evaluating the vector

partition function (II.5) described in §II. By “inverting” the

Weyl character formula, the converse can also be achieved:

Proposition III.1. The highest weight and weight multiplicity
function of a finite-dimensionalG-representation V are related
by

mG,V =

⎛
⎝ ∏

α∈RG,+

−Dα

⎞
⎠mTG,V

∣∣∣∣∣∣
Λ∗

G,+

,

where (Dαm)(λ) = m(λ+ α)−m(λ) is the finite-difference
operator in direction α. Note that any two of the operators Dα

commute, so that their product is independent of the order of
multiplication.

Proof: By linearity, it suffices to establish the lemma for

a single irreducible representation V = VG,λ of highest weight

λ. The Weyl character formula (II.1) can be rewritten in the

form∏
α>0

(
1− e−α

)
chVG,λ =

∑
w∈WG

det(w) ew(λ+ρ)−ρ. (III.1)

If we identify elements in Z[Λ∗G] with functions on the weight

lattice, applying finite-difference operators Dα corresponds to

multiplication by (e−α − 1). Therefore, the left-hand side of

(III.1) is identified with
(∏

α∈RG,+
−Dα

)
mTG,VG,λ

.

Now consider the right-hand side of (III.1). Since λ+ρ is a

strictly dominant weight, it is sent by any Weyl group element

w �= 1 to the interior of another Weyl chamber. That is, there

exists a positive root α ∈ RG,+ such that 〈α,w(λ+ ρ)〉 < 0.
In particular, w(λ + ρ) − ρ is never dominant unless w = 1.

It follows that the restriction of
(∏

α∈RG,+
−Dα

)
mTG,VG,λ

to Λ∗G,+ is equal to the indicator function of {λ}, i.e., equal
to the highest weight multiplicity function of VG,λ.

The idea of using (II.1) for determining multiplicities of

irreducible representations goes back at least to Steinberg

[64], who proved a formula for the multiplicity cνλ,μ of an

irreducible representation VG,ν in the tensor product VG,λ ⊗
VG,μ. These multiplicities cνλ,μ are called the Littlewood–
Richardson coefficients for G. Steinberg’s formula involves

an alternating sum over the Kostant partition function (II.4);

it can be evaluated efficiently as described by Cochet [21].

De Loera and McAllister give another method for computing

Littlewood–Richardson coefficients [65], which applies Barvi-

nok’s algorithm to results by Berenstein and Zelevinsky [66].

Since the tensor products of irreducible G-representations are

just the irreducible representations of G × G, the problem

of computing Littlewood–Richardson coefficients is again a

special case of Problem I.1. The following consequence of

the proof of Proposition III.1 will be convenient in the sequel:
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Corollary III.2. Write
∏

α∈RG,+
(1− e−α) =

∑
γ∈ΓG

cγe
−γ

with ΓG ⊆ Λ∗G finite and all cγ �= 0. Then,

mG,V (λ) =
∑
γ∈ΓG

cγ mTG,V (λ+ γ).

In particular, it is evident from Corollary III.2 that, for any

fixed group G, the multiplicity of an irreducible representation

in some representation V can be computed efficiently from

the weight multiplicities of V by computing a finite linear

combination.

IV. MULTIPLICITIES FOR THE SUBGROUP RESTRICTION

PROBLEM

Every G-representation V can be considered as (“restricts

to”) a representation of H by setting

h · v := f(h) · v (∀h ∈ H), (IV.1)

and the subgroup restriction problem for f , as defined in

Problem I.1, amounts to determining the multiplicity mλ
μ of

a given irreducible representation of H in the restriction of a

given irreducible representation of G. In this section we will

derive a formula for these multiplicities (Theorem IV.2), which

will be the main ingredient of the algorithm presented in §V

below. It will also follow from this formula that the mλ
μ are

given by a piecewise quasi-polynomial function2 in λ and μ
(Corollary IV.3).

Let us choose the maximal torus TH ⊆ H in such a way that

f(TH) ⊆ TG, and denote the corresponding Cartan subalgebra

by tH . Of course, this implies that the induced Lie algebra

homomorphism Lie(f) sends the Cartan subalgebra of H in

the one of G. Since f is a group homomorphism, Lie(f)
restricts to a homomorphism between the integral lattices,

F : ΛH → ΛG, X �→ Lie(f)X . The dual map between the

weight lattices is given by

F ∗ : Λ∗G → Λ∗H , β �→ β ◦ F = β ◦ Lie(f)∣∣
ΛH

. (IV.2)

The following is well-known and easily follows from the

definitions:

Lemma IV.1. Let V be a representation of G and v ∈ V a
weight vector of weight β ∈ Λ∗G. If we restrict the action to H
via (IV.1) then v is a weight vector of weight F ∗(β) ∈ Λ∗H .

Let us also fix systems of positive roots RH,+ for H . This

in turn determines the set of dominant weights Λ∗H,+ as well

as a basis of fundamental weights (ωH
j ) as described in §II.

Let us also set rH = dimTH .

Our strategy for solving the subgroup restriction problem

for f then is the following: Given an irreducible represen-

tation VG,λ of G, we can determine its weight multiplicities

with respect to the maximal torus TG by using any of the

formulas presented in §II. We then obtain weight multiplicities

for TH by restricting according to Lemma IV.1. Finally,

2In the context of this paper, a quasi-polynomial function is a polynomial
function with periodic coefficients; see p. 6 for the precise definition. It should
not to be confused with the notion of quasi-polynomial time complexity.

we reconstruct the multiplicity of an irreducible represen-

tation VH,μ by using the finite-difference formula (Propo-

sition III.1/Corollary III.2). If this procedure was translated

directly into an algorithm, the runtime would be polynomial

in the coefficients of λ (with respect to the basis of fun-

damental weights), i.e., exponential in their bitlength, since

the number of weights is of the order of the dimension

of the irreducible representation VG,λ, which according to

the Weyl dimension formula is given by the polynomial∏
α∈RG,+

〈α, λ+ ρ〉/〈α, ρ〉 (cf. the formula by Straumann

[67]). We will now show that it is possible to combine the

weight multiplicity formula (II.5) with the restriction map F ∗

in a way that will later give rise to an algorithm that runs in

polynomial time in the bitlength of the input:

Theorem IV.2. Let f : H → G be a homomorphism of com-
pact connected Lie groups. Then we can find s, s′, u ∈ Z≥0
and group homomorphisms A : Zs+s′ → Zu and B : Λ∗G ⊕
Λ∗H → Zu with the following property: For every irreducible
representation VG,λ of G and VH,μ of H , the multiplicity mλ

μ

of the latter in the former is given by

mλ
μ =

∑
γ∈ΓH

cγ #{x ∈ Zs
≥0 ⊕ Zs′ : Ax = B

(
λ

μ+ γ

)
},

where the (finite) set ΓH and the coefficients (cγ) are defined
by

∏
α∈RH,+

(1− e−α) =
∑

γ∈ΓH
cγe

−γ and cγ �= 0. In fact,
we can choose s = O(r2G), s

′ ≤ rG and u = O(r2G) + rH .

Proof: By definition and Corollary III.2, we have mλ
μ =

mH,VG,λ
(μ) =

∑
γ∈ΓH

cγ mTH ,VG,λ
(μ + γ). In view of

Lemma IV.1, the multiplicity of a TH -weight δ ∈ Λ∗H in the

irreducible G-representation VG,λ is given by

mTH ,VG,λ
(δ) =

∑
β∈Λ∗

G

F∗(β)=δ

mTG,VG,λ
(β).

As in (II.7), let us now decompose the Lie-algebra g = [g, g]⊕
z. Denote the Lie group corresponding to [g, g] by Gss and

choose a maximal torus TGss
which is contained in T . Using

(II.8),

∑
β∈Λ∗

G

F∗(β)=δ

mTG,VG,λ
(β) =

∑
βss∈Λ∗

Gss
Cssβss+Czλz=δ

mTGss ,VGss,λss
(βss),

where we have decomposed F ∗ as a sum of two homomor-

phisms Css : Λ
∗
Gss
→ Λ∗H and Cz : Λ

∗
Z(G) → Λ∗H .

Let us now choose group homomorphisms A : Zs → Zt and

B = B1 ⊕ B2 : Λ
∗
Gss
⊕ Λ∗Gss

→ Zt such that (II.5) holds for

the weight multiplicities for Gss. For this, s and t can be taken
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of order O(r2G) [23, Proposition 19]. Then,∑
βss∈Λ∗

Gss
Cssβss+Czλz=δ

mTGss ,VGss,λss
(βss)

=
∑

βss∈Λ∗
Gss

Cssβss+Czλz=δ

#{x ∈ Zs
≥0 : Ax = B

(
λss

βss

)
}

= #{(x, βss) :
(
A −B2

0 Css

)
( x
βss
) =

(
B1λss

−Czλz+δ

)}
= #{(x, βss) :

(
A −B2

0 Css

)︸ ︷︷ ︸
=:A

( x
βss
) =

(
B1 0 0
0 −Cz 1

)︸ ︷︷ ︸
=:B

(
λss

λz

δ

)
}.

(IV.3)

After choosing a basis of the lattice Λ∗Gss
we arrive at the

asserted formula (with s′ = dimTGss
and u = t+ rH ).

We stress that the proof of Theorem IV.2 is constructive: The

maps A and B, whose existence is asserted by the theorem,

are defined in (IV.3) in terms of A and B, whose construction

is described explicitly in [22, Proof of Theorem 2.1] (for the

case of g = su(d)) and in [23, §4] (for the general case).

See §VI for an illustration in the context of the Kronecker

coefficients.

If one uses the Kostant multiplicity formula (II.4) instead of

(II.5) in the proof of Theorem IV.2 then one arrives at a similar

formula for the multiplicities mλ
μ involving an additional

alternating sum over the Weyl group of G. After completion

of this work, we have learned of [49, Lemma 3.1] which is

derived in this spirit.

Piecewise Quasi-Polynomiality

Let us use the fundamental weight bases fixed above to

identify Λ∗G ∼= ZrG and Λ∗H ∼= ZrH . The group homomor-

phisms A and B correspond to matrices with integer entries,

which we shall denote by the same symbols. Observe that the

formula in Theorem IV.2 in essence amounts to counting the

number n(y) := #
(
ΔA,B(y) ∩ Zs+s′

)
of integral points in

certain rational convex polytopes of the form

ΔA,B(y) := {x ∈ Rs+s′ : x1, . . . , xs ≥ 0,Ax = By},
(IV.4)

parametrized by y ∈ ZrG+rH . Explicitly,

mλ
μ =

∑
γ∈ΓH

cγn(λ, μ+ γ). (IV.5)

It is well-known that n(y) is a piecewise quasi-polynomial
function in y [68]. That is, there exists a decomposition of

ZrG+rH into polyhedral chambers such that on each chamber

C the function n(y) is given by a single quasi-polynomial,

i.e., there exists a sublattice L ⊆ ZrG+rH of finite index

and polynomials (pz) with rational coefficients, labeled by the

finitely many points z ∈ ZrG+rH/L, such that n(y) = p[y](y)
for all y ∈ ZrG+rH (cf. [69, §2.2]). We record the following

immediate consequence:

Corollary IV.3. For any fixed group homomorphism f : H →
G, the multiplicities mλ

μ are given by a piecewise quasi-
polynomial function in λ and μ.

In particular, this implies that the stretching function k �→
mkλ

kμ is a quasi-polynomial function for large k. This is in fact

true for all k, as has been observed in [16] (cf. [53] for more

general quasi-polynomiality results on convex cones, and also

[70] for further discussion).

V. POLYNOMIAL-TIME ALGORITHM FOR THE SUBGROUP

RESTRICTION PROBLEM

In this section we will formulate our algorithm for the

subgroup restriction problem, Problem I.1. Recall that, by

(IV.5), the computation of the multiplicities mλ
μ effectively

reduces to counting the number of integral points in certain

rational convex polytopes of the form (IV.4). We shall suppose

that the highest weights λ and μ, which are the input to our

algorithm, are given in terms of their coordinates with respect

to the fundamental weight bases fixed in §IV. Clearly, for

each of the finitely many γ ∈ ΓH , the description of the

polytope ΔA,B(λ, μ+ γ) (say, in terms of linear inequalities)

is of polynomial size in the bitlength of the input. It follows

that Barvinok’s algorithm can be used to compute the number

of integral points in each of these polytopes in polynomial

time [25] (see also [26, 27]). This gives rise to the following

polynomial-time algorithm for Problem I.1, thereby establish-

ing Theorem I.2:

Algorithm V.1. Let f : H → G be a homomorphism of com-
pact connected Lie groups. Given as input two highest weights
λ ∈ Λ∗G ∼= ZrG and μ ∈ Λ∗H ∼= ZrH , encoded as bitstrings
containing their coordinates with respect to the fundamental
weight bases fixed above, the following algorithm computes
the multiplicity mλ

μ in polynomial time in the bitlength of the
input:

m← 0
for all γ ∈ ΓH do

n ← #
(
ΔA,B(λ, μ+ γ) ∩ Zs+s′

)
as computed by

Barvinok’s algorithm (see discussion above)
m← m+ cγn

end for
return m

Here, ΔA,B(y) denotes the rational convex polytope defined
in (IV.4), and the finite index set ΓH ⊆ Λ∗H as well as the
coefficients (cγ) are defined in the statement of Theorem IV.2.

There are at least two software packages which have

implemented Barvinok’s algorithm, namely LATTE [71] and

BARVINOK [69, 72]. In §I we have reported on the perfor-

mance of our implementation of Algorithm V.1 for computing

Kronecker coefficients using the latter package.

Remark V.2. The existence of a polynomial-time algorithm

for Problem I.1 in fact already follows abstractly from Corol-

lary IV.3, since in order to compute mλ
μ we merely have

to evaluate a fixed piecewise quasi-polynomial function. This

piecewise quasi-polynomial can be computed algorithmically

by using a variant of Barvinok’s algorithm which is also

implemented in the BARVINOK package; see [69, Proposition

2] and also [27, (5.3.1)].
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VI. KRONECKER COEFFICIENTS

As explained in the introduction, the Kronecker coefficients

play an important role in geometric complexity theory and

quantum information theory. In this section, we will describe

precisely how they can be computed using our methods.

Let us recall the language of Young diagrams which is

commonly used in this context [31]. A Young diagram with

r rows and k boxes is given by an ordered list of integers

λ1 ≥ . . . ≥ λr > 0 with
∑

i λi = k. It can be visualized as

an arrangement of k boxes in r rows with λj boxes in the

j-th row. We set λj = 0 for all j > r. We will now consider

the unitary group U(d), which consists of the unitary d × d-
matrices. Let us fix a system of positive roots and denote

the corresponding basis of fundamental weights by (ωj). To
each Young diagram λ with at most d rows we associate

the irreducible representation of U(d) with highest weight

equal to
∑d

j=1 (λj − λj+1)ωj . Every polynomial irreducible

representation of U(d) arises in this way. By a slight abuse of

notation, we identify Young diagrams with the corresponding

highest weights. More generally, we can associate to every

integer vector β ∈ Zd the weight
∑d

j=1 (βj − βj+1)ωj , where

we set βd+1 = 0. This defines a bijection between Zd and

the weight lattice Λ∗U(d) of U(d). In particular, the positive

roots fixed above correspond to the integer vectors of the form

(. . . , 0, 1, 0, . . . , 0,−1, 0, . . .).

The Kronecker coefficient gλ,μ,ν associated with triples of

Young diagrams λ, μ and ν with k boxes each and at most a,
b and c rows, respectively, can then be defined in terms of the

following subgroup restriction problem of compact, connected

Lie groups: Let H = U(a) × U(b) × U(c) and G = U(abc)
and consider the homomorphism f : H → G given by sending

a triple of unitaries (U, V,W ) to their tensor product U ⊗
V ⊗W . The Kronecker coefficient gλ,μ,ν is then given by the

multiplicity of the irreducible H-representation VH,(λ,μ,ν) =
VU(a),λ⊗VU(b),μ⊗VU(c),ν in the restriction of the symmetric

power Symk(Cabc), which is the irreducible G-representation

labeled by the Young diagram (k) consisting of a single row

with k boxes. That is,

gλ,μ,ν = m
(k)
λ,μ,ν(f) (VI.1)

This definition in fact does not depend on the concrete values

chosen for a, b and c, as can be seen by rephrasing it in terms

of the representation theory of the symmetric group Sk [15,

§8] (but of course a, b and c have to be chosen at least as large

as the number of rows of the Young diagrams). Moreover, it

is evident that the Kronecker coefficients are symmetric in the

variables λ, μ, and ν.
It follows that, for any fixed choice of a, b and c, Algo-

rithm V.1 can be used to compute the Kronecker coefficient

(VI.1) given Young diagrams with at most a, b and c rows, re-

spectively, in polynomial time in the input size, or equivalently

in time O(poly(log k)), where k is the number of boxes of the

Young diagrams. This establishes Corollary I.4. Let us again

stress that the problem of computing Kronecker coefficients

is known to be #P-hard in general [19]; hence we do not

expect that there exists a polynomial-time algorithm without

any assumption on the number of rows of the Young diagrams.

When computing Kronecker coefficients using the above

method, we are only interested in the representation

VU(abc),(k) = Symk(Cabc), not in arbitrary irreducible rep-

resentations of U(abc). By specializing the construction de-

scribed in Theorem IV.2 to this one-parameter family of

representations, we obtain the following result:

Proposition VI.1. The multiplicity of a weight δ =
(δA, δB , δC) ∈ Za ⊕ Zb ⊕ Zc ∼= Λ∗H (we use the identifi-
cations fixed at the beginning of §VI) in the irreducible G-
representation Symk(Cabc) is equal to the number of integral
points in the rational convex polytope

Δ(k, δ) =
{
(xl,m,n) ∈ Rabc

≥0 :
∑
l,m,n

xl,m,n = k,

∑
m,n

xl,m,n = δAl ,
∑
l,n

xl,m,n = δBm,
∑
l,m

xl,m,n = δCn

}
.

It follows that the Kronecker coefficient for Young diagrams
λ, μ, ν with k boxes and at most a, b and c rows, respectively,
is given by the formula

gλ,μ,ν =
∑
γ∈ΓH

cγ #
(
Δ(k, (λ, μ, ν) + γ) ∩ Zabc

)
,

where ΓH and (cγ) are defined as in the statement of Corol-
lary III.2.

Proof: It is well-known that the weight spaces for the

action of U(d) on Symk(Cd) are all one-dimensional and that

the set of weights corresponds to the integer vectors in the

standard simplex rescaled by k [31]. In our case, d = abc, so
that the weights are just the integral points of the polytope{

x = (xl,m,n)l∈[a],m∈[b],n∈[c] ∈ Rabc
≥0 :

∑
l,m,n

xl,m,n = k
}
.

Moreover, the dual map F ∗ : Λ∗U(abc) → Λ∗U(a)×U(b)×U(c) as

defined in (IV.2) is given by{
Zabc → Za ⊕ Zb ⊕ Zc

(xl,m,n) �→
(∑

m,n xl,m,n,
∑

l,n xl,m,n,
∑

l,m xl,m,n

)
.

We conclude that the multiplicity of a weight δ = (δA, δB , δC)
for U(a) × U(b) × U(c) is given by the number of integral

points in the polytope Δ(k, δ) described above.

Just as for our main algorithm, Proposition VI.1 gives

rise to a polynomial-time algorithm for computing Kronecker

coefficients with a bounded number of rows. This second

algorithm runs faster than the generic one presented earlier,

since the ambient space Rabc has a smaller dimension than

what we would get from the construction described in the

proof of Theorem IV.2. We remark that the time complexity

for unbounded a, b and c can be deduced from [27].
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VII. ASYMPTOTICS

In this section we will prove our result on the generic order

of growth of multiplicities in the coordinate ring of a projective

variety (Theorem I.6).

We will work in the following general setup: Let V be a

finite-dimensional rational representation of H , and suppose

that X is an H-stable closed subvariety of the associated

projective space P(V ). The homogeneous coordinate ring

C[X] is graded, and we can decompose each part into its

irreducible components,

C[X] =
∞⊕
k=0

C[X]k =
∞⊕
k=0

⊕
μ

mH,X,k(μ)V
∗
H,μ, (VII.1)

where, following the usual conventions, we have decomposed

with respect to the dual representations V ∗H,μ. The stretching
function is then by definition k �→ mH,X,k(kμ). We stress that

in contrast to [16], where it was assumed that X has at most

rational singularities, we do not even require thatX is a normal

variety [73]. This is highly relevant for geometric complexity

theory, since it was recently shown in [74] and [42] that the

studied varieties (the orbit closures of the determinant and

permanent on the one hand, and of the matrix multiplication

tensor and the unit tensor on the other hand) are in fact never

normal except in trivial situations.

Remark VII.1. The subgroup restriction problem for a rational

group homomorphism f : H → G can be realized in the above

setup: Indeed, for any highest weight λ ∈ Λ∗G,+ consider

X = OG,λ, the coadjoint orbit through λ, with the induced

action of H . This variety can be canonically embedded into

projective space as the orbit of the highest weight vector in

P(VG,λ), and it is a consequence of the Borel–Weil theorem

that C[OG,λ] =
⊕∞

k=0 V
∗
G,kλ. By comparing with (VII.1) it

follows that mH,OG,λ,k(μ) = mkλ
μ . In particular, the above

definition of the stretching function, k �→ mH,OG,λ,k(kμ),
coincides with our previous usage, k �→ mkλ

kμ.

Proof of Theorem I.6: By the Hilbert–Serre theorem, the

function k �→ dimC[X]k is a polynomial of degree dimX
for large k [73, Theorem I.7.5]. Hence there exists a constant

A > 0 such that

AkdimX ∼ dimC[X]k

=
∑

μ∈Λ∗
H,+

mH,X,k(μ) dimVμ =
∑

μ∈ΔX∩ 1
kΛ

∗
H,+

mH,X,k(kμ) dimVkμ,

where for the last equality we have used the definition of the

moment polytope ΔX . By the Weyl dimension formula, we

have

dimVkμ =
∏

α∈RH,+

〈α, kμ+ ρ〉
〈α, ρ〉

=

⎛
⎜⎜⎝ ∏

α∈RH,+

α 	⊥ΔX

〈α, μ〉
〈α, ρ〉

⎞
⎟⎟⎠ kRX +O(kRX−1)

for the representations that occur in C[X]. The coefficient

P (μ) =
∏

α∈RH,+,α 	⊥ΔX
〈α, μ〉/〈α, ρ〉 is a polynomial func-

tion in μ. Since ΔX is compact, we can therefore find a

constant C > 0 such that

dimVkμ ≤ C kRX (∀k, μ ∈ ΔX ∩ 1

k
Λ∗H,+).

It follows that∑
μ∈ΔX∩ 1

kΛ
∗
H,+

mH,X,k(kμ) dimVkμ

≤ C kRX

∑
μ∈ΔX∩ 1

kΛ
∗
H,+

mH,X,k(kμ) ∼ C kRX+dX

∫
dDHX ,

so that dimX ≤ RX + dX .

On the other hand, since DHX is Lebesgue-absolutely con-

tinuous, the boundary of the moment polytope does not carry

any measure. We can therefore find a compact set K contained

in the (relative) interior of the moment polytope which has

positive measure with respect to DHX . Note that P (μ) is

positive for all μ contained in the interior of the moment

polytope (indeed, for all positive roots α with α �⊥ ΔX there

exists ν ∈ ΔX such that 〈α, ν〉 > 0; since we can always write

μ as a proper convex combination of ν and some other point

ν′ ∈ ΔX , it follows that 〈α, μ〉 > 0). This implies that on the

compact set K we can bound P (μ) from below by a positive

constant. Thus there exists a constant D > 0 (depending on

K) such that

dimVkμ ≥ DkRX (∀μ ∈ K ∩ 1

k
Λ∗H,+).

Consequently,∑
μ∈ΔX∩ 1

kΛ
∗
H,+

mH,X,k(kμ) dimVkμ ≥
∑

μ∈K∩ 1
kΛ

∗
H,+

mH,X,k(kμ) dimVkμ

≥ DkRX

∑
μ∈K∩ 1

kΛ
∗
H,+

mH,X,k(kμ) ∼ DkRX+dX

∫
K

dDHX .

We conclude that also dimX ≥ RX + dX , hence we have

equality.

Let us now elaborate on the argument presented at the end of

the introduction, where we showed that Duistermaat–Heckman

measures do not directly give rise to new complexity-theoretic

obstructions. For this, we consider a pair of projective sub-

varieties X and Y with dimX < dimY , as is the case

for the orbit closures of relevance to GCT. Let us assume

that ΔX ⊆ ΔY , so that the moment polytopes alone do not

already give rise to an obstruction. Clearly, this implies that

RX ≤ RY .

Lemma VII.2. Let ΔX ⊆ ΔY and RX < RY . Then,
dimΔX < dimΔY .

Proof: Note that we have

dimΔX = dimaff ΔX ≤ dimaff ΔY = dimΔY ,

with equality if and only if the two affine hulls aff ΔX ⊆
aff ΔY are equal.
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Now by assumption there exists a positive root α ∈ RH,+

that is orthogonal to all points in ΔX (i.e., for all p ∈ ΔX ,

α ⊥ p), but not to all points in ΔY . It follows that α is

also orthogonal to all points in the affine hull of ΔX , but

not to all points in the affine hull of ΔY . Therefore, we have

aff ΔX � aff ΔY .

Lemma VII.3. Let dimΔX < dimΔY . Then,X ⊆ Y implies
dX < dY .

Proof: If X ⊆ Y then it is immediate from (I.1) and

(I.3) that dX ≤ dY . Let us suppose for a moment that in fact

dX = dY . Then it follows from (I.1) that∫
ΔX

dDHX(μ) g(μ) ≤
∫
ΔY

dDHY (μ
′) g(μ′)

for any test function g. In particular, this inequality would

hold for g the indicator function of ΔX . But this is clearly

impossible, since DHY is absolutely continuous with respect

to Lebesgue measure onΔY , for whichΔX is a set of measure

zero.

Corollary VII.4. Let dimX < dimY . Then, X ⊆ Y implies
dX < dY .

Proof: Clearly, X ⊆ Y implies that ΔX ⊆ ΔY and

RX ≤ RY . If RX = RY then the assertion follows directly

from Theorem I.6, since

dX = dimX −RX < dimY −RY = dY .

Otherwise, if RX < RY , it follows from combining

Lemma VII.2 and Lemma VII.3.

As described in the introduction, the upshot of the above is

that we cannot directly deduce from (I.1) a new criterion for

obstructions based on the Duistermaat–Heckman measure that

goes beyond what is provided by the moment polytope.
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