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Abstract—We formulate a new connection between in-
stance compressibility [1]), where the compressor uses
circuits from a class C, and correlation with circuits in
C. We use this connection to prove the first lower bounds
on general probabilistic multi-round instance compression.
We show that there is no probabilistic multi-round com-
pression protocol for Parity in which the computationally
bounded party uses a non-uniform AC0-circuit and trans-
mits at most n/(log(n))ω(1) bits. This result is tight, and
strengthens results of Dubrov and Ishai. We also show that
a similar lower bound holds for Majority.

We also consider the question of round separation, i.e.,
whether for each r � 1, there are functions which can be
compressed better with r rounds of compression than with
r − 1 rounds. We answer this question affirmatively for
compression using constant-depth polynomial-size circuits.

Finally, we prove the first non-trivial lower bounds
for 1-round compressibility of Parity by polynomial size
ACC0[p] circuits where p is an odd prime.

Keywords-compression; bounded-depth circuits; com-
munication complexity

I. INTRODUCTION

Consider the following natural communication game

between Alice and Bob. Alice is given an input x and

she wishes to decide if x ∈ L for some specified

language L. Unfortunately, she only has access to a class

C of circuits which are not powerful enough to compute

L. However, she is given the option of communicat-

ing with Bob, who is trustworthy and computationally

unbounded but does not know x. How many bits of

information do Alice and Bob need to exchange to

decide if x ∈ L? A trivial protocol is for Alice to send x
to Bob and Bob to return the answer. Are there problems

L for which this is close to the best possible?

We call this game the C-compression game for L.

Compression games were defined and studied in the spe-

cific case where Alice has the power of polynomial time

by Dell and van Melkebeek [2] 1, under the moniker of

“oracle communication games”. They use a technique of
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1Independently, the notion of a compression game was considered

by Ishai [3]

Fortnow and Santhanam [4] to show lower bounds for

solving SAT by deterministic multi-round games, under

the assumption that the Polynomial Hierarchy does not

collapse . In contrast, C is typically a class of non-

uniform circuits in our setting, and we are interested

mainly in unconditional lower bounds. Clearly, such

lower bounds can only be shown for C-compression

games where there is already a lower bound known for

computing Boolean functions, otherwise we cannot even

rule out the case that there is a protocol with cost 1.

In this paper, we study C-compression games where

C is AC0 or ACC0. Dubrov and Ishai [5] proved a

lower bound which can be interpreted in our setting as

saying that there cannot be a 1-round protocol of cost

O(n1−δ) for Parity on n bits in the AC0-compression

game, where δ > 0 is any constant. We prove a

stronger and more general bound, which applies to

probabilistic protocols operating in an arbitrary number

of rounds. We also consider the question of whether r-

round protocols are more powerful in general than r−1-

round protocols, and obtain a separation for each fixed

r. Finally, we prove lower bounds for 1-round ACC0-

compression games.

There are several motivations for considering com-

pression games. One natural motivation is to study

the tradeoff between communication cost and computa-
tional complexity. In a traditional communication com-

plexity setting, each player holds only part of the input,

and is unable to solve the problem by itself because of a

lack of information. In a traditional complexity theoretic

setting, there is only one player (the algorithm), who

might find it difficult to solve the problem because of a

lack of computational resources. Our setting interpolates

between the two. Here, Alice suffers from a computa-

tional bottleneck, not having the power to decide x ∈ L
for herself, while Bob suffers from an informational

bottleneck, not knowing x. A similar hybrid between

computational and informational constraints was studied

by Harsha et al. [6]. However, in their setting, the

traditional communication complexity convention of

each player having part of the input is maintained. By

distinguishing between an informationally-constrained
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party and a computationally-constrained one, we are

able to obtain somewhat cleaner results.

A more immediate motivation comes from the notion

of instance compression, defined by Harnik and Naor

[1] and studied in a number of papers since [5], [7],

[2]. The traditional notion of solvability of a language

L involves obtaining, for each input x, a 1-bit answer in-

dicating whether x ∈ L or not. A more relaxed notion is

to compress x, while still preserving information about

its membership in L. In other words, the question is

whether there is an easily-computable length-decreasing

reduction from L to some language L′, and if so, how

small is the output of the reduction as a function of

the input length? Instance compression has a variety

of applications including cryptography [1], reducing the

randomness complexity of sampling [5], kernelization in

parameterized complexity [8], succinct probabilistically

checkable proofs [1], [7] and completeness of sparse

sets [9].

Instance compression of length n instances of a

language L to length l(n) using circuits from a class C is

equivalent to solving the 1-round C-compression game

for L with cost l(n). The generalization to multiple

rounds is still relevant to the above applications, as

well as having particular significance for the study of

computationally-bounded leakage resilience by Faust

et al. [10]. Faust et al. show that there is a circuit

transformation which converts any circuit into a circuit

resilient against leakage functions computable by AC0

circuits such that the size of the leakage is bounded.

This corresponds in a natural way to compression

games. Faust et al. prove their result by using the

Dubrov-Ishai lower bound for Parity [5]. Our results

translate to stronger leakage resilience, and for leakage

that can occur in multiple rounds so that the total size

of the leakage is bounded (corresponding to multi-round

compression games).

We next describe our results and techniques in more

detail.

A. Our Results and Techniques

A natural candidate for lower bounds on AC0-

compression games is Parity, given that we know a lot

about how well constant-depth circuits can compute or

approximate Parity [11], [12], [13]. Dubrov and Ishai

[5] show, using the method of random restrictions, that

for any constant δ < 1, Parity cannot be solved by

a 1-round AC0(poly(n))-compression game with cost

O(n1−δ). Their method does not seem to extend to

proving lower bounds close to linear for multi-round

protocols or for probabilistic protocols.

We essentially resolve these questions by making a

novel connection between probabilistic multi-round C-

compression games and correlation with circuits in C.

We show that any probabilistic multi-round protocol for

a C-compression game solving L in which Alice sends

at most c(n) bits implies that there is some sequence of

circuits in C which have correlation at least 1/O(2c(n)
with L. Note that the correlation bound depends only
on the number of bits sent by Alice. Also, the non-

uniformity of the circuit class C is crucial in deriving our

connection. Using this connection together with recent

tight lower bounds on the correlation of Parity with

constant-depth circuits due to Impagliazzo, Matthews

and Paturi [14], we can show the following tight result:

Theorem 1.1: The cost of any probabilistic

AC0(poly(n))-compression game solving Parity is

Ω(n/(log(n))O(1)). Moreover, this bound is tight in

that for any d, Parity can be solved by a deterministic

1-round AC0(poly(n))-compression game with cost

O(n/(log(n))d).

Note that the upper bound is for one-round protocols

while the lower bound is for probabilistic protocols with

an arbitrary number of rounds.

Theorem 1.1 has an application to leakage-resilience,

and for this application it is important that the lower

bound is for Parity. Consider the problem of encoding

a secret in the presence of an adversary that may adap-

tively perform a sequence of measurements on the secret

using polynomial-size constant-depth circuits, such that

the total number of bits obtained by the adversary is

n/(log(n))ω(1). Using the proof of Theorem 1.1, it can

be shown that the natural XOR-based secret sharing is

secure in this setting [3].

Since our connection between compression and cor-

relation holds generically, we also obtain conditional

lower bounds on probabilistic SIZE(poly)-compression

for NP based on a plausible complexity assumption. To

the best of our knowledge, this is the first evidence that

NP is not probabilistically compressible by polynomial-

size circuits. Also, using a communication complexity

reduction from Parity to Majority, we can show lower

bounds for Majority with parameters similar to those in

Theorem 1.1.

We next consider the question of round separations

for AC0-compression games. The question of round sep-

arations is a classical one in communication complex-

ity introduced by Papadimitriou and Sipser [15], and

resolved in a sequence of papers [15], [16], [17]. The

standard example of a problem that is hard for multiple

rounds is the Pointer Chasing problem. Unlike in the

standard communication setting, in a compression game
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Alice has the entire input to herself. Hence information-

theoretic techniques used in the communication setting

cannot be directly implemented in the compression

setting. The way we get around this problem is by

devising a new Pointer Chasing problem in which Alice

has to compute a hard function to determine a pointer.

The intuition is that for a computationally bounded

Alice, this is the same as a missing pointer and she

has to seek Bob’s help to determine the right pointer.

Justifying this intuition is subtle and requires technical

work involving random restrictions. More precisely, we

show the following:
Theorem 1.2: For every constant r ≥ 2, there exists

a Boolean function Tm,m
r−1

(
hPAR, Parity

)
on n = O(mr)

input bits satisfying the following:

• the deterministic AC0
(
poly(n)

)
-compression

game for the function can be solved with cost

O(m) in r rounds.

• every probabilistic AC0
(
poly(n)

)
-compression

game for the function requires cost ω
(
m2−ε

)
to

solve in r − 1 rounds, for each constant ε > 0.

Finally, we explore the problem of proving incom-

pressibility results for circuit classes for which strong

correlation bounds are not known unconditionally. The

smallest such natural class of circuits is perhaps AC0

augmented with MODp gates for an odd prime p,

known as ACC0[p]. To the best of our knowledge, no

lower bounds were known on even the cost of 1-round

compression games. We prove the following:
Theorem 1.3: Let p be a fixed odd

prime. The cost of any 1-round randomized

ACC0[p]
(
poly(n)

)
-compression game solving Parity is

Ω
(√

n/(log n)O(1)
)
.

B. Plan of the Paper
In Section II, we introduce the basic notions needed

in this work. In Section III, we formalize the connection

between correlation and compression. We then use it

to prove Theorem 1.1 showing the incompressibility

of Parity by AC0
(
poly(n)

)
circuits. In Section IV, we

discuss Theorem 1.2. In Section V, we give lower

bounds for 1-round ACC0[p] compression games for

Parity, proving Theorem 1.3. Finally, in Section VI, we

point out directions for further research. Please note that

due to page limits, we skip several proofs. We encourage

the interested reader to access the full paper from the

authors’ web pages.

II. PRELIMINARIES

We assume a basic familiarity with complexity theory.

The Complexity Zoo2 is an excellent resource for basic

2Available on the web.

definitions and statements of results. Another good

reference is the book by Arora and Barak [18]. We will

also be making use of standard concepts from the area

of communication complexity [19].

We will typically use C to refer to a class of

(sequences of) circuits in a given format, eg. AC0

(constant-depth circuits with unbounded fan-in AND

and OR gates), Formula (circuits with binary AND and

OR gates), and Ckt (circuits with gates of bounded fan-

in). In general, given a circuit class C and a size function

s : N → N, C(s) denotes the circuit class C restricted

to circuits of size O(s). Occasionally, we will abuse

notation and use C(s) to refer to the class of languages

accepted by circuits from C of size O(s). By the size

of a circuit, we will always mean the number of wires

rather than the number of gates.

We say a class C of circuits is closed under OR if for

any sequence of circuit families {Dn}, where for each

n, Dn is a family of circuits from C on n bits, the circuit

sequence {∨Dn} belongs to C. For example, the circuit

classes AC0, Formula and Ckt are closed under OR,

but the circuit class AC0
d of constant-depth circuits of

depth d is not. Similarly, we define closure of a class of

circuits under AND. A class C of circuits is closed under

negation if for any sequence {Cn} of circuits, where

each Cn is on n bits, the sequence {¬Cn} is also in C.

For example, AC0, Formula and Ckt are closed under

negation but the class of monotone circuits is not.

For a language L ⊆ {0, 1}∗, Ln = L ∩ {0, 1}n.

Given a circuit class C and a language L, the C-

compression game for L between two players Alice and

Bob is a communication game played as follows. A C-

bounded protocol Q in the game consists of a sequence

of circuits {Cn}, Cn ∈ C for Alice and a strategy for

Bob, i.e., a function from sequences of messages to

messages. Initially, Alice has the input x, while Bob

has no information. The goal of the game is to decide

whether x ∈ L. In a 1-round protocol, Alice sends Bob

a single message y1 obtained by applying C|x| to x,

after which Bob announces whether or not x ∈ L. In

general, in an r-round protocol, Alice and Bob exchange

messages y1, z1, y2 . . . yr, where for each i, yi is Alice’s

message in the ith round and zi−1 is Bob’s message in

the i’th round. For each i, yi is obtained by applying a

fixed circuit C|x| to 〈x, y1, z1 . . . zi−1〉, while zi is an

arbitrary function of y1, z1 . . . yi, i.e., the history of the

protocol so far. We denote the transcript of a protocol

Q on input x, i.e., the complete sequence of messages

exchanged, by TQ(x).

A protocol Q solves the C-compression game for L
if there is a set A such that for each x ∈ {0, 1}∗,
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x ∈ L iff TQ(x) ∈ A. The communication cost of

Q is the total length of messages sent by Alice, i.e.,

Σr
i=1|yi|. Note that we do not count the messages sent

by Bob when measuring the communication cost. The

length of the messages sent by Bob is only restricted

implicitly by the fact that Alice uses a circuit C ∈ C
to compute her messages. If this circuit is polynomial-

size, for instance, we can assume wlog that Bob sends

only poly(n) length messages, for any extra message

bits cannot affect Alice’s messages and hence cannot

affect the success of the protocol.

Given functions c : N → N and r : N → N, we say

that the C-compression game for L can be solved with

cost c in r rounds if there is a C-bounded protocol Q
solving the game such that on any input of length n, the

protocol has cost at most c(n) and uses at most r(n)
rounds. We say simply that the C-compression game

for L can be solved with cost c if there is a C-bounded

protocol solving the game with cost at most c.

Note that for any L and any non-trivial circuit class C,

the C-compression game for L can be solved with cost

n by a 1-round protocol in which Alice simply sends

her input to Bob. Note also that the implicit restriction

on the length of Bob’s messages via the circuit class C
is important - another way of solving a C-compression

game is for Bob to send Alice the truth-table of L and

Alice to retrieve L(x) from the truth-table.

In case L can be solved by circuits in the class C,

the C-compression game has a trivial protocol - Alice

decides for herself whether x ∈ L and sends the answer

to Bob. This gives a protocol with cost 1.

As defined above, protocols in the C-compression

game are deterministic and solve L on all inputs. We

can extend this in a natural way to probabilistic and

average-case C-compression games. In a probabilistic

C-compression game, Alice has private randomness and

each message of hers is obtained by applying her circuit

to the history of the protocol together with her private

randomness. A probabilistic protocol Q consists of a

sequence of randomized circuits for Alice and a strategy

for Bob. For error function ε : N → [0, 1] and a

cost function c : N → N, the protocol solves L
with cost c and error at most ε if the total length of

messages sent by Alice on any run of the protocol

is at most c(|x|) and there is a set A such that if

x ∈ L, then Pr(TQ(x) ∈ A) � 1 − ε(|x|), and if

x �∈ L, then Pr(TQ(x) ∈ A) � ε(|x|). Given a function

q : N → [0, 1], an average-case protocol Q for L with

success rate q is a deterministic protocol such that there

is a set A for which, for at least q(n) fraction of inputs

x of length n, x ∈ L iff TQ(x) ∈ A. If the circuit class

C is non-uniform, then any probabilistic protocol with

error at most ε(n) can be converted to an average-case

protocol with success rate 1 − ε(n) simply by fixing

the private randomness of Alice so as to maximize the

success rate.

We seek to prove upper and lower bounds on the cost

of compression games for interesting languages L and

classes C of circuits. For most of the paper, the focus

will be on AC0, the class of polynomial-size constant-

depth circuits with AND and OR gates, where the gates

have unbounded fan-in. We always measure size as a

function of the input length |x|.
One of the main ideas in our paper is to connect

cost of C-compression games with correlation bounds

against C. Given a class C of circuits, a language L and

a function s : N → [0, 1], L has correlation at most

s with C if for any circuit C ∈ C and all n ∈ Nat,
Prx∈{0,1}n C(x) = L(x) � 1/2 + s(|x|)/2.

The following inequality, called the Chernoff bound,

will be useful in Section IV. We denote the expectation

of a random variable X by E[X].

Theorem 2.1 (Chernoff bound): [20] Let

X =
∑

i Xi be a sum of independent random

variables, each of which takes value in [0, 1] . Then,

Pr
[|X − E[X]| > ε · E[X]

]
< 2 · exp(− ε2/3 · E[X]

)
,

where ε > 0 is any constant.

III. COMPRESSION IMPLIES CORRELATION

In this section, we show that for classes of circuits C
closed under OR and negation, if the C-compression

game for L can be solved with low cost, then L
correlates well with some circuit in C. We show this first

for deterministic compression games, and then extend

the argument to probabilistic and average-case games. A

crucial feature of our connection between compression

and correlation is that it works for multi-round games

- this enables us to strengthen and generalize the lower

bound of Dubrov and Ishai [5] for solving Parity with

1-round AC0-compression games.

First, we require the following folklore lemma saying

that if a language is computed by an OR of circuits

from a class C which is not too large, then it correlates

reasonably well with some circuit in C. This lemma

follows, for instance, from the Discriminator Lemma

[21].

Lemma 3.1: Let C be any circuit class containing

circuits for the constant functions 0 and 1. Let f : N→
N be a function such that f(n) � 2 for all n, and

L ⊆ {0, 1}∗ be a language such that for each n, Ln is

computed by the OR of at most f(n) circuits from C.

Then L has correlation at least 1/O(f(n)) with C.
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Proof: Fix n and let Ci,n, 1 � i � f(n) be a family

of f(n) circuits each on n bits from the class C such

that Ln is the OR of some subset of those circuits. If

smaller than a 1/2 − 1/(2f(n)) fraction of strings of

length n belong to Ln, then Ln has correlation at least

1/f(n) with the constant function 1 and hence with C.

So assume that at least a 1/2 − 1/(2f(n)) fraction of

strings of length n belong to Ln. Then, since Ln is

computed by the OR of the Ci,n’s, there must be some

j such that Cj,n is 1 for at least a 1/(4f(n)) fraction

of strings of length n; moreover each 1-input to Cj,n

is a 1-input to Ln. Consider the set of inputs Xn of

length n for which Cj,n evaluates to 0. If Ln is 0 for at

least half these inputs, then Cj,n has correlation at least

1/(4f(n)) with Ln, otherwise the constant function 1

has correlation at least 1/(4f(n)) with Ln. In either

case, Ln has correlation at least 1/(4f(n)) with C.

Lemma 3.2: Let c : N → N be a function such that

c(n) � n for all n, C be a class of circuits closed under

OR and negation, s : N→ N be a size function such that

s = Ω(n), and L be a language. If there is a C(s(n))-
compression game for L with cost at most c(n), then

L has correlation at least 1/O(2c(n)) with C(s(n)).

Proof: Suppose there is a C(s(n))-compression

game for L with cost at most c(n). Let {Cn} be the

sequence of C-circuits used by Alice in her protocol,

with the size of each circuit Cn being at most s(n),
and let f be Bob’s strategy. We define some notions

that will be useful in the proof.

A candidate transcript T =< y1, z1, y2 . . . yr > is

simply a tuple of strings which can be interpreted as a

sequence of messages in the protocol. Note that a can-

didate transcript might not actually correspond to any

real protocol. We say that a candidate transcript is Bob-
consistent if for each i, 1 � i � r−1, zi = f(y1 . . . yi).
Informally, a Bob-consistent candidate transcript looks

OK from Bob’s point of view, in that every message

zi is actually obtained by applying his strategy f to

the history so far. A simple, but crucial, point is that

the question of whether a candidate transcript is Bob-

consistent depends only on the transcript itself, and not

on x. This is because Bob has no information about x -

his view of the protocol is defined entirely by messages

from Alice.

We say that a candidate transcript is Alice-consistent

on an input x if for each i, 1 � i � r, yi =
C|x|(x, y1, z1 . . . zi−1). Namely, Alice’s message is ac-

tually obtained by applying the appropriate circuits C|x|
to the history so far. We say that a candidate transcript

is consistent on input x if it is both Bob-consistent and

Alice-consistent on x. Moreover, we say that a candidate

transcript is accepting if after receiving the message yr,

Bob announces that the input is in L. Note that again the

question of whether a transcript is accepting depends

only on the transcript and not on x. We say that the

candidate transcript is t-bounded if
∑r

i=1 |yi| � t.

Now, x ∈ L iff there is a candidate transcript

T =< y1, z1 . . . yr > such that T is consistent on

x and accepting, and moreover T is c(|x|)-bounded.

One direction of this claim is immediate - if x ∈ L,

then the transcript of the protocol given by C|x| and

strategy f for Bob is consistent and accepting, and

satisfies the condition that the total length of messages

sent by Alice is at most c(|x|). Conversely, suppose

there is a candidate transcript T that is consistent on x
and accepting. Since the protocol is Alice-consistent on

x, we have that y1 is indeed the first message sent by

Alice. Since the protocol is Bob-consistent, we have that

z1 is indeed the first message sent in response to Bob.

Continuing inductively, we have that for each round i,
the messages sent by Bob and Alice are indeed zi−1 and

yi. Since the transcript is accepting, we have that Bob

does accept at the end of the protocol, which implies

x ∈ L by the assumption that the protocol is a correct

protocol for the C-compression game for L.

We would like to take advantage of this characteri-

sation to design circuits checking if x ∈ L. The idea is

to cycle over Bob-consistent accepting c(|x|)-bounded

candidate transcripts checking for each one whether it is

Alice-consistent or not. Doing this exhaustively would

take exponential size, but in fact we can write the global

check as an OR of small circuits, where the OR is not

too large. This will imply that L correlates reasonably

well with some circuit in C, by using Lemma 3.1.

Now consider any Bob-consistent accepting c(|x|)-
bounded candidate transcript T . Note that there are at

most 2c(|x|) such transcripts, even though we are placing

no a priori bound on the length of Bob’s messages. For

each sequence of messages y1, y2 . . . yr sent by Alice

of total length at most c(|x|), since Bob’s strategy is

deterministic, there is at most one Bob-consistent ac-

cepting candidate transcript containing these messages

in the y-positions of the tuple.

For each T as described in the paragraph above, we

construct a circuit C ′T which checks whether T is Alice-

consistent. The key idea here is local checkability -

rather than simulating a run of the protocol, C ′T checks

in parallel for each round whether the message sent by

Alice in that round is consistent with the history. Thus

the top gate of C ′T is an AND gate of fan-in r, where r
is half the number of elements in the tuple T . The i’th
input to the AND gate, 1 � i � r, is a circuit checking
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whether yi is consistent with x, y1 . . . zi−1. This is done

simply by simulating C|x| on < x, y1 . . . zi−1 > and

checking using O(|yi|) OR and negation gates whether

the output is precisely yi.
For each T which is Bob-consistent, accepting and

c(|x|)-bounded, the total size of C ′T is at most r +∑r
i=1 |yi| + O(s). This is O(s) since c(n) � n and

s(n) = Ω(n). By the assumption that the circuit class

C is closed under OR and negation, we have that each

circuit C ′T belongs to C, moreover it is in C(s) by the

previous line.

Now, by the characterization of L in terms of con-

sistent accepting c(n)-bounded transcripts, we have that

for each n, Ln is computed by the OR over the at most

2c(n) Bob-consistent accepting candidate transcripts T
of C ′T . Applying Lemma 3.1, this implies that L has at

least correlation 1/O(2c(n)) with C(s).
We apply Lemma 3.2 to obtain lower bounds on

AC0-compression for the Parity language. Dubrov and

Ishai [5] considered this question. In our terminology,

they study the cost of 1-round AC0-compression games

for Parity. They showed that for any constant δ > 0,

Parity cannot be solved with a 1-round compression

game of cost n1−δ . We improve this bound, and more

significantly, extend it to the setting of multi-round

games. To this end, we exploit the connection with

correlation given by Lemma 3.2, and use the following

recent result of Impagliazzo, Mathews and Paturi [14],

which settles an open problem posed by Hastad in his

doctoral dissertation [22] 3.

Theorem 3.3: [14] For any size function s : N → N

and positive integer d, Parity has correlation at most

2−n/O((log(s))d−1) with AC0-circuits of size s and depth

d.

Theorem 3.4: The cost of any AC0(poly(n))-
compression game solving Parity is Ω(n/(log(n))O(1)).
Moreover, this bound is tight in that for any d, Parity

can be solved by a 1-round AC0(poly(n))-compression

game with cost O(n/(log(n))d).
Proof: Suppose there is an AC0(poly(n))-

compression game solving Parity with cost c(n). By

Lemma 3.2, Parity has correlation at least 1/O(2c(n))
with polynomial-sized AC0-circuits of depth d, for some

fixed d. By Theorem 3.3, Parity has correlation at most

2−n/O(log(n))d−1

with AC0-circuits of poly(n) size and

depth d. Thus we get that c(n) = Ω(n/(log(n))O(1)).
To show that the bound is tight, we use the fact that

for any d, Parity can be solved on instances of length

3Independently, and around the same time, Hastad himself has
proved a version of the following result with slightly weaker pa-
rameters using a somewhat different technique. His result is still
unpublished.

(log(n))d by polynomial-sized AC0-cricuits of depth

d + 1 just by a simple divide-and-conquer technique.

This gives the following strategy for Alice in a 1-

round AC0-compression game for Parity. She divides

the input into n/(log(n))d blocks of log(n)d bits each

(we assume for simplicity here that n is a power of two -

this doesn’t affect the asymptotics). She computes Parity

on each block using polynomial-sized AC0 circuits of

depth d and sends the resulting values to Bob. Bob

computes the parity of the bits he sent and accepts iff

the computed value is 1. The cost of this protocol is

O(n/(log(n))d).

Apart from the fact that Theorem 3.4 says something

interesting about games with an arbitrary number of

rounds, one advantage of the proof technique is that

complexity lower bounds for circuit classes yield com-

munication lower bounds for the compression game in

a modular fashion. In contrast, the proof of Dubrov

and Ishai [5] adapts the classical random restriction

technique used to prove constant-depth circuit lower

bounds to the setting of compression.

Perhaps the biggest advantage of our proof technique,

though, is that it says something about probabilistic
compression. In the setting of parameterized instance

compression [4], [2], getting complexity-theoretic evi-

dence against general probabilistic compression of NP
problems is a major open question. In our setting of

AC0-compression games, we are able to resolve this

question for the Parity problem, and indeed for any

language which has small correlation with constant-

depth circuits.

Our lower bounds work in the more general setting

of average-case compression. The natural strategy is

to prove an analogue of Lemma 3.1 saying that if

an OR of circuits correlates well with some Boolean

function, then one of the circuits correlates well with

the function. Unfortunately, this is not true in general.

Instead, we show a refined version stating that if an OR

of disjoint circuits (namely, circuits such that no two

different ones output 1 on the same input) correlates

well with some balanced Boolean function, then one

of the circuits correlates well with the function. Then,

taking advantage of the structure of the Proof of Lemma

3.2, we are able to establish a connection between

average-case compression and correlation.

The following lemma is new to the best of our

knowledge, and might be of independent interest.

Lemma 3.5: Let C be any circuit class. Let f : N→
N be any function, and {Fn} be a sequence of families
of circuits from C such that for each n, Fn contains at

most f(n) circuits, each one on n bits, satisfying the

624



condition that for each input y ∈ {0, 1}n and distinct

circuits C1, C2 ∈ Fn, either C1(y) = 0 or C2(y) = 0.

Let ε : N → [0, 1] be an arbitrary function, and L ⊆
{0, 1}∗ be a balanced language (i.e., Ln has exactly

2n−1 strings for each n) such that for each n, Ln has

correlation at least ε(n) with the OR of circuits in {Fn}.
Then there is a sequence of circuits {Cn} such that

for each n, Cn ∈ Fn and Cn has correlation at least

ε(n)/f(n) with Ln.

Proof: Fix n and let the circuits in Fn be

C1, C2 . . . Ck, where k � f(n). By assumption, the

circuits in Fn all have disjoint 1-sets, and the OR of

the circuits, denoted by C, has correlation at least ε(n)
with Ln. We think of Ln as a Boolean function f . It

would be convenient to assume that each Ci, C and f
outputs a value in {1,−1} (with 0 mapped to 1 and 1

to -1).

In this setting, we make the following two observa-

tions. First, the correlation between any Ci and f is just∣∣Ex[f(x)Ci(x)]
∣∣. Second,

C(x) =

k∑

i=1

Ci(x)− (k − 1)

Hence, by linearity of expectation and using the fact

that f is balanced, we get

ε(n) ≥
∣∣∣∣Ex

[
C(x)f(x)

]∣∣∣∣ =
∣∣∣∣

k∑

i=1

Ex

[
Ci(x)f(x)

]∣∣∣∣

By triangle inequality and averaging, there exists an i
such that

∣∣Ex[Ci(x)f(x)]
∣∣ ≥ ε(n)/k, which finishes the

argument.

Lemma 3.6 (Compression-Correlation): Let c : N→
N be a function such that c(n) � n for all n, C be

a class of circuits closed under negation, s : N → N

be a size function such that s = Ω(n), and L be a

balanced language. Let q : N → [0, 1] be a function

such that q(n) � 1/2 for all n. If there is an average-

case C(s(n))-compression game for L with cost at most

c(n) and success rate at least q(n), then there exists

circuits C1, . . . , Cc(n), each Ci ∈ C(s(n)), such that L
has correlation at least (2q(n) − 1)/O(2c(n)) with the

circuit AND ◦ (C1, . . . , Cc(n)

)
.

Proof: The proof follows the lines of the proof of

Lemma 3.2. The main observation is that the circuits

C ′T are disjoint, and hence we can apply Lemma 3.5.

The OR of the circuits C ′T will have correlation at least

2q(n) − 1 with Ln by the assumption on the success

rate of the average-case protocol, and hence we get that

C(s(n)) has correlation at least (2q(n) − 1)/O(2c(n))
with L.

In the next subsections, we exploit the Compression-

Correlation Lemma to show that Parity remains strongly

incompressible by some natural classes of bounded

depth circuits.

A. Application to AC0

The following is the first strong lower bound on prob-

abilistic multiround compression by a very natural and

well studied class of circuits. It significantly extends the

earlier lower bound for 1-round compression obtained

by Dubrov and Ishai [5].

Theorem 3.7: The cost of any probabilistic

AC0(poly(n))-compression game solving Parity

with error 1/2− 1/2n
o(1)

is Ω(n/(log(n))O(1)).
Proof: Using Lemma 3.6 and Theorem 3.3, we

have that any average-case AC0(poly(n))-compression

game solving Parity with success rate 1/2+1/2n
o(1)

has

cost Ω(n/(log(n))O(1)). The theorem follows from this

and the fact that any probabilistic protocol with error at

most ε(n) yields an average-case protocol with success

rate at least 1− ε(n).

B. Circuits with only MODp gates

Finally, we show incompressibility by bounded depth

circuits comprising only MODp gates, when p is a

fixed prime. Combining our Compression-Correlation

Lemma with correlation bounds implicit in the work

of Chattopadhyay and Wigderson [23], we establish the

following strong bound in the full paper:

Theorem 3.8: Let p be any fixed odd prime. The cost

of any probabilistic CC0[p](s(n))-compression game

solving Parity with error 1/2− 1/2o(n) is Ω(n).

C. More general circuits

Since the Compression-Correlation Lemma is very

general, it can be used to derive compression lower

bounds for C-compression games for larger classes C
under complexity assumptions. As an example, we have

the following result:

Corollary 3.9: Suppose there is a language L ∈
NP such that any sequence of polynomial-size cir-

cuits has correlation at most 1/2n
Ω(1)

with L. Then

the SIZE(poly(n))-compression game for L has cost

Ω(nΩ(1)).
As far as we are aware, this is the first lower bound

on probabilistic multi-round (or even single-round)

compression for NP based on a plausible complexity

assumption relating to solvability by polynomial-size

circuits.

A natural question is whether our techniques can be

applied to get lower bounds in the C-compression game

for some Boolean function f for which it is known that
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f correlates well with C. The answer is positive: we are

able to show similar lower bounds as in Theorem 3.4 for

solving the Majority problem using AC0-compression

games. The Majority problem asks whether at least half

the bits in the input are 1. Note that Majority is a

monotone function, and that any monotone function is

known to have correlation at least log(n)/n with one

of its input bits by a classic result of Kahn, Kalai and

Linial [24].

The key idea in showing the lower bound for Majority

is to reduce from Parity to Majority within the setting

of compression games. We only know how to do the

reduction using a multi-round compression game where

the number of rounds grows with n, but here we reap

the advantages of proving a lower bound for Parity in

AC0-compression games with an arbitrary number of

rounds.

Lemma 3.10: Let c : N → N, c(n) � n and

r : N → N, r(n) � n be functions. Suppose

that the AC0(poly(n))-compression game for Majority

can be solved with cost c(n) in r(n) rounds. Then

the AC0(poly(n))-compression game for Parity can

be solved with cost c(2n)log(n)� in r(2n)log(n)�
rounds.

Proof: See the full version from the authors’ web

pages.

Theorem 3.11: The AC0(poly(n))-compression

game for Majority cannot be solved with cost

O(n/(log(n))O(1)).
Proof: Suppose the AC0(poly(n))-compression

game for Majority can be solved with the stated

cost. Then, by applying Lemma 3.10, we get that

the AC0(poly(n))-compression game for Parity can be

solved with cost O(n/(log(n))O(1)), which contradicts

Theorem 3.4.

IV. THE POWER OF INTERACTION

In order to separate the power of r + 1 round

compression from r round compression, we introduce

the notion of a tree function that is inspired by pointer

chasing problems defined in standard 2-party com-

munication complexity [15], [16], [17]. Fix a pointer
function h : {0, 1}m → [�] and a Boolean function

f : {0, 1}m → {0, 1}. Then, for each integer i ≥ 1,

we define the boolean tree function TFm,�
i (h, f) of

height i composing h and f as follows. Let T �
i denote

the complete �-ary tree of height i. For i ≥ 1, the

input of TFm,�
i (h, f) is a boolean string of length

m(1 + �+ · · ·+ �i−1) that is interpreted to assign each

node of tree T �
i with an m-bit label in the following

natural way: the first m bits of the input label the root

of T �
i . The next m� bits of the input are grouped into

� equal sized blocks C1, . . . , C�, where each block Ci

has m bits. Each of the m blocks is used to label a

distinct node at level 1 of the tree. Proceeding in this

way, we assign labels to all nodes of the tree T �
i . We

define the tree function TFm,�
i (h, f) by induction on i:

TFm,�
1 (h, f) first evaluates h on the label y of the root

node of the tree T �
1 to obtain the index of a child of the

root. Then f is applied to the label of the pointed child

node. In general, TFm,�
i (h, f) for i > 1, evaluates h on

the label of the root node of T �
i to travel to a child node

Q. Then, we apply TFm,�
i−1 (h, f) to the string formed by

concatenating the labels of the nodes of the subtree of

height i− 1 rooted at Q.

Note that for any reasonably powerful circuit class C,

such as AC0, and for any integer r � 2, there is a simple

deterministic protocol solving the C-compression game

for TFm,m
r−1

(
h,

)
in r rounds with cost O(m). This is

because, starting with the root node label, Alice can

send Bob the label of the current node. Bob responds

by evaluating h on it, expecting Alice to send back the

label of the relevant child. The interaction continues

until Alice sends the label of the relevant leaf, at which

point Bob evaluates f on the label and thereby decides

whether the input is a YES input.

The question we want to understand is what happens

when the game has only r−1 rounds. It would seem that

if h is extremely hard for C and f is incompressible by

C, then the best that a protocol with r − 1 rounds can

do is follow the r round game until the r − 2th round,

and then in the final round Alice transmits the m-bit

label of the relevant node at level r − 2 in Tm
r−1 along

with the labels of all its m children. In such a protocol,

in the final round, Alice communicates Ω(m2) bits. A

natural question is to understand for which h, f and

C this is unavoidable in C-compression games. In this

section, we describe a simple h and f for which the

above is essentially an optimal strategy to follow for

AC0
(
poly(n)

)
-compression games.

We will use Parity as our function f , and the pointer

function h is also based on Parity as follows. Divide

the m bits of input to the pointer function into log(�)
equal sized blocks. We assume wlog that � is a power of

2, and that log(�) divides m. Then hPAR first evaluates

the parity of each such block to generate a log(�) bit

string y. Then, it ouputs the number in [�] whose binary

encoding is y. We now state the main theorem of this

section.

Theorem 4.1 (restatement of Theorem 1.2): For ev-

ery constant r ≥ 2, the function TFm,m
r

(
hPAR, Parity

)

on n = O(mr) input bits satisfies the following:

• there is a deterministic r-round AC0
(
poly(n)

)
-
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compression game of cost O(m) that solves it.

• every (r − 1)-round probabilistic AC0
(
poly(n)

)
-

compression game solving it has cost ω
(
m2−ε

)
,

for each constant ε > 0.

Our argument for proving this theorem is based on

a combination of the round elimination technique with

the random restriction method. We point the reader to

the full paper accessible from the authors’ web pages

to get more details.

V. BEYOND CORRELATION

Most of the techniques presented so far in this work

for proving incompressibility, rely on methods that yield

quite strong upper bounds on correlation.
Here, we take up one of the lowest complexity classes

for which strong bounds on correlation are not known.

Specifically, we consider the class of AC0 circuits aug-

mented with MODp gates, denoted by ACC0[p], where

p is an odd prime. The classical result of Smolensky

[?] yields that functions computed by such circuits of

polynomial size and constant depth have correlation

O(1/
√
n) with the parity function. This is a weak bound

which cannot be used to prove incompressibility using

the connection with correlation described in Section 3

of this work. In fact, to the best of our knowledge, no

non-trivial lower bound was known for even the 1-round

compressibility of Parity by such circuits before our

work. Our main result in this sectiob provides such a

lower bound. We make use of the following two results

from the classical work of Razborov and Smolensky.
Theorem 5.1 (Razborov and Smolensky): Let f be

any boolean function computed by an ACC0[p] circuit

of constant depth and poly size. Then, there exists

a MOD − p polynomial P of degree O(log n)O(1)

that approximates f well, i.e. Prx
[
f(x) �= P (x)

]
=

O
(
1/2(logn)O(1))

.
The above is complemented by the following inap-

proximability result:
Theorem 5.2 (Smolensky): Let p be an odd prime and

let P be a MOD−p polynomial of o(
√
n) degree. Then,

Prx
[
PARITY(x) �= P (x)

] ≥ 1/2− Ω
(
1/
√
n
)
.

Combining the two above theorems, we show the

following:
Theorem 5.3 (restatement of Theorem 1.3): Let p be

a fixed odd prime. The cost of any 1-round randomized

ACC0[p]
(
poly(n)

)
-compression game solving Parity is

Ω
(√

n/(log n)O(1)
)
.

Proof: Let C = C1, . . . , Ct be the 1-round com-

pressor, where each Ci is an ACC0[p]
(
poly(n)

)
circuit.

Using Theorem 5.1, we obtain polynomials P1, . . . , Pt,

such that for each i, Prx
[
Ci(x) �= Pi(x)

]
=

O
(
1/2(logn)O(1))

and degree of Pi is O
(
(log n)O(1)

)
.

The first key observation is that the indicator func-

tion for the set of inputs that lead the compressor to

output a fixed message has a low degree polynomial

approximator. More precisely, let a be any message and

let Xa ≡
{
x ∈ {0, 1}n |C(x) = a

}
. We construct

a polynomial that approximates the indicator for Xa,

denoted by 1Xa
, as follows: for each i ≤ t, define

polynomial Qa
i (x) to be 1−Pi(x) if ai = 0, else define

it just to be Pi(x). Then, it is easily verified that the

following

1Xa
(x) =

t∏

i=1

Qa
i (x).

holds for all x on which each Pi(x) = Ci(x).
Let A ⊆ {0, 1}t, be the subset of messages for which

the Solver outputs 1. Define,

Q(x) =
∑

a∈A

t∏

i=1

Qa
i (x).

Thus, Q(x) = Parity(x) holds for each x such that

Pi(x) = Ci(x) for all i ≤ t and the Solver gave the

right answer on x in the compression game. Hence,

Prx
[
Q(x) �= Parity(x)

] ≤ ε + t/qpoly(n), where ε
is the error probability of the compression game. As

error probability can be assumed to be 1/3, Parity is

approximated by Q(x) on 2/3 − o(1) fraction of the

inputs. However, the degree of Q(x) is just t(log n)O(1).

If t =
√
n/

(
log n

)ω(1)
, then we derive a contradiction

invoking Theorem 5.2. This completes the argument.

VI. OPEN PROBLEMS

We point out one of the most obvious directions,

suggested by our work, for pursuing further. In general,

one would like to understand better the connection

between correlation and compression. While we showed

tight lower bounds for AC0-compression games using

recent strong bounds on correlation between Parity and

polynomial size AC0 circuits, there are functions and

circuit classes for which such bounds on correlation do

not exist. One can, in principle, still hope to prove tight

bounds in many such cases. For example for Majority,

we obtained a tight compression bound by reduction

from Parity. For separating the power of r rounds

from r − 1 rounds, we worked directly with random

restrictions avoiding4 a black-box usage of correlation

bounds. However for ACC0[p] circuits, where proving

strong correlation bounds is a major open problem, we

4Note that our formulation of the connection between compression
and correlation is insensitive to the number of rounds in the compres-
sion game.
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could only show Ω
(√

n/(log n)O(1)
)

bounds on the 1-

round compression. It would be interesting to tighten

this bound. More so, as widely conjectured correlation

bounds for ACC0[p] imply the imcompressibility of the

Parity function by such circuits when p is an odd prime.
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