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Abstract—Given an instance of a hard decision problem, a
limited goal is to compress that instance into a smaller, equiva-
lent instance of a second problem. As one example, consider the
problem where, given Boolean formulas ψ1, . . . , ψt, we must
determine if at least one ψj is satisfiable. An OR-compression
scheme for SAT is a polynomial-time reduction that maps
(ψ1, . . . , ψt) to a string z, such that z lies in some “target”
language L′ if and only if

∨
j [ψ

j ∈ SAT] holds. (Here, L′ can
be arbitrarily complex.) AND-compression schemes are defined
similarly. A compression scheme is strong if |z| is polynomially
bounded in n = maxj |ψj |, independent of t.

Strong compression for SAT seems unlikely. Work of Harnik
and Naor (FOCS ’06/SICOMP ’10) and Bodlaender, Downey,
Fellows, and Hermelin (ICALP ’08/JCSS ’09) showed that the
infeasibility of strong OR-compression for SAT would show
limits to instance compression for a large number of natural
problems. Bodlaender et al. also showed that the infeasibility
of strong AND-compression for SAT would have consequences
for a different list of problems. Motivated by this, Fortnow
and Santhanam (STOC ’08/JCSS ’11) showed that if SAT
is strongly OR-compressible, then NP ⊆ coNP/poly. Finding
similar evidence against AND-compression was left as an open
question.

We provide such evidence: we show that strong AND- or OR-
compression for SAT would imply non-uniform, statistical zero-
knowledge proofs for SAT—an even stronger and more unlikely
consequence than NP ⊆ coNP/poly. Our method applies
against probabilistic compression schemes of sufficient “qual-
ity” with respect to the reliability and compression amount
(allowing for tradeoff). This greatly strengthens the evidence
given by Fortnow and Santhanam against probabilistic OR-
compression for SAT. We also give variants of these results for
the analogous task of quantum instance compression, in which
a polynomial-time quantum reduction must output a quantum
state that, in an appropriate sense, “preserves the answer” to
the input instance.

The central idea in our proofs is to exploit the information
bottleneck in an AND-compression scheme for a language L in
order to fool a cheating prover in a proof system for L. Our
key technical tool is a new method to “disguise” information
being fed into a compressive mapping; we believe this method
may find other applications.

Keywords-instance compression; kernelization; polynomial
hierarchy; quantum compression

I. INTRODUCTION

Given an instance of a hard decision problem, we may

hope to compress that instance into a smaller, equivalent

instance, either of the same or of a different decision prob-

lem. Here we do not ask to be able to recover the original

instance from the smaller instance; we only require that the

new instance have the same (yes/no) answer as the original.

Such instance compression may be the first step towards

obtaining a solution; this has been a central technique in

the theory of fixed-parameter-tractable algorithms [1], [2].

Strong compression schemes for certain problems would

also have important implications for cryptography [3]. Fi-

nally, compressing an instance of a difficult problem may

also be a worthwhile goal in its own right, since it can make

the instance easier to store and communicate [3].

A natural goal is to design an efficient reduction that

achieves compression on instances that are particularly

“simple” in some respect. Toward this end, the versatile

framework of parametrized problems [1] has been exten-

sively used to study instance compression. A parametrized

problem is a decision problem in which every instance has

an associated parameter value k, giving some measure of

the complexity of a problem instance.1 As an example, one

can parametrize a Boolean formula ψ by the number of

distinct variables appearing in ψ. An ambitious goal for a

parametrized problem P is to compress an arbitrary instance

x of the decision problem for P into an equivalent instance

x′ of a second, “target” decision problem, where the output

length |x′| is bounded by a polynomial in k = k(x). If

P has such a reduction running in time poly(|x| + k),
we say P is strongly compressible; we say P is strongly
self-compressible if the target problem of the reduction is

P itself. (A strong self-compression reduction is usually

referred to as a polynomial kernelization.)

A. Previous work: results and motivation

Let VAR-SAT denote the Satisfiability problem for

Boolean formulas, parametrized by the number of distinct

variables in the formula. In their study of instance com-

pression for NP-hard problems, Harnik and Naor [3] asked

whether VAR-SAT is strongly compressible.2 They showed

that a deterministic strong compression reduction for VAR-

SAT (with any target problem) would yield a construction

of collision-resistant hash functions based on any one-way

function—a long-sought goal.

1The parameter k is explicitly given as part of the input to the algorithm.
2Strictly speaking, they asked a slightly different question whose equiv-

alence to this one was pointed out in [4].
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In fact, Harnik and Naor showed that for their applica-

tions, it would suffice to achieve strong compression for

a simpler parametrized problem, the “OR(SAT) problem:”
this is the Satisfiability problem for Boolean formulas ex-

pressed as disjunctions ψ =
∨t

j=1 ψj , where the parameter

is now defined as the maximum bit-length of any sub-

formula ψj . Strong compression for VAR-SAT easily im-

plies strong compression for OR(SAT). Harnik and Naor

defined a hierarchy of decision problems called the “VC

hierarchy,” which can be modeled as a class of parametrized

problems (see [4]). They showed that a strong compression

reduction for any of the problems “above” OR(SAT) in

this hierarchy would also imply strong compression for

OR(SAT); this includes parametrized versions of natural

problems like the Clique and Dominating Set problems.

While Harnik and Naor’s primary motivation was to find
a strong compression scheme for OR(SAT) to use in their

cryptographic applications, their work also provides a basis

for showing negative results: in view of the reductions in [3],

any evidence against strong compression for OR(SAT) is

also evidence against strong compression for a variety of

other parametrized problems.

In subsequent, independent work, Bodlaender, Downey,

Fellows, and Hermelin [5] also studied the compressibility

of OR(SAT) and of related problems; these authors’ moti-

vations came from the theory of fixed-parameter tractable
(FPT) algorithms [1]. A strong self-compression reduction

for P provides the basis for an FPT algorithm for P : on input

x, first compress x, then solve the equivalent, compressed

instance. This is one of the most widely-used schemas for

developing FPT algorithms.

Strong self-compression reductions are known for

parametrized versions of many natural NP-complete prob-

lems, such as the Vertex Cover problem; see, e.g., the

survey [2]. However, for many other such parametrized

problems, including numerous problems known to admit

FPT algorithms (such as OR(SAT)), no strong compression

reduction is known. Bodlaender et al. [5] conjectured that

no strong self-compression reduction exists for OR(SAT).
They made a similar conjecture for the closely-related

“AND(SAT) problem,” in which one is given Boolean

formulas ψ1, . . . , ψt and asked to decide whether
∧t

j=1[ψj ∈
SAT] holds—that is, whether every ψj is individually sat-

isfiable. As with OR(SAT), we parametrize AND(SAT) by

the maximum bit-length of any ψj .

Bodlaender et al. showed that these conjectures (some-

times referred to as the “OR-” and “AND-conjectures”)

would have considerable explanatory power. First, they

showed [5, Theorem 1] that the nonexistence of strong

self-compression reductions for OR(SAT) would rule out

strong self-compression for a large number of other nat-

ural parametrized problems; these belong to a class we

call “OR-expressive problems.”3 Under the assumption that

AND(SAT) does not have strong self-compression, Bod-

laender et al. ruled out strong self-compression reductions

for a second substantial list of problems [5, Theorem 2],

belonging to a class we call “AND-expressive.” Despite

the apparent similarity of OR(SAT) and AND(SAT), no

equivalence between the compression tasks for these two

problems is known.

In light of their results, Bodlaender et al. asked

for complexity-theoretic evidence against strong self-

compression for OR(SAT) and AND(SAT). Fortnow and

Santhanam [4] provided the first such evidence: they showed

that if OR(SAT) has a strong compression reduction (to any

target problem), then NP ⊆ coNP/poly and the Polynomial

Hierarchy collapses to its third level.

The techniques of [5], [4] were refined and extended by

many researchers to give further evidence against efficient

compression for parametrized problems, e.g., in [7], [8], [9],

[6], [10], [11], [12], [13], [14], [15]. (See [14] for further

discussion and references.) As one notable development that

is relevant to our work, Dell and Van Melkebeek [8] com-

bined the techniques of [5], [4] with new ideas to provide

tight compression-size lower bounds for certain problems

that do admit polynomial kernelizations. Researchers also

used ideas from [5], [4] in other areas of complexity, giving

new evidence of lower bounds for the length of PCPs [4],

[8] and for the density of NP-hard sets [16].

Finding evidence against strong compression for

AND(SAT) was left as an open question by these

works, however. The limits of probabilistic compression

schemes for OR(SAT) and for OR-expressive problems

(including VAR-SAT) also remained unclear. The results

and techniques of [4] give evidence only against some

restrictive sub-classes of probabilistic compression schemes

for OR(SAT): schemes avoiding false negatives, or

schemes whose error probability or randomness use is

severely restricted.

B. Our results

1) Results on classical compression: We complement

the results of [4] by providing evidence against strong

compression for AND(SAT): we prove that such a com-

pression scheme, to any target problem, would also imply

NP ⊆ coNP/poly. Our techniques extend naturally (and in

a strong fashion) to the probabilistic setting with two-sided

error, in which we expect the compression reduction to obey

some success-probability guarantee on every input. We show

that any sufficiently “high-quality” compression scheme for

AND(SAT) would imply NP ⊆ coNP/poly. Here, “quality”

is defined by a certain relationship between the reliability

3The class of OR-expressive problems, defined in the full version of our
paper, is not identical to the class described in [5], but it is closely related
and contains their class, as well as other classes of problems identified
in [3], [6].
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and the compression amount of the reduction, and allows

for tradeoff.

We also show that beyond a second, somewhat more

demanding quality threshold, probabilistic compression re-

ductions either for AND(SAT) or for OR(SAT) would im-

ply the existence of non-uniform, statistical zero-knowledge
proofs for NP languages—a stronger (and even more un-

likely) consequence than NP ⊆ coNP/poly. The more-

demanding quality threshold in this second set of results

is still rather modest, and allows us to prove the following

result as a special case:

Theorem I.1 (Informal). Suppose that either of AND(SAT)
or OR(SAT) is strongly compressible, with success proba-
bility ≥ .5 + 1/ poly(n) for an AND or OR of length-
n formulas. Then there are non-uniform, statistical zero-
knowledge proofs for all languages in NP (which implies
NP ⊆ coNP/poly).

At the other extreme, where we consider compression

schemes with more modest compression amounts, but with

greater reliability, our techniques yield the following result:

Theorem I.2 (Informal). Let t(n) : N+ → N+ be any poly-
nomially bounded function. Suppose there is a compression
scheme compressing an AND of t(n) length-n SAT instances
into an instance z of a second decision problem L′, where
|z| ≤ C ·t(n) log t(n) for some C > 0. If the scheme’s error
probability on such inputs is bounded by a sufficiently small
inverse-polynomial in n (depending on t(n) and C), then
there are non-uniform, statistical zero-knowledge proofs for
all languages in NP. The corresponding result also holds
for OR-compression.

Our results give the first strong evidence of hardness for

compression of AND(SAT). They also greatly strengthen

the evidence given by Fortnow and Santhanam against

probabilistic compression for OR(SAT), and provide the

first strong evidence against probabilistic compression for

the potentially-harder problem VAR-SAT. Using our results

on the infeasibility of compression for AND(SAT) and

OR(SAT), and building on [3], [5], [4], we give new

complexity-theoretic evidence against strong compressibility

for a list of interesting parametrized problems with FPT

algorithms. This is the first strong evidence against strong

compressibility for any of the ten “AND-expressive” prob-

lems identified in [5]. For the numerous “OR-expressive”

problems identified in [3], [5] and other works, this strength-

ens the negative evidence given by [4].

Our methods also extend the known results on limits to

compression for parametrized problems that do possess poly-

nomial kernelizations: we can partially extend the results

of Dell and Van Melkebeek [8] to the case of probabilistic

algorithms with two-sided error. For example, for d > 1
and any ε > 0, Dell and Van Melkebeek proved that

if the Satisfiability problem for N -variable d-CNFs has

a polynomial-time compression reduction with output-size

bound O(Nd−ε), then NP ⊆ coNP/poly. Their result

applies to co-nondeterministic reductions, and to probabilis-

tic reductions without false negatives; we prove that the

result also holds for probabilistic reductions with two-sided

error, as long as the success probability of the reduction

is at least .5 + N−β for some β = β(d, ε) > 0. Using

reductions described in [8], we also obtain quantitatively-

sharp limits to probabilistic compression for several other

natural NP-complete problems, including the Vertex Cover

and Clique problems on graphs and hypergraphs. (However,

the limits we establish do not give lower bounds on the cost

of oracle communication protocols; these protocols are a

generalization of compression reductions, studied in [8], to

which that work’s results do apply.)

Our results about AND(SAT) and OR(SAT) follow

from more general results about arbitrary languages. For

any language L, we follow previous authors and consider

the “OR(L) problem,” where one is given a collection

x1, . . . , xt of strings, and asked to determine whether at least

one of them is a member of L. We show that if a sufficiently

“high-quality” probabilistic poly-time compression reduc-

tion exists for the OR(L) problem, then L ∈ NP/poly. We

also show that a poly-time compression scheme for OR(L)
meeting a more demanding standard of quality implies

that L possesses non-uniform statistical zero-knowledge

proof systems, and lies in NP/poly ∩ coNP/poly. (For

deterministic compression, the conclusion L ∈ coNP/poly
was established earlier in [4].) Applying these results to

L := SAT gives our hardness-of-compression results for

AND(SAT); applying the second set of results to L := SAT
gives our improved negative results for OR(SAT).

2) Results on quantum compression: Up to this point

we’ve discussed compression reductions in which the input

and output are both classical bit-strings. But from the

perspective of quantum computing and quantum informa-

tion [17], it’s natural to ask about the power of reductions

that output a quantum state over some number of quantum

bits, or “qubits.” If quantum computers become a practical

reality, quantum instance compression schemes could help to

store and transmit hard computational problems; compress-

ing an instance might also be a first step towards its solution

by a quantum algorithm.

We propose a quantum generalization of classical in-

stance compression: a quantum compression reduction for

a language L is a quantum algorithm that, on input x,

outputs a quantum state ρ on some number q of qubits—

hopefully with q � |x|, to achieve significant compression.

Our correctness requirement is that there should exist some
quantum measurement Mq , depending only on q, such that

for every x compressing to q qubits, Mq(ρ) = L(x) holds

with high probability over the inherent randomness in the

measurement Mq(ρ). We do not require that Mq be an

efficiently-performable measurement; this is by analogy to
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the general version of the classical compression task, in

which the target language of the reduction may be arbitrary.

Our results for quantum compression are analogous to

our results in the classical case. First, we show that for

any language L, if a sufficiently “high-quality” quantum

polynomial-time compression reduction exists for the OR(L)
problem, then L possesses a non-uniform, 2-message quan-
tum interactive proof system (with a single prover). Sec-

ond, we show that a sufficiently higher-quality quantum

polynomial-time compression reduction for OR(L) implies

that L possesses a non-uniform quantum statistical zero-
knowledge proof system. Remarkably, the two “quality

thresholds” in our quantum results are essentially the same
as in the corresponding results for the classical case.4 It fol-

lows that, unless there exist surprisingly powerful quantum

proofs of unsatisfiability for Boolean formulas, the limits we

establish for probabilistic compression of AND(SAT) and

OR(SAT) hold just as strongly for quantum compression.5

C. Our techniques

1) The overall approach: We first describe our techniques

for the classical case; these form the basis for the quantum

case as well. Our two general results, giving complexity

upper bounds on any language L for which OR(L) has

a sufficiently high-quality compression reduction, are both

based on a single reduction that we describe next. This

reduction applies to compression reductions mapping some

number t(n) ≤ poly(n) of inputs of length n to an output

string z of length |z| = O(t(n) log t(n)).
Fix any language L such that OR(L) has a possibly-

probabilistic compression reduction

R(x1, . . . , xt) : {0, 1}t×n −→ {0, 1}≤t′ ,

with some target language L′, along with parameters t′, t
satisfying t′ ≤ O(t log t) ≤ poly(n). We will use R to

derive upper bounds on the complexity of L.

A simple, motivating observation is that if we take a

string y ∈ L and “insert” it into a tuple x = (x1, . . . , xt)
of elements of L, replacing some xj to yield a modified

tuple x′, then the values R(x), R(x′) are different with high

probability—for, by the “OR-respecting” property of R, we

will (with high probability) have R(x) ∈ L′, R(x′) ∈ L′.
More generally, for any distribution D over t-tuples of

inputs from L, let D[y, j] denote the distribution obtained

by sampling x ∼ D and replacing xj with y; then the

two output distributions R(D) , R(D[y, j]) are far apart in

4We do place a minor additional restriction on quantum compression
reductions for OR(L): we require that the reduction, on input (x1, . . . , xt),
outputs a quantum state of size determined by (maxj |xj |) and t.

5We remark that 3-message quantum interactive proofs are known to
be fully as powerful as quantum interactive proofs in which polynomially
many messages are exchanged [18], and that these proof systems are equal
in power to PSPACE in the uniform setting [19]. However, 2-message
quantum proof systems seem much weaker, and are not known to contain
coNP.

statistical distance. (Of course, the strength of the statistical-

distance lower bound we get will depend on the reliability

of our compression scheme.)

We want this property to serve as the basis for an inter-

active proof system by which a computationally powerful

Prover can convince a skeptical polynomial-time (but non-

uniform) Verifier that a string y lies in L. The idea for

our initial, randomized protocol (which we will later de-

randomize) is that Prover will make his case by showing his

ability to distinguish between the two R-output distributions

described above, when Verifier privately chooses one of the

two distributions, samples from it, and sends the sample to

Prover.6 But to make our proof system meaningful, Verifier

also needs to fool a cheating Prover in the case y /∈ L. Thus,

we want to choose D, j in such a way that the distributions

R(D), R(D[y, j]) are as close as possible whenever y /∈ L.

We may not be able to achieve this for an index j that is

poorly-chosen; to avoid a bad choice, we choose j uniformly
at random. The compression scheme R doesn’t have room

in its output string to copy its entire input, so there is reason

for hope. This invites us to search for a distribution D∗ over(
Ln

)t
with the following properties:

(i) For every y ∈ Ln, for uniform j the value

Ej [||R(D∗)−R(D∗[y, j])||stat] is “not too large;”7

(ii) D∗ is efficiently sampleable, given non-uniform advice

of length poly(n).

Condition (i) is quite demanding: we need a single dis-

tribution D∗ rendering R insensitive to the insertion of any
string y ∈ Ln. Condition (ii) is also demanding: Ln may

be a complicated set, and in general we can only hope to

sample from distributions over
(
Ln

)t
in which t-tuples are

formed out of a fixed “stockpile” of poly(n) elements of

Ln, hard-coded into the non-uniform advice.

Remarkably, it turns out that such a distribution D∗ can al-

ways be found. In item (i), we can force the two distributions

to be non-neglibly close (with expected statistical distance

≤ 1− 1
poly(n) ) whenever the output-size bound t′ obeyed by

R is O(t log t); the distributions will be much closer when

t′ � t. We call our key result, guaranteeing the existence

of such a D∗, the “Disguising-Distribution Lemma.”
Assuming this lemma for the moment, we use D∗ as

above to reduce any membership claim for L to a distin-

guishing task for a Prover-Verifier protocol. Given any input

y, we’ve constructed two distributions R = R(D∗) and

R′ = R(D∗[y, j]) (with j uniform), where each distribution

is sampleable in non-uniform polynomial time. Our analysis

guarantees some lower bound D = D(n) on ||R−R′||stat
in the case y ∈ L, and some upper bound d = d(N) on this

6Such distinguishing tasks have seen many uses in theoretical computer
science, and we rely upon known protocols of this kind in our work.

7For our purposes, it actually suffices to bound
||R(D∗)−R(D∗[y, j)]||stat, where j is a uniform value sampled
“internally” as part of the distribution. However, our techniques will yield
the stronger property in condition (i) above.
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distance when y /∈ L. (These parameters depend on the relia-

bility and compression guarantees of R.) If D(n)− d(n) ≥
1

poly(n) , we can give non-uniform distinguishing protocols

for L, which can converted to public-coin protocols and then

non-uniformly derandomized to show that L ∈ NP/poly.

If, more strongly, D(n)2 − d(n) ≥ 1
poly(n) then, using a

powerful result due to Sahai and Vadhan [20], we can derive

a non-uniform, statistical zero-knowledge proof system for

L. This also implies L ∈ NP/poly ∩ coNP/poly.

2) The Disguising-Distribution Lemma: The Disguising-

Distribution Lemma is a “generic” result about the behavior

of compressive mappings; it uses no properties of R other

than R’s output-size bound. In view of its generality and

interest, we are hopeful that the lemma will find other

applications.

Our proof of this lemma uses two central ideas. First, we

interpret the search for the “disguising distribution” D∗ as

a two-player game between a “disguising player” (choosing

D∗) and an opponent who chooses y; we can then apply

simple yet powerful principles of game theory. Second, to

build a winning strategy for the disguising player, we will

exploit an information bottleneck in R stemming from its

compressive property.8

To describe the proof, it is helpful to first understand

how one may obtain the distribution D∗ if we drop the

efficient-sampleability requirement on D∗, and focus on the

“disguising” requirement (condition (i)). To build D∗ in this

relaxed setting, we will appeal to the minimax theorem for

two-player, zero-sum games; applied here, it tells us that to

guarantee the existence of a D∗ that succeeds in disguising

all strings y ∈ Ln, it is enough to show how to build a D∗
Y

that succeeds in expectation, when y is sampled from some

fixed (but arbitrary) distribution Y over Ln.

Here, a natural idea springs to mind: let D∗
Y just be a

product distribution over t copies of Y ! In this case, inserting

y ∼ Y into D∗
Y at a random location is equivalent to con-

ditioning on the outcome of a randomly-chosen coordinate

of a sample from D∗
Y . The intuition here is that, due to the

output-size bound on R, the distribution R(D∗
Y ) shouldn’t

have enough “degrees of freedom” to be affected much by

this conditioning.

We show that for any distribution D over {0, 1}n, if

x = (x1, . . . , xt) ∼ D⊗t then conditioning on the value

of xj for a uniformly-chosen index j ∈ [t] has bounded

expected effect on the output distribution R(x). That is,

the expected statistical distance between the pre- and post-

conditioned distributions is bounded non-negligibly away

from 1 (provided that t′ ≤ O(t log t)). We refer to this

important property of R as “distributional stability.”
In our original proof that our compressive mapping R is

8This is hardly the first paper in which such a bottleneck plays a crucial
and somewhat unexpected role. For example, an interesting and slightly
similar application of information-theoretic tools to the study of metric
embeddings was found recently by Regev [21].

distributionally stable, we gave a simple (non-constructive)

way to use R as a one-shot encoding method for inde-

pendent, unbiased bits b1, . . . , bt. The encoding Enc has

a desirable property: for each component j ∈ [t] whose

expected “influence” on the output distribution of R is no-

ticeable (when we fix a single value xj ∼ D), our encoding

transmits bj with noticeable advantage over a random guess.

We can then deduce strong upper bounds on the influence of

a typical component j, using the output-size bound on R and

elementary information-theoretic bounds on the reliability

of compressive encodings. This analysis succeeds when

t′ ≤ t − 2. In our original draft, we used more elaborate

techniques (which involved modifying the mapping R itself)

to analyze the case when t ≤ t′ ≤ O(t log t).

Several researchers pointed out to us that the distributional

stability property can be established in a different way,

using Kullback-Leibler divergence and an inequality due

to Pinsker. This approach allows us to analyze the case

when t′ ≤ (1 + ε)t, for a modest ε > 0. As this author

noted later, the divergence-based approach can be combined

with an alternative to Pinsker’s inequality—a bound due to

Vajda (see [22], [23])—to show that the mapping R has

a non-negligible amount of distributional stability as long

as t′ ≤ O(t log t). Thus we feel that the divergence-based

approach is ultimately the most convenient one to work with

in general, and we will use it here. Colleagues also helped

me to understand that the distributional stability property

for mappings with t′ ≤ (1 + ε)t can also be established

using other similar, known results that follow from the same

divergence/Pinsker-based techniques: a lemma of Raz [24],

and the “Average Encoding Theorem” of Klauck et al. [25].

The latter was used in [25] to identify a stability property

for trace and Hellinger distance metrics, for the inputs to a

quantum communication problem. Their proof is for inputs

drawn from the uniform distribution, but extends readily to

general distributions and can be used to derive the kind of

lemma we need. We feel all of these approaches to proving

distributional stability are worth understanding.9

Using the distributional-stability property of compressive

mappings under product input-distributions, we then estab-

lish a certain “sparsified variant” of this property, which

allows us to replace each copy of D with a small set sampled

from D; this is an important tool in addressing the efficient-

sampleability requirement on our desired D∗. Armed with

this variant, we apply the minimax theorem to show that

there exists a distribution D over product input-distributions

to R—with each product distribution defined over small

subsets of S—such that, in expectation, D disguises the

random insertion of any string y ∈ S at a uniformly-

9R. Impagliazzo suggested the use of Raz’s lemma; S. Vadhan also
helped me to understand the connection. A. Nayak and S. Vadhan suggested
direct proofs of distributional stability based on divergence and Pinsker’s
inequality, which we now use as our main approach. D. van Melkebeek
also suggested the relevance of Pinsker’s inequality.
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chosen position j. Finally, we obtain our desired “disguising

distribution” D∗ as a sparsified version of D, using a

result due to Lipton and Young [26] and, independently,

to Althöfer [27], that guarantees the existence of sparsely-

supported, nearly-optimal strategies in 2-player, zero-sum

games.

3) Extension to the quantum case: Our techniques for

studying quantum compression, presented in the full version,

are closely analogous to the classical case. The main tech-

nical difference is that the output R(D) of our compression

reduction, on any input distribution D, is now a (mixed)

quantum state. In this setting, to carry out an analogue of

the argument sketched in Sections I-C1 and I-C2, we need a

“disguising distribution” for R that meets a modified version

of condition (i) from Section I-C1:

(i’) For every y ∈ Ln, if we select j ∈ [t] uniformly then,

for any quantum measurement M, the expected statisti-

cal distance Ej [||M(R(D∗))−M(R(D∗[y, j]))||stat]
is not too large.

A basic measure of distance between quantum states, the

trace distance, is relevant here: if two states ρ, ρ′ are at trace

distance ||ρ− ρ′||tr ≤ δ, then for any measurement M, the

statistical distance ||M(ρ) − M(ρ′)||stat is at most δ. (In

fact, this property characterizes the trace distance.) Thus to

satisfy condition (i’), it will be enough to construct D∗ so as

to upper-bound Ej [||R(D∗)−R(D∗[y, j])||tr], for uniformly-

chosen j. We do this by essentially the same techniques

as in the classical case. The one significant difference is

that here, we need to establish a “stability property” for

trace distance, analogous to the classical stability property

for statistical distance. This can be obtained using the same

basic divergence-based techniques as in the classical case,

and following [25].10

4) A more “elementary” proof?: Researchers have asked

whether a shorter proof of our most “basic” result, on

the hardness of strong compression for AND(SAT), is

possible. Motivated by this, we have found an alterna-

tive, quantitatively-weaker proof that resembles our original

proof, but avoids using any information-theoretic tools. It

also makes no recourse to the minimax theorem, instead

taking a more incremental approach to defining the needed

non-uniform advice. The resulting proof bears some resem-

blance to the work of Fortnow and Santhanam [4] on the

hardness of compression for OR(SAT). See the full version.

II. PRELIMINARIES

A. Probability and information theory background

All distributions in this paper will take finitely many

values; let supp(D) be the set of values assumed by D
10Our original approach to proving distributional stability also admits a

quantum version, using Nayak’s bound [28] on the reliability of quantum
random access codes.

and let D(u) := Pr[D = u]. Let D⊗t denote a t-tuple of

independent samples from D. We let UK denote the uniform

distribution over a multiset K. The statistical distance of two

distributions D,D′ over a shared universe of outcomes is de-

fined as ||D −D′||stat := 1
2

∑
u∈supp(D)∪supp(D′) |D(u)−

D′(u)|. We will use the following familiar “distinguisha-

bility interpretation” of the statistical distance. Suppose a

value b ∈ {0, 1} is selected uniformly, unknown to us, and

a sample u ∈ U is drawn from D if b = 0, or from D′ if

b = 1. We observe u, and our goal is to correctly guess b. It

is a basic fact that, for any D,D′, our maximum achievable

success probability in this “distinguishing” experiment is

precisely 1
2 (1 + ||D − D′||stat).

The entropy of a random variable X is defined as

H(X) := −∑x∈supp(X) Pr[X = x] log2(Pr[X = x]). The

mutual information I(X;Y ) between r.v.’s X,Y is defined

as I(X;Y ) := H(X)+H(Y )−H((X,Y )). The following

standard fact is proved in the full version:

Lemma II.1. If X1, . . . , Xt are independent, then

I(Y ; (X1, . . . , Xt)) ≥
∑
j∈[t]

I(Y ;Xj) .

The (binary) Kullback-Leibler divergence, or KL diver-
gence, is a useful, non-symmetric measure of difference

between random variables, defined as

DKL(X||Y ) :=
∑

x∈supp(X)

Pr[X = x]·log2 (Pr[X = x]/Pr[Y = x]) .

Note that DKL may be infinite. We have the following basic

equivalence (see [29, Chapter 2]):

Fact II.2. Let X,Y be any random variables; let X ′ be
distributed as X and independent of Y . Then I(X;Y ) =
DKL((X,Y )||(X ′, Y )).

A proof of the following important result can be found

in [29] (see Lemma 11.6.1, p. 370).

Theorem II.3 (Pinsker’s inequality). For any r.v.’s Z,Z ′,
D(Z||Z ′) ≥ 2

ln 2 · ||Z − Z ′||2stat.
When ||Z − Z ′||stat ≈ 1, the following bound, a slight

weakening of Vajda’s inequality (see [22], [23]), gives better

information on the divergence:

Theorem II.4 (Vajda’s inequality). For any r.v.’s Z,Z ′,
D(Z||Z ′) ≥ 1

ln 2

(
ln
(

1
1−||Z−Z′||stat

)
− 1
)

.

B. Statistical distance promise problems

We assume familiarity with promise problems, and with

promise versions of standard complexity classes, including

pr-AM, the promise version of the “Arthur-Merlin” com-

plexity class AM. It is well-known (and follows from [30])

that pr-AM ⊆ pr-NP/poly.

For a Boolean circuit C with one or more outputs, let DC

be the induced output distribution when C is fed a uniformly
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random input. For parameters 0 ≤ d ≤ D ≤ 1, define the

promise problem SD≥D
≤d = (ΠY ,ΠN ) as follows:

ΠY := {〈C,C ′〉 : ||DC −DC′ ||stat ≥ D} ,

ΠN := {〈C,C ′〉 : ||DC −DC′ ||stat ≤ d} .

In this definition, both d = d(n) and D = D(n) may be

parameters depending on the input length n = |〈C,C ′〉|.
We will use the class pr- SZK of promise problems having

statistical zero-knowledge proofs. It follows from a powerful

result of Sahai and Vadhan [20] that this class can be

defined as the set of promise problems having determin-

istic, polynomial-time many-to-one reductions to SD
≥2/3
≤1/3.11

pr- SZK is known to be contained in pr-AM∩ pr- coAM ⊆
pr-NP/poly ∩ pr- coNP/poly [31], [32], and to be closed

under complement [33]. We also have:

Theorem II.5. Let 0 ≤ d = d(n) < D = D(n) ≤ 1 be (not
necessarily computable) parameters.

1) If D > d+ 1
poly(n) , then SD≥D

≤d ∈ pr-NP/poly.
2) If we have the stronger gap D2 > d + 1

poly(n) , then

SD≥D
≤d is many-to-one reducible to SD

≥2/3
≤1/3 ∈ pr- SZK,

in non-uniform polynomial time.

Item 1 uses a standard distinguishing protocol and non-

uniform derandomization; item 2 follows from [20] (and is

described as Theorem 1 in [34]).

C. f -compression reductions

Our next definition is modeled on definitions in [5], [4].

Definition II.6 (Probabilistic f -compression reductions).
Let L,L′ be two languages, and let f : {0, 1}∗ → {0, 1}
be a Boolean function. Let t1(n), t2(n) : N+ → N+ and
ξ(n) : N+ → [0, 1] be given.

A probabilistic f -compression reduction for L, with pa-
rameters (t1(n), t2(n), ξ(n)) and target language L′, is a
randomized mapping R(x1, . . . , xm) outputting a string z,
such that for all (x1, . . . , xt1(n)) ∈ {0, 1}t1(n)×n,

1) PrR[L
′(z) = f

(
L(x1), . . . , L(xt1(n))

)
] ≥ 1− ξ(n);

2) |z| ≤ t2(n).

If some reduction R as above is computable in probabilis-
tic polynomial time, we say that L is PPT-f -compressible

with parameters (t1(n), t2(n), ξ(n)). (This does not require
that (t1(n), t2(n), ξ(n)) themselves be computable.)

III. TECHNICAL LEMMAS

In this section we present our main technical lemmas. Our

final goal in this section will be the “Disguising-Distribution

Lemma,” our key technical tool for our main results.

11We don’t use the fact that this problem is complete for pr-SZK, but
it affords a convenient working definition.

A. Distributional stability

Here we define the notion of “distributional stability”

described in Section I-C2.

Definition III.1. Let U be some finite universe, and let
t, n ≥ 1 be integers. Given a possibly-randomized mapping
F (x1, . . . , xt) : {0, 1}t×n → U , and a distribution D over
{0, 1}n, for j ∈ [t] let

γj := E
y∼D

[∣∣∣∣∣∣F (D⊗(j−1), y,D⊗(t−j)
)
− F

(D⊗t
)∣∣∣∣∣∣

stat

]
.

For δ ∈ [0, 1], say that F is δ-distributionally stable (or

δ-DS) with respect to D if 1
T

∑T
j=1 γj ≤ δ.

Lemma III.2. Let R(x1, . . . , xt) : {0, 1}t×n → {0, 1}≤t′

be any possibly-randomized mapping, for any n, t, t′ ∈ N+.
R is δ-distributionally stable with respect to any input
distribution D over {0, 1}n, where we may take either of
the following two bounds:

1) δ :=
√

ln 2
2 · t′+1

t ;

2) δ := 1− 2−
t′
t −3.

When t′/t = 1− Ω(1), the bound given in item 1 above

is within constant factors of the bound from our original

distributional stability lemma. When t′/t = 1 − α ≈ 1, the

bound in Lemma III.2, item 1 is smaller by a Θ
(
log 1

α

)
factor. We don’t know how to prove a version of item 2

above with our original methods; this alternative bound is

important for our work. In an earlier draft we used a more

complicated workaround to prove the results we will obtain

using Lemma III.2, item 2.

Proof of Lemma III.2: Define independent random

variables Xj ∼ D over {0, 1}n, for j ∈ [t]. Let R :=
R(X1, . . . , Xt).

We have H(R) ≤ log2(|{0, 1}≤t′ |) < t′ + 1. Thus, the

mutual information I((X1, . . . , Xt);R) is less than t′ + 1.

By the independence of the Xjs, Lemma II.1 gives∑
j∈[t]

I(Xj ;R) < t′ + 1 . (1)

By Fact II.2,

I(Xj ;R) = DKL

(
(Xj ,R) || (Y j ,R)

)
, (2)

where Y j ∼ D is independent of R. By Theorem II.3,

DKL

(
(Xj ,R) || (Y j ,R)

) ≥ 2

ln 2
·||(Xj ,R)−(Y j ,R)||2stat

=
2

ln 2
·Exj∼D

[∣∣∣∣∣∣R(D⊗(j−1), xj ,D⊗(t−j)
)
−R

(D⊗t
)∣∣∣∣∣∣

stat

]2
,

where the equality follows from the distinguishability in-

terpretation of statistical distance. Using this and Jensen’s

inequality, we find

(
1

t

∑
j∈[t]

Exj∼D[||R
(
D⊗(j−1), xj ,D⊗(t−j)

)
−R

(D⊗t
) ||stat])2
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≤ 1

t

∑
j∈[t]

Exj∼D[||R
(
D⊗(j−1), xj ,D⊗(t−j)

)
−R

(D⊗t
) ||stat]2,

which is less than ln 2
2 · t′+1

t . Thus, R is
√

ln 2
2 · t′+1

t -

distributionally stable with respect to D. This proves item 1

of the Lemma.

For item 2, we apply the alternative bound, Vajda’s

inequality (Theorem II.4), to each j ∈ [t], to find

DKL

(
(Xj ,R) || (Y j ,R)

) ≥
1

ln 2

(
ln
(
(1− ||(Xj ,R)− (Y j ,R)||stat)−1

)− 1
)

= 1
ln 2

(
ln
(
ε−1
j

)− 1
)
, where we define εj := 1 −

Exj∼D
[∣∣∣∣R (D⊗(j−1), xj ,D⊗(t−j)

)−R (D⊗t)
∣∣∣∣
stat

]
, and

note that εj > 0 since the support of (Y j ,R) contains that

of (Xj ,R). Averaging over j ∈ [t] and applying Eqs. (1)

and (2),

t′ + 1

t
≥ 1

t

∑
j∈[t]

1

ln 2

(
ln
(
ε−1
j

)− 1
)
,

i.e.,
1

t

∑
j∈[t]

ln
(
ε−1
j

) ≤ (ln 2)(t′ + 1)

t
+ 1 .

The function f(x) = ln(1/x) has f ′′(x) = x−2 > 0 for x >
0, and so Jensen’s inequality gives ln(( 1t

∑
j∈[t] εj)

−1) ≤
(ln 2)(t′+1)

t + 1. Thus 1
t

∑
j∈[t] εj ≥ (e

(ln 2)(t′+1)
t +1)−1 ≥

2−
t′
t −3, giving item 2.

Next we need a technical lemma stating that if a mapping

F is distributionally stable with respect to i.i.d. inputs, then

F also obeys a slightly different stability property, in which

we replace an input distribution D with a “sparsified” version

of D. The proof is in the full version.

Lemma III.3. Let U be a finite set, and let F (x1, . . . , xT ) :
{0, 1}T×n → U be given. Suppose F is δ-distributionally
stable with respect to input distribution D⊗T , for every
distribution D over {0, 1}n. Fix some distribution D over
{0, 1}n, and let x1, . . . , xd be independently sampled from
D. Let k∗ ∼ U[d]. Let D̂ denote the distribution defined by
sampling uniformly from the multiset {xk}k 
=k∗ . (This distri-
bution is itself a random variable, determined by x1, . . . , xd

and by k∗.) Define βj as

E
k∗,x1,...,xd

[ ∣∣∣∣∣∣F (D̂⊗(j−1), xk∗ , D̂⊗(T−j)
)

− F
(
D̂⊗T

)∣∣∣∣∣∣
stat

]
,

where the D̂s are to be mutually independent (for fixed val-
ues of x1, . . . , xd and k∗). Then, 1

T

∑t
j=1 βj ≤ δ+2T/d.

Lemma III.4. Let U be a finite set, and let F (x1, . . . , xT ) :
{0, 1}T×n → U be given. Suppose F is δ-distributionally
stable with respect to input distribution D⊗T , for every
distribution D over {0, 1}n.

Let S ⊆ {0, 1}n, and fix d > 0. Given any ε > 0, let s :=
(.5 ln 2)n/ε2�. Then there exists a collection K1, . . . ,Ks

of size-d multisets contained in S, such that for every y ∈ S
the following holds:

E
a ∼U[s],j∗∼U[t]

[ ∣∣∣∣∣∣F (U⊗(j∗−1)
Ka

, y,U⊗(T−j∗)
Ka

)
− F

(U⊗T
Ka

)∣∣∣∣∣∣
stat

]

≤ δ + 2T/(d+ 1) + ε.

Proof: Consider the following two-player,

simultaneous-move, zero-sum game:

• Player 1: chooses a size-d multiset K ⊆ S.

• Player 2: chooses a string y ∈ S.

• Payoff: Player 2 receives a payoff equal to

E
j∗∼U[T ]

[ ∣∣∣∣∣∣F (U⊗(j∗−1)
K , y,U⊗(T−j∗)

K

)
− F

(U⊗T
K

)∣∣∣∣∣∣
stat

]
.

Note that the payoff is a determinate value, given (K, y).
Consider any randomized strategy by Player 2, specified

by a distribution y ∼ Y over S. In response, let KY be the

randomized Player-1 strategy that chooses a size-d multiset

K of elements sampled independently from Y .

To bound the expected payoff under the strategy-pair

(KY , Y ), note that we can equivalently generate (K, y) ∼
(KY , Y ) as follows. First, sample x1, . . . , xd+1 indepen-

dently from Y . Sample k∗ ∼ U[d+1], set y := xk∗ , and

let

K := {x1, . . . , xk∗−1, xk∗+1, . . . , xd+1} .

It is easily verified that (K, y) ∼ (KY , Y ) as desired.

Then Lemma III.3, applied to our initial distributional-

stability assumption on F , informs us that

E
j ∗∼U[t],K,y

[ ∣∣∣∣∣∣F (U⊗(j∗−1)
K , y,U⊗(T−j∗)

K

)
− F

(U⊗T
K

)∣∣∣∣∣∣
stat

]

≤ δ + 2T/(d+ 1).

Thus Player 2’s expected payoff against KY is at most δ +
2T/(d+ 1). As Y was arbitrary, the minimax theorem tells

us that there exists a distribution K over Player-1 moves

that forces Player 2’s expected payoff under every strategy

to be at most δ + 2T/(d + 1). Lemma III.4 then follows,

as an immediate application of a general result due to [26,

Theorem 2] and, independently, to [27] to our game above—

a result showing that all two-player, zero-sum games have

sparsely-supported, nearly-optimal player strategies.

Lemma III.5 (Disguising-Distribution Lemma). Let
R(x1, . . . , xt) : {0, 1}t×n → {0, 1}≤t′ be any possibly-
randomized mapping, for t, t′ ∈ N+. Let S ⊆ {0, 1}n, and
fix d > 0. Given any ε > 0, let s := (.5 ln 2)n/ε2�. Let

δ̂ := min
{√

(ln 2) · (t′ + 1)/(2t), 1− 2−
t′
t −3
}

.

Then there exists a collection K1, . . . ,Ks of size-d mul-
tisets contained in S, such that for every y ∈ S, we have

E
a∼U[s],j∗∼U[t]

[ ∣∣∣∣∣∣R(U⊗(j∗−1)
Ka

, y, U⊗(t−j∗)
Ka

)
− R

(U⊗t
Ka

)∣∣∣∣∣∣
stat

]
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≤ δ̂ + 2t/(d+ 1) + ε.

Proof: This follows immediately from the combination

of Lemmas III.2 and III.4, applied with F := R, T := t.

IV. LIMITS TO EFFICIENT (CLASSICAL) COMPRESSION

Theorem IV.1. Let L be any language. Suppose
t1(n), t2(n) : N+ → N+ are (not necessarily computable)
functions. Suppose that there exists a PPT-OR-compression
reduction R(x1, . . . , xt) : {0, 1}t1(n)×n → {0, 1}≤t2(n) for
L with parameters t1(n), t2(n), error bound ξ(n) < .5, and
some target language L′. Let

δ̂ := min{
√

(ln 2)(t2(n) + 1)/(2t1(n)), 1− 2
− t2(n)

t1(n)
−3} .

1) If for some constant c > 0 we have

1− 2ξ(n)− δ̂ ≥ 1

nc
, (3)

then L ∈ NP/poly.
2) If for some c > 0 we have the (stronger) bound

(1− 2ξ(n))2 − δ̂ ≥ 1

nc
, (4)

then there is a many-to-one reduction, computable in non-
uniform polynomial time, from L to a promise problem in
pr- SZK. Thus L ∈ NP/poly ∩ coNP/poly.

Proof of Theorem IV.1: We will use the same basic

reduction to prove items 1 and 2. First, with non-uniformity

it is easy to handle length-n inputs whenever Ln = {0, 1}n,

so let us assume from this point on that Ln is nonempty.

Using R, we define a deterministic, non-uniform

polynomial-time reduction R that, on input y ∈ {0, 1}n,

builds a description of two circuits C,C ′. The aim is that

||DC − DC′ ||stat should be large if y ∈ L, and small if

y /∈ L. R works as follows:

• Non-uniform advice for length n: a description of the

value t1(n), and the multisets K1, . . . ,Ks ⊆ Ln given by

Lemma III.4 with (t, t′) := (t1(n), t2(n)), S := Ln, d :=
8t1(n) · nc� , ε := 1

4nc . (Here c > 0 is as in Eq. (3) or

Eq. (4), according to which item of the Theorem we are

proving.) Note that d and the value s given by Lemma III.5

are both ≤ poly(n) under these settings, so our advice is of

polynomial length.

• On input y ∈ {0, 1}n: let R output descriptions 〈C,C ′〉
of the following two randomized circuits:

Circuit C: samples a ∼ U[s], then samples x =

(x1, . . . , xt1(n)) ∼ U⊗t1(n)
Ka

, and outputs z := R(x).
Circuit C ′: samples values a ∼ U[s], j∗ ∼ U[t1(n)];

then, samples x ∼
(
U⊗(j∗−1)
Ka

, y, U⊗(t1(n)−j∗)
Ka

)
, and

outputs z := R(x).

Claim IV.2. The following holds:
1) If y ∈ L, then ||DC −DC′ ||stat ≥ D(n) := 1−2ξ(n);
2) If y /∈ L, then ||DC −DC′ ||stat ≤ d(n) := δ̂ + 1

2nc .

The first part of Claim IV.2 follows from the “OR-

respecting” property of R; the second part follows from

Lemma III.5. See the full version for details.

For item 1 of Theorem IV.1, if Eq. (3) holds (for suffi-

ciently large n), then D(n)− d(n) ≥ 1
nc . Now D(n), d(n)

were parametrized in terms of n = |y|, but the gap

D(n)−d(n) is also at least inverse-polynomial in the length

N ≤ poly(n) of the output description 〈C,C ′〉. Thus our re-

duction R reduces any instance y of the decision problem for

L, to an equivalent instance R(y) = 〈C,C ′〉 of the promise

problem SD
≥D′(N)
≤d′(N) , with different parameters D′(N), d′(N)

still satisfying the gap condition D′ − d′ ≥ 1
poly(N) .

By item 1 of Theorem II.5, SD≥D′
≤d′ ∈ pr-NP/poly.

Let (A, {aN}N>0) be an nondeterministic, non-uniform

polynomial-time algorithm and advice family solving

SD≥D′
≤d′ . By applying (A, {aN}) to R(y), we get a nonde-

terministic, non-uniform polynomial-time algorithm solving

L. Thus L ∈ NP/poly, proving item 1 of the Theorem.

For item 2 of Theorem IV.1, if Eq. (4) holds for suffi-

ciently large n, then D(n)2 − d(n) ≥ 1
nc . Arguing as in the

previous case, but this time applying item 2 of Theorem II.5,

we get a nonuniform polynomial-time reduction from L to

SD≥D′
≤d′ , where this time D′(N)2 − d′(N) ≥ 1

poly(N) . This

problem can in turn be reduced to SD
≥2/3
≤1/3 ∈ pr- SZK in non-

uniform polynomial time. This also yields L ∈ NP/poly ∩
coNP/poly, and completes the proof of Theorem IV.1.

The assertions of Theorems I.1 and I.2 for AND(SAT)

follow easily from item 2 of Theorem IV.1, after noting

that an AND-compression reduction for SAT is also an

OR-compression reduction for L := SAT. The assertions

of those Theorems for OR(SAT) follow from item 2 of

Theorem IV.1 applied to L := SAT. See the full version

for the calculations involved.

V. QUESTIONS FOR FURTHER STUDY

(1.) Can the limitations we show on efficient compression

for AND(SAT) and OR(SAT) be extended to the oracle
communication model studied in [8]?

(2.) Using our results on the infeasibility of compression

for AND(SAT), can we extend the work of [8] to prove new

kernel-size lower bounds for interesting problems with poly-

nomial kernels, under the assumption NP � coNP/poly?

(3.) Can we obtain a better quantitative understanding

of the limits to efficient f -compression of NP-complete

languages, where f is a combining function other than OR
or AND? The case f =

∨m
i=1(

∧m
j=1 x

i,j) is an interesting

candidate for study.

(4.) Find more applications for “disguising distributions.”
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