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Abstract—Let G = (V,E) be a planar n-vertex digraph.
Consider the problem of computing max st-flow values in G
from a fixed source s to all sinks t ∈ V \ {s}. We show how to
solve this problem in near-linear O(n log3 n) time. Previously,
nothing better was known than running a single-source single-
sink max flow algorithm n−1 times, giving a total time bound
of O(n2 log n) with the algorithm of Borradaile and Klein.

An important implication is that all-pairs max st-flow values
in G can be computed in near-quadratic time. This is close
to optimal as the output size is Θ(n2). We give a quadratic
lower bound on the number of distinct max flow values and an
Ω(n3) lower bound for the total size of all min cut-sets. This
distinguishes the problem from the undirected case where the
number of distinct max flow values is O(n).

Previous to our result, no algorithm which could solve the
all-pairs max flow values problem faster than the time of Θ(n2)
max-flow computations for every planar digraph was known.

This result is accompanied with a data structure that
reports min cut-sets. For fixed s and all t, after O(n1.5 log2 n)
preprocessing time, it can report the set of arcs C crossing a
min st-cut in O(|C|) time.

Keywords-minimum cut; maximum flow; planar graph; all
pairs

I. INTRODUCTION

Computing max flow in a graph is a classical algorithmic

problem dating back to Ford and Fulkerson [12], [13]. Given

a graph G = (V,E) with arc capacities, a source s ∈ V

and a sink t ∈ V \ {s}, the problem is to send as much

flow as possible from s to t without violating capacity

constraints and flow conservation at vertices in V \ {s, t}.
Many polynomial-time algorithms for this problem are

known. In this paper we focus on planar graphs. There exists

an O(n log n) time algorithm for planar digraphs [3], [9]

and an O(n log log n) time algorithm for planar undirected

graphs [18]. More recently, an O(n log3 n) time algorithm
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for a more general problem with a set of sources and a set

of sinks was proposed [4].

It is natural to consider the problem of finding multiple

max flows and min cuts, e.g., to study the connectivity of

the graph. For undirected (not necessarily planar) graphs,

min st-cuts for all source/sink pairs (s, t) form a laminar

family and can be compactly represented by a tree structure

known as a Gomory-Hu tree [14]. Finding a Gomory-Hu

tree reduces to solving n− 1 min st-cut problems [15]. For

planar undirected graphs, this gives an O(n2 log log n) time

bound using the algorithm in [18]. This time bound was

significantly improved to O(n log5 n) in [6]. In particular,

this means that all max st-flow/min st-cut values can be

computed in near-linear time.

We consider the same problem but for planar digraphs. In

general, this problem is more challenging since the Gomory-

Hu property no longer holds [2]. In fact, there might be

Ω(n2) distinct max flow values [19]. We show that this lower

bound holds for planar digraphs as well. Figure 1 shows a

plane n-vertex digraph with Θ(n2) different cycles. There is

a well-known duality between shortest cycles in the primal

G and min st-cuts in the dual G∗ of a plane graph: let

f and g be distinct faces in G and let f∗ and g∗ be the

corresponding dual vertices in G∗, respectively. Let C be a

shortest clockwise cycle in G such that f is outside of C

and g is inside. Then there is a min f∗g∗-cut in G∗ such that

the arcs crossing this cut are exactly the (dual) arcs of C.

It is now easy to see that the dual of the graph in Figure 1

has Θ(n2) distinct min cuts. Moreover, the total size of the

min cut-sets in this example is Θ(n3).
At first sight it might thus seem impossible to com-

pute the capacities of all min cuts in o(n3) time. Indeed,

repeated applications of the single-source single-sink max

flow algorithm of Borradaile and Klein [3] leads to a

time bound of O(n3 log n). Arikati et al. [1] computed

all of these capacities in O(n2 + γ3 log γ) time where γ

is the minimum number of hammocks, a special kind of

outerplanar subgraphs, into which G can be partitioned.
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However, γ might be Θ(n) and the running time of this

algorithm is also O(n3 log n) in this case. Nevertheless,

we are able to significantly improve this to O(n2 log3 n)
which is optimal up to logarithmic factors. In fact, we show

something stronger: for fixed source s, max st-flow values

for all n−1 sinks t �= s can be found in a total of O(n log3 n)
time.

Our algorithm can be changed to a data structure that can

report the arcs crossing the min cuts, i.e., min cut-sets. Given

a fixed source s it requires O(n1.5 log2 n) preprocessing

time. Afterwards, it can report a min cut-set C for s and

any sink t �= s in O(|C|) time. Hence, the total time

to compute all min cut-sets C in the planar digraph is

O(n2.5 log2 n+
∑

C∈C |C|).
Our result shows that in planar digraphs all O(n2) max

flow values can be computed in time essentially equal to the

time for finding a linear number of max flows. This joins the

result of Arikati et al. [1] that showed an O(n2) algorithm

for the same problem for bounded treewidth digraphs. For

general n-vertex digraphs, Hao and Orlin [16] showed how

to compute O(n) max flows in the time it takes for a single

max flow computation and used this result to find a (global)

min cut. Based on this and our result for planar digraphs, we

conjecture that also in general digraphs all O(n2) max st-

flow values can be computed faster than the time required

for computing O(n2) max st-flows separately. The result

of Hao and Orlin does not resolve this conjecture as the

O(n) source/sink pairs considered by their algorithm are in

a sense arbitrary; in particular, their result cannot be used to

efficiently find max st-flow values for fixed s and all t �= s.

When all arc capacities are equal to a single unit, we

get the arc connectivity problem. For this special case of

our problem, Cheung et al. [8] showed an O(mω) all-pairs

arc connectivity algorithm, for an m-arc digraph, where ω

is the matrix multiplication exponent. This is faster than

running the O(min{m1/2, n2/3} · m) algorithm for st-arc

connectivity of Even and Tarjan [10] for every pair of

vertices when m = O(n1.94), using the currently best known

value of ω < 2.3727 [24]. Cheung et al. also showed an

O(dω−2nω/2+1) algorithm for the same problem for well-

separable digraphs, which also include planar graphs, with

maximum degree d.

Cabello et al. [7] gave a simple algorithm for computing

the shortest non-contractible cycle in a directed graph em-

bedded in a sphere with b boundaries, which uses b minimum

cut computations with a fixed source in the dual planar

graph. Our result improves the time bound of this algorithm

from O(bn log n) to O(n log3 n) when b = ω(log2 n).
The organization of the paper is as follows. In Section II,

we make some definitions and simplifying assumptions. In

Section III, the overview of the algorithm for our prob-

lem is presented. Our algorithm is guided by a recursive

decomposition of the input graph. It recursively computes

max preflows to the outer boundaries of all subgraphs in

the decomposition using previously computed max preflows

to outer boundaries of the parent subgraphs. When the

algorithm reaches a leaf of the recursive decomposition, a

max preflow to a sink t contained in that leaf is found.

The value of a max st-flow can then be identified as the

amount of preflow into t. A straightforward implementation

of this algorithm will not lead to a near-linear time bound.

In Section IV, we show how to efficiently implement the

various steps. An important tool here is a modification of

a flow fixing procedure from [4]. In Section V, we show

how the min st cut-sets themselves can be reported. Finally,

in Section VI we give some conclusions and suggest future

directions of research.

II. PRELIMINARIES

Let G = (V,E) be a simple planar digraph, where V

is the vertex set and E ⊆ V × V is the set of arcs. Let

n = |V |. Since G is planar, we have |E| = O(n). We

assume that for every arc e = (u, v) ∈ E the reversed arc

rev(e) = (v, u) is also in E. This assumption can be easily

satisfied for planar graphs, by using the same embedding for

e and rev(e). By edge we mean a pair of two opposite arcs,

e and rev(e), which share their embedding in the plane. We

use the standard definition of the dual of a plane graph, such

that the dual arc of a primal arc e is oriented from the right

side of e to its left side. If the primal is a flow network with

capacities on arcs, the dual arcs have weights equal to these

capacities.

A. Flows

For graph G the capacities of the arcs are given by a

capacity function c : E → R
+.

Let s ∈ V be a source and let t ∈ V \ {s} be a sink.

We define a flow assignment to be a function f : E → R

satisfying antisymmetry, i.e., for all e ∈ E we require f(e) =
−f(rev(e)). A flow assignment is called an st-pseudoflow

if for all arcs e ∈ E we have f(e) ≤ c(e). The inflow of an

st-pseudoflow f for a vertex v ∈ V is defined as:

inflowf (v) =
∑

(u,v)∈E

f(u, v),

We say that st-pseudoflow f has excess in v when

inflowf (v) > 0 and in this case we refer to inflowf (v) as

its excess (value). Similarly, we say that f has deficit in v

when inflowf (v) < 0 and inflow(v) is its deficit (value). An

st-preflow is an st-pseudoflow such that no vertex in V \{s}
has deficit. An st-flow is an st-preflow such that no vertex

in V \ {t} has excess. When no confusion arises, we shall

omit s and t and simply talk about pseudoflows, preflows,

and flows. A circulation is a pseudoflow such that for every

vertex v ∈ V , inflowf (v) = 0. A circulation does not have

a source or a sink.

The value of a preflow f is given as inflowf (t). Finally,

a max pseudoflow (preflow) is a pseudoflow (preflow) such
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Figure 1: Example of a planar digraph on 4n vertices for which min f∗i g
∗
j -cuts in the dual are pairwise distinct, 2 ≤ i, j ≤ n.

There are thus Θ(n2) min cuts and each has Θ(n) arcs for a total of Θ(n3).

that there is no residual path that starts at a source or at a

vertex with excess and ends at a sink or at a vertex with

deficit. Observe that the value of a max preflow equals the

value of a max flow. We can limit the value of a max flow by

some value d, by adding a new vertex s′ and an arc (s′, s)
of capacity d and regarding s′ as a source instead of s.

B. Pieces and Recursive Decomposition

Let G be a plane graph. We assume that G is triangulated

and has bounded degree. Both can be satisfied simulta-

neously using a standard vertex-splitting argument to get

degree three and then triangulating each face such that each

vertex degree in that face is increased by at most 2.

A piece is a subgraph of G with the same embedding as

G. A vertex of P is called a boundary vertex of P if it

is incident in G to a vertex not belonging to P . All other

vertices of P are called interior vertices of P . We let ∂P

denote the set of boundary vertices of P . A hole of P is

a face of P which is not a face of G. The vertices of P

incident to a hole H separate the whole graph G into two

parts. The interior of H is the part that does not contain P .

In certain places, we shall regard a hole as the subgraph of

G contained in it. It should be clear from context what is

meant.

A decomposition of a piece P is a set of sub-pieces

P1, . . . , Pk such that the union of the vertex sets of these

sub-pieces is the vertex set of P and such that every edge

of P is contained in a unique sub-piece. We define every

boundary vertex of P to be a boundary vertex of every sub-

piece Pi that contains it. We change the standard definition

of a decomposition a little and allow two sub-pieces to share

edges. We include the set of edges that connect the boundary

vertices of a sub-piece in this sub-piece, even if these edges

belong also to another sub-piece. This does not increase the

size complexity of the decomposition, and will simplify the

discussion of the dual graph of the sub-piece.

A recursive decomposition of G is obtained by first

identifying a decomposition of G and then recursing on

each sub-piece. The recursion stops when pieces of constant

size are obtained. The recursive decomposition of G is

the collection of pieces constructed over all levels of the

recursion. We are interested in a special type of recursive

decomposition satisfying the following: a piece P with r

vertices and b boundary vertices is divided into a constant

number of connected sub-pieces each containing at most 1
2r

vertices, at most 1
2b boundary vertices inherited from P , and

at most O(
√
r) additional boundary vertices. In addition, we

require that each piece has only a constant number of holes.

When we refer to a recursive decomposition of G in the

following, we shall assume that it is of this special type.

Parent/child and ancestor/descendant relationships between

pieces correspond to their relationships in the decomposition

tree.

Obtaining a recursive decomposition that satisfies all of

the above conditions is non-trivial. The assumptions that

subpieces contain at most 1
2r vertices, at most 1

2b boundary

vertices inherited from P , and at most O(
√
r) additional

boundary vertices can be satisfied by finding an r-division of

P ; see [18] for details. A construction of connected pieces,

as we require, is given in [5]. In order to ensure that pieces

are connected, we allow O(n) new edges to be added while

maintaining planarity and the chosen embedding of G. The

arcs corresponding to these edges have zero capacity and

thus do not affect max flows or min cuts.

Lemma 1: A recursive decomposition as described above

can be computed in O(n log n) time.

In order to bound the running time of our algorithms we

need the following lemma. The proof is based on the fact

that the total sizes of the pieces and sum of the squares of

the number of boundary vertices in each piece, at each level

of the decomposition are both O(n). The complete details

are omitted due to space constraints.

Lemma 2: Let P be the set of pieces in a recursive

decomposition of G. Then
∑

P∈P |P | = O(n log n) and∑
P∈P |∂P |2 = O(n log n).
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Figure 2: Figure (a) shows a recursive decomposition that

satisfies out all assumptions. In Figure (b), the corresponding

forest F is depicted.

Figure 3: A single step of building the recursive decompo-

sition. The piece is divided by finding an r-division. The

outer piece of the outer boundary of a is b. The outer piece

of the outer boundary of c is the part of a outside of c,

which contains d, e, f , g, and the outer boundary of a.

C. Nesting of Outer Boundaries

Let P be the set of pieces in the recursive decomposition.

We may assume that the fixed source s is not a boundary

vertex of any piece of P . This guarantees that the following

definitions are unambiguous. If a hole H of P contains s in

its interior, we refer to H as the outside of P . The subgraph

of G contained in the outside of P is denoted ext(P ). The

outer boundary of P is the set of boundary vertices of P

contained in the outside of P . Note that for a connected

piece, there is a simple cycle of the piece containing its

outer boundary.

For simplicity, we also assume that each sink belongs to

a piece having an outside. This is true for every vertex that

belongs to a piece that s does not belong to, that is for

all vertices of the graph except for a constant number of

vertices which belong to the same leaf piece of the recursive

decomposition as s.

These assumptions guarantee that the recursive decom-

position has a rather simple structure as illustrated in Fig-

ure 2(a).

Observe that the outer boundaries nest and form a laminar

family, i.e., a forest. Let the nesting of outer boundaries

be represented by a forest F . The outer boundary C is an

ancestor in F of an outer boundary C ′ if the s-side of C ′

contains the s-side of C. For an example, see Figure 2(b).

For any C ∈ F which is not a root in F , we define the

outer piece of C as follows:

1) If C bounds a hole H of a piece P ∈ P and H is

not the outside of P then the deepest such P in the

recursive decomposition is the outer piece of C (see

piece a in Figure 3).

2) Otherwise, let C ′ be the parent of C in F and let P ′ be

the deepest piece in the recursive decomposition such

that the outside of P ′ is bounded by C ′; then there is

a child piece P of P ′ whose outside is bounded by C

(otherwise, we would be in the first case); we define

the outer piece of C to be P ′ excluding the subgraph

of P ′ not contained in the outside of P (see piece c

in Figure 3). Note that in this case the outer piece of

C is not a piece of the recursive decomposition.

To simplify our description, we shall assume in the following

that all cycles C ∈ F have outer pieces of the first type. In

particular, we assume that all outer pieces belong to the

recursive decomposition. Dealing with outer pieces of the

second type will not increase our time bound since by the

following result, Lemma 2 will still hold if we include these

additional outer pieces in P:

Lemma 3: |F| = O(1) and each tree in F has constant

degree.

Proof: By assumption, s is not a boundary vertex of

any piece. For any outer boundary C corresponding to a

root in F , there is no other outer boundary in F separating

C and s. Hence, every such C must lie inside a hole in the

same piece P . Since P has only O(1) holes, the first part

of the lemma follows.

For a node of F to be a child of another node in F , the

outer boundaries corresponding to these nodes must share

vertices with holes of the same piece. The second part of the

lemma follows, again since a piece only has O(1) holes and

each piece is divided into a constant number of connected

subpieces.

D. Dense Distance Dual Graphs

For a piece P , Fakcharoenphol and Rao [11] define the

dense distance graph of P as the complete directed graph

on the set of boundary vertices of P , representing shortest

path distances between them in P . We need to apply this

construction to the dual graph. Moreover, this definition

needs to be tuned to the recursive decomposition of the

graph. Let us denote the set of faces of G that lie inside

a hole H as H∗. We define the set of boundary faces of

the hole H to be a set of faces of G that are in H∗ and

are incident to the boundary vertices of H . The internal

dense distance dual graph IDDG∗(P ) of P is the complete

directed graph on the set of faces of P incident to its

holes. An arc (f1, f2) in IDDG∗(P ) has weight equal to

the (possibly infinite) shortest path distance from f1 to

f2 in G∗[P ∗]; here G∗[P ∗] denotes the subgraph of G∗

induced by the dual vertices in P ∗. Observe that due to our

assumption that vertices have constant degree the number of

faces incident to the holes of P is O(|∂P |).
The dense distance dual graph of H , denoted DDG∗(H),

is the complete directed graph on the set of boundary faces
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of H . Each arc (f1, f2) of DDG∗(H) has weight equal to

the shortest path distance in G∗[H∗] from face f1 to face f2.

The union of DDG∗(H) over all holes of P is denoted by

DDG∗(P ). Lemma 2 and our assumption that vertices have

constant degree imply that the total size of DDG∗(P ) over

all pieces P in a recursive decomposition of G is O(n log n).
Fakcharoenphol and Rao showed how to compute a

dense distance graph of a piece P containing r vertices in

O(r log3 r) time [11]. This time bound can be improved

to O(r log r) using the algorithm of Klein [23]. However,

we do not use his algorithm here since it cannot be ex-

ecuted on dense distance graphs. Here, the advantage of

Fakcharoenphol and Rao’s result is the faster implementation

of Dijkstra which we refer to as FR-Dijkstra. This algorithm

can find a shortest path tree in a graph composed of dense

distance graphs and arcs from the (original) planar graph in

O(b log2 b) time, where b is the sum of the total number of

boundary vertices, counted with multiplicity, and the total

number of arcs. This result allows us to prove the following

lemma.

Lemma 4: The graphs DDG∗(P ) for all pieces P ∈ P
can be computed in O(n log3 n) time.

Proof: Our algorithm proceeds bottom-up on each

tree T ∈ F . For each C ∈ T , it considers the hole

H inside C and computes DDG∗(H) as follows. Let

PC be a piece with outer boundary C. We compute the

dense distance dual graph of PC in O(|PC | log2 |PC |) time.

Next, we build a graph D∗ composed of IDDG∗(PC)
and dense dual distance graphs DDG∗(H ′) for all holes

H ′ �= ext(PC) of PC . In order to compute DDG∗(H) we

need to run FR-Dijkstra O(|C|) = O(|∂PC |) times on D∗.

Each run takes O(|∂PC | log2 |∂PC |) time, so in total we

need O(|∂PC |2 log2 |∂PC |) time. Applying Lemma 2 for

the whole recursion we get O(n log3 n) total time. Finally,

to obtain DDG∗(P ) for all P we simply sum up DDG∗(H ′)
for all H ′ in P .

The original implementation of FR-Dijkstra by

Fakcharoenphol and Rao [11] does not support reduced

lengths defined by a potential function (see Section IV-A).

We use an extension of this implementation by Kaplan et

al. [22] which allows reduced lengths.

III. SINGLE SOURCE - ALL SINKS MAX FLOW

For a fixed source s, we wish to find the value of a max

st-flow in G for every sink t ∈ V \ {s}. In this section

we describe an algorithm which is based on computing the

value of a max flow from s to every outer boundary in F in

a recursive fashion. From this we can easily find the values

we are looking for. In Section IV we describe an efficient

implementation of the algorithm.

A. Max Preflow in a Separated Graph

First, we consider a more specific problem, which enables

us to implement the recursive step of our algorithm. Let

G1 = (V1, E1) and G2 = (V2, E2) be non-empty subgraphs

of G, where V1∪V2 = V and E1∩E2 is a simple cycle. Let

C be the separator V1 ∩ V2 in G. Assume that s ∈ V1 \ C
and t ∈ V2\C. This assumption can be made without loss of

generality. Algorithm MAXPREFLOWINSEPARATEDGRAPH

finds a max st-preflow in G by considering G1 and G2

separately:

Algorithm MAXPREFLOWINSEPARATEDGRAPH:

1) Find a max sC-preflow in G1.

2) Find a max Ct-flow in G2. Denote the value of this

flow by d2.

3) Add the two flow assignments of G1 and G2 to form

a pseudoflow in G.

4) Send flow among vertices of C until there is no

residual path from a vertex u ∈ C with excess to a

vertex v ∈ C with deficit; update the residual network

accordingly.

5) If there are vertices in C with remaining deficit, let

−� be the sum of deficits over all vertices of C with

a deficit; reset the flow on G, and rerun the algorithm

a limit of d2 − � on the Ct-flow pushed in step 2.

The above algorithm is based on the flow partition scheme

of Johnson and Venkatesan [21], which was also used by

[4]. Our implementation is a little different from the original

scheme in its last step. First, we do not return excess flow

from C to s; we are not required to do so, since we are

looking for a preflow. Second, we do not return deficit flow

from C to t. Instead we recompute a Ct-flow with value

limited to d− �. This computation is equivalent, but as we

show below, we can implement it faster.

Notice that since edges of E1 ∩ E2 are incident only to

vertices of C, we may assume that the max sC-preflow in

G1 and the max Ct-flow in G2, from the two first steps

of the algorithm, do not assign flow to any of these edges.

Therefore at step 3 we indeed obtain a pseudoflow that does

not violate the arc capacities.

We shall refer to an algorithm implementing step 4 as a

flow fixing procedure (along C in the residual network).

B. Max Preflow in Pieces

The main algorithm of this section, which we call Al-

gorithm MAXPREFLOWTOBOUNDARIES, uses Algorithm

MAXPREFLOWINSEPARATEDGRAPH in recursion guided

by the nesting of pieces. The problem that Algorithm MAX-

PREFLOWTOBOUNDARIES solves is to identify, for each

piece P , a max preflow from s to the outer boundary of

P . This max preflow is entirely outside of P .

Instead of considering every piece, it is enough to con-

sider only outer boundaries, since if two pieces share the

same outer boundary, we do not need to compute a max

preflow from s to this outer boundary twice. Our algorithm

recurses on each tree T ∈ F . Let C be the outer boundary

corresponding to the root node of T . For the base of the

recursion, we compute a max preflow from s to C outside
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of C. This is done by embedding a super-sink t′ inside C,

connecting every vertex of C to t′ by infinite capacity arcs,

applying a max st′-flow algorithm for planar graphs, and

removing t′.

In the general recursive step, consider an outer boundary

C ′, let C be its parent in T , and assume we have computed

a max preflow from s to C outside of C. We add a super-

sink t′ inside C ′ and infinite capacity arcs as before, and

our problem becomes finding a max preflow from s to

t′. (Note that C and C ′ might share some vertices, in

this case we do not connect the shared vertices to t′, to

avoid flow of infinite value.) We do so using Algorithm

MAXPREFLOWINSEPARATEDGRAPH. We can regard C as

a separator in the graph, where G1 is the s-side (outside)

of C and G2 is the t-side (where C ′ is). We already

know the max sC-preflow required by step 1 of Algorithm

MAXPREFLOWINSEPARATEDGRAPH due to the recursive

structure of our algorithm. It remains to execute the other

steps of the algorithm. In the rest of this section and in the

following section we focus on the implementation of these

steps.

For each outer boundary C corresponding to a leaf node

of T , Algorithm MAXPREFLOWTOBOUNDARIES computes

a max preflow in the outside of C from s to C. Note that

the inside GC of C has constant size. To find a max preflow

from s to each sink t in GC , we can treat t as a degenerate

outer boundary C ′ and extend the above algorithm with an

additional recursion level. From this, we can obtain the value

of a max st-preflow for each sink t �= s in G, as required.

C. Pushing Flow Through Holes

Let C, C ′, and G′ = G1 + G2 be as defined in the

description of algorithm MAXPREFLOWTOBOUNDARIES.

Let P be the outer piece of C ′. Note that C is the outer

boundary of P . In step 2 of Algorithm MAXPREFLOWIN-

SEPARATEDGRAPH we push flow from C to C ′ in G2. This

procedure requires at least time proportional to the size of

G2. Because of the possibility of holes in P , G2 might be

much bigger than P . We cannot afford to spend that much

time in this step. Rather, we would like to bound the amount

of work here by the size of P , so that we can use Lemma

2 to bound the total time of our algorithm.

Let H1, . . . , Hk denote the holes of P bounded by neither

C nor C ′ and let C1, . . . , Ck be the boundaries of these

holes. We observe that G2 = P + H1 + · · · + Hk. In this

subsection, we show how to decompose the computation

of the max flow found in step 2 of Algorithm MAXPRE-

FLOWINSEPARATEDGRAPH into smaller steps according to

this partition of G2. In Section IV, we will give an efficient

implementation of each of these steps.

The single hole case: We first consider the case where

k = 1. Let H = H1 and let CH = C1 be the boundary

of H . We give here an algorithm PUSHFLOWTHROUGH-

HOLES(P,C,C ′, H) which finds a max flow inside P +H

from C to C ′. The algorithm is as follows (each step uses

the residual network for the flow found in earlier steps):

Algorithm PUSHFLOWTHROUGHHOLES(P,C,C ′, H):

1) Compute a max flow in P from C to C ′.

2) Compute a max flow in P from C to CH . Denote the

value of this flow by d2.

3) Compute a max flow in P from CH to C ′. Denote the

value of this flow by d3.

4) Run a flow fixing procedure along CH in P +H .

5) Let �2 be the sum of excesses over vertices of CH with

an excess, and let −�3 be the sum of deficits over all

vertices of CH with a deficit; reset the flow to zero in

P +H , and rerun the previous steps with a limits of

d2− �2 and d3− �3 on the flow pushed in steps 2 and

3, respectively.

Lemma 5: Algorithm PUSHFLOWTHROUGHHOLES(P,
C, C ′, H) finds a max flow from C to C ′ in P +H .

Proof: We will show that after (the first execution of)

step 4, we have a pseudoflow with no residual paths in P +
H from C to C ′, from C to deficit vertices on CH , from

excess vertices on CH to C ′, or from excess vertices on

CH to deficit vertices on CH . This suffices to show that at

termination we have a max flow from C to C ′ in P + H ,

since step 5 in fact only returns excess to s and deficit to t,

as in the flow partition scheme of [21].

Let us identify a cut with the set of arcs crossing it. After

step 1, there is a saturated cut K1 in P separating C from

C ′. Thus, any residual paths from C to C ′ in P +H must

cross H . After step 2, such residual paths cannot exist. Note

that K1 stays saturated after Step 2. We now have a new

saturated cut K2 in P with C on one side and C ′ and H

on the other side. After Step 3, K2 stays saturated (since

C ′ and H are on the same side of K2) and we get another

saturated cut K3 in P separating H and C ′.

Saturated cuts K2 and K3 partition P + H into three

subsets, X , Y , and Z. Set X contains C, Y contains H , and

Z contains C ′. Consider an augmenting path implementation

of the flow fixing procedure in step 4. Each augmenting path

has both its endpoints on H so it crosses neither K2 nor K3

(as it would have to cross K2 or K3 in both directions).

Hence, K2 and K3 stay saturated after step 4 so there is no

residual path in P +H from C to C ′, from C to H , or from

H to C ′. The flow fixing procedure ensures that there are

no residual paths in P +H from excess vertices on CH to

deficit vertices on CH . This shows the desired.

Generalizing PUSHFLOWTHROUGHHOLES to k holes:

Now let us generalize Algorithm PUSHFLOWTHROUGH-

HOLES(P,C,C ′, H) to arbitrary k. Instead of a single

hole H , it gets a set {H1, . . . , Hk} of holes as its fourth

parameter. For k ≥ 2, we can regard P+H1+. . .+Hk−1 as a

piece P ′ with one hole Hk in addition to the two bounded by

C and C ′. Hence the call PUSHFLOWTHROUGHHOLES(P+
H1 + . . .+Hk−1, C, C

′, Hk) solves the problem. Plugging
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in these parameters in the procedure for the single hole case,

we get the following recursive algorithm:

Algorithm PUSHFLOWTHROUGHHOLES(P +H1+ . . .+
Hk−1, C, C

′, Hk):

1) Execute PUSHFLOWTHROUGHHOLES(P, C, C ′,

{H1, . . . , Hk−1}) (finds max flow in P ′ from C to

C ′).

2) Execute PUSHFLOWTHROUGHHOLES(P, C, Ck,

{H1, . . . , Hk−1}). Denote the value of this flow by

d2 (finds max flow in P ′ from C to Ck).

3) Execute PUSHFLOWTHROUGHHOLES(P, Ck, C ′,

{H1, . . . , Hk−1}). Denote the value of this flow by

d3 (finds max flow in P ′ from Ck to C ′).

4) Run a flow fixing procedure along Ck in P + H1 +
. . .+Hk (i.e., in P ′ +Hk).

5) Let �2 be the sum of excesses over vertices of Ck with

an excess, and let −�3 be the sum of deficits over all

vertices of Ck with a deficit; reset the flow to zero in

P ′ = P + H1 + . . . + Hk−1, and rerun the previous

steps with a limits of d2− �2 and d3− �3 on the flow

pushed in steps 2 and 3, respectively.

Lemma 6: A call to PUSHFLOWTHROUGHHOLES(P, C,
C ′, {H1, . . . , Hk}) computes a max flow from C to C ′ in

P+H1+. . .+Hk. The total number max flow computations

in P between boundaries of holes and the total number of

calls to a flow fixing procedure is O(1).
Proof: Correctness follows from Lemma 5 and a trivial

induction on the recursive procedure. The number of max

flow computations in P and the number of calls to the flow

fixing procedure are both exponential in k. Since k = O(1),
the second part of the lemma follows.

IV. AN EFFICIENT IMPLEMENTATION

In this section, we will give an efficient implementation

of Algorithm MAXPREFLOWTOBOUNDARIES. Recall that

it applies Algorithm MAXPREFLOWINSEPARATEDGRAPH

to obtain a max preflow from s to an outer boundary

C ′ outside C ′, given a preflow from s to C outside C,

where C is the parent of C ′ in F . We will show that

by maintaining flows implicitly, such a call to Algorithm

MAXPREFLOWINSEPARATEDGRAPH can be implemented

to run in O((|P | + |∂P |2) log2 |P |) time, where P is the

outer piece of C ′. Combined with Lemma 2, this will

give us the required O(n log3 n) time bound for Algorithm

MAXPREFLOWTOBOUNDARIES. An important tool that we

use is the fast implementation of the flow fixing procedure

by Borradaile et al. [4] which we go through briefly in the

following.

A. The Flow Fixing Procedure of Borradaile et al.

Recall that a flow fixing procedure gets as input a cycle

separator C for a graph G1 + G2 and a pseudoflow for

G1+G2 where all excess and deficit vertices are on C. The

procedure updates the flow network by sending as much flow

as possible from excess to deficit vertices. The flow fixing

procedure in [4] takes advantage of the fact that all such

vertices are on a single simple cycle in the plane, namely

C. It processes the vertices of C one by one in cyclic order.

At each step, if the current vertex vi has excess, as much

flow as possible is sent from vi to the unprocessed vertices.

This is implemented by a call to Hassin’s algorithm [17].

This algorithm computes a single-source single-sink max

flow in a plane digraph where the source and sink are on the

same face. It does this by adding an infinite capacity arc e∞
from the sink to the source and then computes shortest path

distances in the dual from the face to the right of e∞. These

distances define a potential function and it can be shown

that this function induces a max flow in the primal graph.

In the flow fixing procedure, we use Hassin’s algorithm

to compute a max flow from vi to its successor vi+1 on

C in a slightly modified version of G1 + G2, where arcs

of C connecting unprocessed vertices have their capacities

increased to infinity, thereby essentially identifying all these

vertices with vi+1. Conversely, if vi has deficit, a similar call

to Hassin’s algorithm sends as much flow as possible from

the unprocessed vertices to vi. The total number of calls to

Hassin’s algorithm is thus O(|C|). At termination, it can be

shown that there is no residual path from any excess vertex

to any deficit vertex.

During the course of the algorithm, the current flow is

represented as a sum of a flow assignment on arcs of C and

a circulation in G1+G2 where the circulation is defined by a

potential function φ on the dual vertices. Every computation

uses a residual network for the flow found in all previous

steps, so the computed face potential is accumulated in φ

after every step. Hassin’s algorithm finds a max flow by

computing a shortest path tree in the dual. To describe this

part, let us define X∗ to be the set of faces incident to

vertices of C, these are the dual vertices from which we

start the shortest path computations. Since the vertices of

G1 + G2 have constant degree, |X∗| = O(|C|). Moreover,

let G∗
−C be the graph obtained from (G1+G2)

∗ by removing

the dual arcs of C and their reverses. Note that this splits

G∗
−C into two disconnected parts: the inside and outside of

C.

Following Hassin’s algorithm, we compute shortest path

distances from each vertex of X∗ in (G1+G2)
∗ with respect

to a weight function on the arcs induced by the arc lengths

l(u, v) of (G1 + G2)
∗ and the current potential function

φ. More precisely, the reduced length lφ with respect to

φ is used, where lφ(u, v) = l(u, v) + φ(u) − φ(v) [20].

A crucial observation to make in order to get an efficient

implementation is that the only reduced distances needed in

G∗
−C are those starting and ending in vertices of X∗ and

these can be obtained from the the X∗-to-X∗ distances in

G∗
−C and the restriction of φ to X∗. To see this, consider a

path Q = v1v2 . . . vk in G∗
−C with v1, vk ∈ X∗. Then by a

telescoping sums argument, the reduced length lφ(Q) of Q
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is
∑k−1

i=1 l(vivi+1)−φ(vi+1)+φ(vi) = l(Q)+φ(v1)−φ(vk),
showing the desired.

In order to compute shortest path distances in (G1+G2)
∗,

FR-Dijkstra is applied, where G∗
−C is represented by a

matrix of X∗-to-X∗ distances and the dual arcs of C∗ are

given explicitly. The algorithm only computes distances to

vertices belonging to X∗. As we saw above, these values

suffice both to update the flow on C and to update the

X∗-to-X∗ reduced lengths in G∗
−C . Hence, it suffices for

the algorithm to maintain only the restriction of the face

potential to vertices of X∗.

B. Efficient Implementation of Algorithm MAXPREFLOW-

INSEPARATEDGRAPH

We are now ready to describe our implementation of

Algorithm MAXPREFLOWINSEPARATEDGRAPH. Let P , C,

and C ′ be defined as in the beginning of the section

and assume that a max preflow from s to C has been

computed. Denote by HC and HC′ the outside of C and

C ′, respectively. Motivated by the above, we shall represent

the residual network contained in ext(C) implicitly as

DDG∗(HC) together with the flow values on arcs of C.

Note that the vertex set of DDG∗(HC) is the set FC of

boundary faces contained in HC .

The goal is to find in O((|P | + |∂P |2) log2 |P |) time a

max preflow from s to C ′ in ext(C ′), implicitly represented

in DDG∗(HC′) and explicitly represented in C ′. Let us first

consider the simple case where the only holes of P are

HC and the hole bounded by C ′. In this case, Algorithm

MAXPREFLOWINSEPARATEDGRAPH should send a max

flow from C to C ′ in P and then run the flow fixing

procedure on C in ext(C ′).
The first part can be done in O(|P | log |P |) time by a

single call to the algorithm of Borradaile and Klein [3] in P

(after adding a super-source and a super-sink, again we do

not connect the shared vertices of C and C ′, if any, to the

super-sink). Denote by F̂C the set of faces incident to C and

belonging to P . From the flow computed in P , we obtain

IDDG∗(P ) restricted to vertex set F̂C representing the

updated residual network in P . With Klein’s algorithm [23],

this takes O((|P | + |∂P |2) log |P |) time since the number

of faces in P is O(|P |) and since the number of faces in

F̂C is bounded by the size of ∂P , implying that the number

of pairs in F̂C is O(|∂P |2).
We now have dense distance dual graphs on FC and F̂C

which together with the flow on C represent the updated

pseudoflow and we can apply the flow fixing procedure of

Borradaile et al. to C in ext(C ′). This procedure outputs the

updated network as the sum of a flow assignment fC along

C and a (partially represented) circulation ρ in ext(C ′). The

circulation is represented by a potential function φ restricted

to FC+F̂C . In order to extend the new flow to P we use the

same trick as in [4] of replacing ρ by another circulation ρ′.

This amounts to replacing φ by a new potential function φ′

representing ρ′. We need to ensure that fC + ρ′ is feasible,

i.e., that it does not violate capacity constraints. As shown

in [4], this can be done with a single Dijkstra computation

in the dual, where arc weights are the residual capacities.

In our case, the dual is the subgraph of G∗ contained in the

outside of C ′. We apply FR-Dijkstra in the union of G∗[P ∗],
DDG∗(HC), and the edges of C. This allows us to extend

the flow to P in time O((|P |+ |∂P |2) log2 |P |).
If there are no deficit vertices on C, we have the desired s-

to-C ′ preflow in ext(C ′), represented explicitly in P and im-

plicitly outside C. Otherwise, we rerun the above steps with

a limit on the amount of flow pushed in P as described in

step 5 of Algorithm MAXPREFLOWINSEPARATEDGRAPH.

Next, we obtain the updated IDDG∗(P ) restricted to

vertex set F̂C+FC′ (again using Klein’s algorithm). Finally,

to obtain the desired DDG∗(HC′), we run FR-Dijkstra on

the union of IDDG∗(P ), DDG∗(HC), and the dual edges of

C. Total time for all these steps is O((|P |+|∂P |2) log2 |P |).
We assumed above that P had only two holes, namely

HC and the hole bounded by C ′. We now show how to

handle the general case with k additional holes H1, . . . , Hk

bounded by cycles C1, . . . , Ck, respectively. We will ex-

ecute step 2 of Algorithm MAXPREFLOWINSEPARATED-

GRAPH using an efficient implementation of Algorithm

PUSHFLOWTHROUGHHOLES(P,C,C ′, {H1, . . . , Hk}). It

follows from the description of this algorithm and from

Lemma 6, that we need to support a sequence of O(1)
operations of the following two types:

1) Find a max flow in P from a cycle Ci to a

cycle Cj (the one-hole case of Algorithm PUSH-

FLOWTHROUGHHOLES),

2) Run the flow fixing procedure along Ci in P +H1 +
. . .+Hi, for some i.

During the course of Algorithm PUSHFLOWTHROUGH-

HOLES, we will represent the current pseudoflow in a way

similar to the one above. The pseudoflow will be explicitly

represented in P and implicitly for the arcs belonging to

Hi\Ci, for i = 1, . . . , k. Before the call to Algorithm PUSH-

FLOWTHROUGHHOLES, all non-zero flow is contained in

ext(C) so we can represent the initial residual network in

each Hi implicitly as DDG∗(Hi). By Lemma 4, each of

these dense distance dual graphs can be precomputed within

the desired time bound of our overall algorithm.

Let us extend the definition of sets FC and F̂C to

holes H1, . . . , Hk. Denote by Fi the set of boundary faces

contained in Hi and denote by F̂i the set of faces incident

to Ci and contained in P . Note that the dual vertices of

DDG∗(Hi) are the faces of Fi. As flow is accumulated dur-

ing the course of Algorithm PUSHFLOWTHROUGHHOLES,

the residual network inside each Hi needs to be updated.

Since the flow fixing procedure is applied to holes of P , it

suffices to maintain a potential function φ on F1 + . . . +
Fk + F̂1 + . . .+ F̂k.
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Now let us describe how to execute the second type of

operation above, running the flow fixing procedure along

Ci in P + H1 + . . . + Hi, for some i. First we obtain

IDDG∗(P ) restricted to F̂1 + . . . + F̂i representing the

current residual network in P . Again, we obtain this graph

in O((|P |+|∂P |2) log |P |) time with Klein’s algorithm [23].

We then apply FR-Dijkstra to a graph defined by the union

of IDDG∗(P ), DDG∗(H1), . . . ,DDG∗(Hi), and the edges

of C1, . . . , Ci weighted by their residual capacities. This

gives in O(|∂P |2 log2 |P |) time a dense distance dual graph

implicitly representing the residual network in P + H1 +
. . .+Hi. The flow fixing procedure is given this graph and

it identifies a potential function φ on Fi + F̂i defining the

circulation ρ found as well as a flow assignment fCi
on Ci.

This step also takes O(|∂P |2 log2 |P |) time.

As in the two holes case, we will compute a new potential

function φ′ representing a circulation ρ′ such that fCi
+ρ′ is

feasible. As the circulation can push flow through P and any

of the holes H1, . . . , Hi, we need to extend φ′ to the faces

of P as well as the sets F1 + . . . + Fi of boundary faces.

We can do this with a single FR-Dijkstra computation in the

union of P , DDG∗(H1), . . . ,DDG∗(Hi), and the edges of

C1, . . . , Ci. Finally we update the explicit flow in P with

respect to the circulation ρ′.

We have shown how to support type 2 operations in

O((|P | + |∂P |2) log2 |P |) time. Type 1 operations can be

executed in O(|P | log |P |) time with a single call to the algo-

rithm of Borradaile and Klein since we maintain flow explic-

itly in P . By Lemma 6, there are only O(1) type 1 and type

2 operations in total so Algorithm PUSHFLOWTHROUGH-

HOLES and hence step 2 of Algorithm MAXPREFLOWIN-

SEPARATEDGRAPH runs in O((|P |+ |∂P |2) log2 |P |) time.

From the description above, it follows that the remaining

steps of Algorithm MAXPREFLOWINSEPARATEDGRAPH

can be executed within the same time bound.

We can now conclude this section with the main result of

the paper.

Theorem 1: Given a planar n-vertex digraph G = (V,E)
and given a fixed source s in G, max st-flow values from

s to each sink t ∈ V \ {s} can be computed in a total of

O(n log3 n) time.

V. REPORTING MIN CUT SETS

The same ideas we used in Section III and Section IV can

also lead to an efficient algorithm for reporting minimum st-

cut sets. Due to space constraint, the complete details are left

for the full version of this paper. We use the duality between

cut-sets in a planar graph and cycles in the dual planar graph.

Let C be an st-cut set, that is a set of arcs whose removal

separates s from t. Then, the dual arcs of the arcs of C form

a cycle which separates s from t and goes clockwise around

t. In particular, if f is a max st-flow, then a clockwise cycle

M (in the dual graph) which separates s from t and whose

length is equal to the value of f is a dual of a min-cut.

In this case we call M a shortest st-separating cycle. If we

consider the dual of the residual graph (the lengths are given

by residual capacities with respect to f ), then the length of

M is 0.

We begin by decomposing the graph into O(n1/2) pieces

of size O(n1/2), each having O(n1/4) boundary vertices and

a constant number of holes. This can be done in O(n log n)
time with an algorithm by Italiano et al. [18]. Consider a

source s and a sink t, let C be the outer boundary of the

piece containing t. Our algorithm for this problem finds a

max st-flow in a way similar to our algorithm from the

previous section, again using the flow partition scheme of

[21]. First we find a max sC-flow, then we find a max Ct-

flow, next we run the flow fixing procedure, and last we

return any excess to s and any deficit to t. However, we do

not compute the st-flow itself, but an implicit representation

of the flow, as in Section IV.

Unlike Section IV, here we need to update the dense

distance dual graph, which stores the implicit representation

of the flow, following the operation which returns excess

flow from C to s. The following observation is the key for

this step. Fix two faces x, y incident to C. Then, for every

shortest st-separating cycle M , which contains a subpath Q

that is embedded outside C and goes from x to y in the

dual graph, the path Q is one of two possible paths: either

the shortest x to y path that goes clockwise around s, or the

shortest x to y path that goes counterclockwise around s,

with respect to the original capacity of the graph (regardless

of the residual flow).

After we have the implicit max st-flow representation, we

retrieve a min st-cut set using a lemma which states that a

dual cycle M with length 0, with respect to the residual

capacity, such that M has flow entering it, is a shortest st-

separating cycle. We consider only arcs of the dense distance

graph of the implicit representation of the flow which have

length 0, and look for a cycle that consists of such arcs, such

that at least one of these arcs corresponds to a dual path that

has flow crossing it.

Altogether, we get the following result:

Theorem 2: There exists a data structure which, given a

planar n-vertex digraph G = (V,E) and a fixed source

s in G, can answer queries about min st-cut sets for a

given t. The data structure requires O(n1.5 log2 n) time for

preprocessing and the min st-cut set M is computed in

O(|M |) time. The data structure requires O(n1.5) space.

VI. CONCLUDING REMARKS

We gave an O(n log3 n) time algorithm for the problem

of finding max st-flow values for a fixed source s and

all sinks t ∈ V \ {s} in an n-vertex planar digraph

G = (V,E). The previous best known solution was to

perform n−1 executions of a single-source single-sink max

flow algorithm, which gave an O(n2 log n) time bound with

the algorithm of Borradaile and Klein [3].
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An immediate corollary of our result is a near-quadratic

time algorithm for finding max st-flow values for all

source/sink pairs (s, t). We showed that the number of

distinct max st-flow values is quadratic in the worst case.

Hence, our algorithm is optimal up to logarithmic factors.

Prior to this result, computing all max-flow values in

a directed planar graph required up to Θ(n2) max-flow

computations. We conjecture that a similar improvement

is possible for general directed graphs. Another interesting

direction to pursue is to prove or disprove the existence

of a data structure similar to the oracle in [6], which can

answer queries for max st-flow values in constant time after

o(n2) preprocessing. A related question is whether it is

possible to improve the time needed to find max st-flow

values for k given input pairs (s, t)? Also, is it possible to

remove the log-factors, i.e., compute all max-flow values in

optimal O(n2) time? Finally, the time needed to compute

all cut-sets C in the planar digraph with our algorithm

is O(n2.5 log2 n +
∑

C∈C |C|). Can this running time be

improved to O(n2.5−ε +
∑

C∈C |C|)?
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