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Abstract—In this paper, we present a new exact algorithm for
counting perfect matchings, which relies on neither inclusion-
exclusion principle nor tree-decompositions. For any bipartite
graph of 2n nodes and Δn edges such that Δ ≥ 3, our algo-
rithm runs with O∗(2(1−1/O(Δ logΔ))n) time and exponential
space. Compared to the previous algorithms, it achieves a better
time bound in the sense that the performance degradation
to the increase of Δ is quite slower. The main idea of our
algorithm is a new reduction to the problem of computing
the cut-weight distribution of the input graph. The primary
ingredient of this reduction is MacWilliams Identity derived
from elementary coding theory. The whole of our algorithm is
designed by combining that reduction with a non-trivial fast
algorithm computing the cut-weight distribution. To the best
of our knowledge, the approach posed in this paper is new and
may be of independent interest.

Keywords-counting perfect matchings, exponential algorithm,
coding theory, MacWilliams identity

I. INTRODUCTION

Counting perfect matchings in given input graph G is rec-
ognized as one of hard combinatorial problems. In particular,
the case that G is bipartite has attracted much attention with
its long history because of the relation to the computation
of permanent, which is a characteristic value of matrices
with many important applications. Since counting perfect
matchings for bipartite graphs belongs to #P-complete, there
seems to be no algorithm which runs within polynomial
time for any input. Thus all of the previous studies lies on
one (or more) of the following directions: Approximation,
restriction of input graphs, or exact exponential algorithms.
In this paper, we focus on the third line.
A seminal exponential-time algorithm for counting perfect

matchings is Ryser’s one based on the inclusion-exclusion
principle [1]. For any bipartite graph G of 2n vertices, it
counts perfect matchings with O∗(2n) time1 and polynomial
memory space. There has been several improvements follow-
ing that work: Bax and Franklin have shown an algorithm
running with O∗(2(1−1/O(n2/3 lnn))n) expected time and
exponential space [2]. Servedio and Wan have given an
algorithm with a time upper bound depending on the average
degree Δ [3]. It achieves O∗(2(1−1/O(exp(Δ)))n) time and
polynomial space. Another approach to this problem is the

1O∗ means the Big-O notation with omitting poly(n) factors.

usage of tree decompositions [4, 5]. By combining the fact
that sparse graphs have a treewidth less than (1 − ε)n for
some constant ε (e.g., if Δ ≤ 3, ε ≈ 5/6 holds [6]), we
can obtain an algorithm running O∗(2(1−ε)n) time. All of
these algorithms break O∗(2n)-time barrier in some sense.
However, during last 50 years, there has been proposed no
algorithm achieving exponential-time speedup for any graph,
which is a big open problem in this topic.
Our result presented in this paper can be put on the same

line. The main contribution is to propose a new algorithm
for counting perfect matchings. For any bipartite graph of
2n nodes and Δn edges, it runs with O∗(2(1−1/O(Δ logΔ))n)
time and exponential space. While this algorithm does not
settle the open problem stated above, its speed-up factor
becomes substantially closer to the exponential compared to
the previous algorithms.
An important remark is that the approach we adopt is quite

different from any previous solutions. It relies on neither
inclusion-exclusion nor tree decomposition. Actually, the
main idea is an extremely-simple reduction to the problem
of computing the cut-weight distribution of the input graph.
The precise construction of our algorithm can be summa-
rized as follows:
• For any odd input bipartite graph G of 2n nodes and

m edges, we can show that the number of G’s perfect
matchings is equal to the number of elements with
weight m − n in its cycle space. In addition, for any
bipartite graph G, it is possible to construct the odd
bipartite graph G̃ which has the same number of perfect
matchings as G, by adding a constant number of nodes.

• By utilizing the primal-dual relation between cycle
space and cut space, we can reduce the problem of
counting cycle-space elements with weight m − n to
computing the weight distribution of the cut space.
The technical tool behind this reduction is the use
of MacWilliams identity, which is a well-known theo-
rem derived from elementary coding-theory. That iden-
tity provides the linear transformation (by so-called
Krawtchouk matrices) that maps the weight-distribution
vector of any cut space to the corresponding cycle
space.

• Since the cardinality of the cut space is vertex-
exponential, it is easy to construct a naive algorithm
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with O∗(22n) running time. We improve its running
time by utilizing the bipartiteness property and a novel
technique analogous to separator decompositions.

It should be noted that except for the last step, our
approach is applicable to any graphs which may not be bi-
partite. Our reduction technique can be seen as an algebraic
approach to the design of exact algorithms as considered
in [7, 8], where several kinds of algebraic transformations
are used for appropriate handling of target universes. To
the best of our knowledge, this is the first attempt using
the transformation by MacWilliams Identity (or equivalently
Kratwtchouk matrices) for that objective.
The organization of the paper is as follows: We first

presents several notions and definitions in Section II, which
includes an tiny tutorial of linear codes. Section III intro-
duces our reduction to cut space. The algorithm to compute
the cut-weight distribution is shown in Section IV gives
an algorithm computing the cut space. We mention the
related work in Section V, and finally conclude the paper in
Section VI with the open problems posed by our result.

II. PRELIMINARIES FROM CODING THEORY
A linear code C over F2 defined by n×m matrix M is

the set of m-dimensional vectors as follows:

C = {vM |v ∈ F
n
2}.

The matrix M is called the generator matrix of C. By the
definition, code C is the linear subspace of Fm

2 spanned
by the row vectors of M . The rank of that subspace is
denoted by rank(M). Clearly, the number of codewords in
C (denoted by |C|) is equal to 2rank(M). A (m, r)-linear
code is the one such that the length of codewords is m and
its rank is r.
Let C be a linear code with generator matrix M . The

parity check matrix H of C is the m × (m − rank(M))
matrix satisfying HwT = 0 for any codeword w ∈ C.
It is well-known that there is a duality between generator
matrices and parity check matrices: For the code C⊥ with
generator matrix H , it is easily verified that vTM = 0 holds
for any v ∈ C⊥. That is, M is the parity check matrix
of C⊥. Then the code C⊥ is called the dual code of C.
Obviously vTv⊥ = 0 holds for any v ∈ C and v⊥ ∈ C⊥.
It implies that the dual code is the orthogonal complement
of the primary code.
Given a codeword w, the number of appearance of value

1 in w is called the weight of w. The weight distribution of
a (m, r)-linear code C is the m-dimensional vector whose
k-th entry WC [k] is the number of codewords with weight
k in C. The weight distribution is often represented as the
form of generating functions FC(x) =

∑m
w=0 WC [w]x

w.
This function is called the weight-distribution polynomial of
C. There is a well-known theorem providing a relationship
between the weight-distribution polynomials of primary and
dual codes:

Theorem 1 (MacWilliams Identity [9]) Let C be a
(m, r)-linear code over F2 and C⊥ be its dual. Then, the
following identity holds:

FC(x) =
1

2r
(1 + x)mFC⊥

(
1− x

1 + x

)
.

By comparing the coefficient of each monomial in both
sides, we have the representation of WC [k] by a linear sum
of the weight distribution of C⊥:

WC [i] =
1

2r

m∑
j=0

Km(j, i)WC⊥ [j], (1)

where Km(j, i) is the value known as Krawtchouk polyno-
mials, defined as follows:

Km(j, i) =
m∑

k=0

(−1)k
(
i

k

)(
m− i

j − k

)
.

III. COUNTING PERFECT MATCHINGS VIA CYCLE SPACE
A. Cut and Cycle Spaces
In this section any arithmetic operation for elements of

vectors and matrices is over field F2. Letting G = (V,E)
be an undirected graph with n vertices v1, v2, · · · , vn and m
edges e1, e2, · · · , em, its incidence matrix AG = (AG

i,j) ∈
F
n×m
2 is the one such that AG

i,j = 1 if and only if vi is
incident to ej and AG

i,j = 0 otherwise. It is easy to check
that the i-th row of AG is the 0-1 vector representation of
the set of edges incident to vi. Given a 0-1 (row) vector
representation of vS for a vertex subset S ⊆ V , vSA

G is
the cutset between S and V \ S. It implies that the linear
code defined by the generator matrix AG is equivalent to the
family of edge subsets each of which represents a cutset, so-
called the cut space of G.
As an well-known fact, the set of all cycles in G induces

a linear subspace of F
m
2 , where each element is a 0-1

vector representation of the edge set constituting one or
more cycle(s). This subspace is called the cycle space of G.
Note that the cycle space can be recognized as the set of all
spanning even subgraphs (i.e., subgraphs where every vertex
has an even degree). The matrix whose row is the basis of
G’s cycle space is denoted by BG. Similarly to the cut space,
we regard the cycle space as a linear code defined by the
generator matrix BG. An important relationship between cut
space and cycle space, stated below, is known:

Fact 1 The cycle space of G is the orthogonal complement
of the cut space of G.

This fact implies that the linear code associated with a
cycle space is the dual code of that with the corresponding
cut space, and vice versa. In the following argument, given
an undirected graph G, C(G) and C⊥(G) denote the linear
codes defined by the generator matrices BG and AG respec-
tively. We often use term “cutset of G” as the meaning of
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the codeword of C(G) associated with that cutset. The same
usage is also applied for cycle spaces.

B. From Cycle Space to Number of Perfect Matchings
Given an undirected graph G = (V,E), we consider

counting the number of perfect matchings of G. Since there
is no perfect matching if the number of vertices is odd, we
define 2n = |V |. Let m = |E| for short. The degree of
vertex v is denoted by d(v). First we focus on the case that
G is an odd graph, i.e., a graph such that d(v) is odd for
any v in V . The number of perfect matchings of odd graph
G is related to G’s cycle space by the following lemma.

Lemma 1 For any odd graph G, the number of perfect
matchings in G is equal to WC(G)[m− n].

Proof: Let V = {v0, v1, · · · , v2n−1} be the set of
vertices in G. We prove the lemma by defining a bijection
between the set of codewords with weight m−n and perfect
matchings. More precisely, we prove that the complement
(in terms of the edge set of G) of any codeword w in
C(G) with weight m − n is a 1-factor (equivalent to a
perfect matching). Let Gw be a spanning even subgraph
corresponding to w. The degree of vi ∈ V in Gw is denoted
by d′(vi). To prove that the complement of Gw is a 1-factor,
it suffices to show that d′(vi) = d(vi) − 1 holds for any
vi ∈ V . Suppose for contradiction that d′(vi) �= d(vi) − 1
holds for some vi ∈ V . Since d′(vi) ≤ d(vi), d(vi) is
odd, and d′(vi) is even (recall Gw is a spanning even
subgraph of G), we have d′(vi) < d(vi) − 1. To make∑n−1

i=0 d′(vi) = 2(m − n) hold, there must exist another
vertex vj satisfying d′(vj) > d(vj) − 1 ⇒ d(vj) = d′(vj).
It contradicts the fact that d(vj) is odd.
Combining the lemma above and Theorem 1, we obtain

the following corollary:

Corollary 1 Let G be an arbitrary odd graph. There exists
an algorithm to count the number of perfect matchings in G
with O(mτ(5m)) time provided that the weight distribution
WC⊥(G) is available, where m is the number of edges in G
and τ(x) be the time required for arithmetic operations of
two x-bit integers.

Note that the absolute value of Krawtchouk polynomials
has a trivial upper bound |Km(j, i)| ≤ poly(m)

(
m

m/2

)2 ≤
22m+O(logm), and the number of all codewords of C⊥(G) is
at most 2n ≤ 2m. Thus, the time required for each arithmetic
operation in the right term of formula 1 is bounded by
τ(5m).

C. Transformation to Odd Bipartite Graph
While the result in the previous subsection assumes that

G is an odd graph, that assumption can be easily removed.
The fundamental idea is to construct the odd graph G̃ that
has the same number of perfect matchings as G. While

we only consider the case that G is a bipartite graph in
this paper, general graph can be handled similarly. Let
G = (V1 ∪ V2, E), be an arbitrary bipartite graph such that
|V1| = |V2| = n, and V = V1 ∪ V2 for short. The set of
even-degree vertices in Vi is denoted by V even

i (i ∈ {1, 2}).
We can easily show the following lemma:

Lemma 2 The values of |V even
1 | and |V even

2 | have the same
parity.

Proof: Assume that |E| is odd. Since ∑
v∈V even

i
d(v)

is even for any i ∈ {1, 2}, ∑v∈V \V even
i

d(v) must be odd.
Thus, |V \ V even

i | is odd for any i ∈ {1, 2} because any
node in V \V even

i has an odd degree. It implies that |V even
i |

is odd for any {1, 2}. The case of even |E| can be proved
similarly.
The construction of G̃ is given as follows:
• Add two vertices ṽi,1, and ṽi,2 to Vi for each i ∈ {1, 2}.
• For each i ∈ {1, 2}, connect each node in V even

i with
ṽ3−i,1, and ṽ3−i,1 with v̂i,2.

• If d(ṽ1,1) and d(ṽ2,1) are even, connect them. Recall
that d(ṽ1,1) and d(ṽ2,1) have the same parity from
Lemma 2.

An example of the construction is shown in Figure 1. For
the constructed graph G̃, we have the following lemma.

Lemma 3 The graph G̃ is an odd bipartite graph, and has
the same number of perfect matchings as G.

Proof: Any node in G̃ clearly has an odd degree. Let
M ⊆ Ẽ be any perfect matching of G̃. Since ṽ1,2 and ṽ2,2 is
degree one, edges {ṽ1,1, ṽ2,2} and {ṽ2,1, ṽ1,2} are necessar-
ily included in M . Then M \{{ṽ1,1, ṽ2,2}, {ṽ2,1, ṽ1,2}} is a
perfect matching of G. Conversely, given a perfect matching
M ′ ⊆ E of G, G ∪ {{ṽ1,1, ṽ2,2}, {ṽ2,1, ṽ1,2}} is a perfect
matching of G̃. Thus, we have a one-to-one correspondence
between the perfect matchings of G and those of G̃. The
lemma is proved.

IV. COMPUTING WEIGHT DISTRIBUTION
As seen in the previous section, the computation of the

cut weight distribution for graph G̃ induces the number of
perfect matchings of G. Thus, in what follows, we focus on
algorithms for computing the cut weight distribution.
The set of edges constituting a cut is associated with a

partition of all vertices: A partition (S, V \S) of all vertices
V induces a cutset, which is the set of edges crossing
between S and V \ S. Thus we often use the sentence
“partition (S, V \ S) of V ” as the meaning of the cut
associated with that partition. We define c(S, T ) to be the set
of edges crossing two disjoint subsets S and T (S, T ⊆ V ).
In particular, if S (resp. T ) is a singleton {v}, we use
notation c(v, T ) (resp. c(S, v)).
While two different partitions can lead the same cutset

(e.g., (S, V \S) and (V \S, S)), it is well-known that exactly
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Figure 1. The construction of G̃

2d subsets induce the same cutset, where d is the number
of connected components of G and equal to n− rank(AG).
Thus, instead of computing WC⊥(G), we rather consider the
cut-weight distribution W ′

C⊥(G) over all partitions, that is,
W ′

C⊥(G)[k] = |{S ⊆ V ||c(S, V \ S)| = k}|. It is easy to
calculate WC⊥(G) from W ′

C⊥(G) because of the relation of
WC⊥(G) = 2−d ·W ′

C⊥(G).

A. O∗(2n)-time Algorithm
A straightforward way of computing W ′

C⊥(G) is to enu-
merate all partitions of V with computing their weights,
which trivially takes O∗(22n) time. In the case of bipartite
graphs, we can reduce the time required for computing
the cut-weight distribution. As a first step, this subsection
proposes an O∗(2n)-time algorithm, which has the same
performance as Ryser’s one [1] (in terms of the base of
the exponential part). Further improvement of the running
time is considered in the following subsection.
Let G = (V1 ∪ V2, E) be the input bipartite graph such

that |V1| = |V2| = n and |E| = m, and V = V1 ∪ V2 for
short. For weight-distribution vector W and integer value
x ∈ [−m,m], we define σx(W ) as the vector obtained by
shifting each element of W x times. That is,

σx(W )[i] =

⎧⎨
⎩

0 if i < x,
W [i− x] if n− 1 ≥ i ≥ x,
0 if i ≥ n+ x.

Note that the case of i < x or i ≥ n + x applies
only when x is positive or negative respectively. Let V ′
be a subset of V . We say that partition (S, V \ S) is
conditioned by a subset partition (S′, V ′ \ S′) if S ⊇ S′

and (V \ S) ⊇ (V ′ \ S′) holds. Let PS′|V ′ be the set

Algorithm 1 shift: Function for computing WX|V n−1

1: function shift(W,L) /∗ W ∈ N
m and , L ∈ N

∗ ∗/
2: while L is not empty do
3: l← the head of L
4: Remove the head of L
5: W ←W + σl(W )
6: endwhile
7: return W

of all partitions of V conditioned by (S′, V ′ \ S′), and
WS′|V ′ be the cut-weight distribution over all partitions in
PS′|V ′ . Our algorithm relies on the fact that WS|V1

can
be computed within polynomial time in n provided that
a partition (S, V1 \ S) of V1 is given. In the following
argument, we introduce an arbitrary ordering v0, v1, · · · vn−1

of vertices in V2. We define V i = {vi, vi+1, · · · vn−1} ∪ V1.
The lemma behind the correctness of our algorithm is stated
below:

Lemma 4 For a given partition (S, V1 \ S), let l =
|c(vi, V1 \ S)| − |c(vi, S)|. Then WS|V i+1 = WS|V i +
σl(WS|V i) holds.

Proof: From the definition of WS|V i , WS|V i+1 =
WS∪{vi}|V i +WS|V i clearly holds. Thus it suffices to show
WS∪{vi}|V i = σl(WS|V i). Let (S′, V \ S′) be a partition
in PS|V i , and k be its weight. By adding vi to S′, the
weight increases by l. That is, the weight of partition
(S′ ∪ {vi}, V \ (S′ ∪ {vi}) is k + l. It implies a one-to-
one correspondence between the partitions in PS|V i with
weight k and those in PS∪{vi}|V i with weight k+ l. Hence
we have WS∪{vi}|V i [k+ l] = WS|V i [k] for any k. It clearly
follows WS∪{vi}|V i = σl(WS|V i). The lemma is proved.
The recursive formula in Lemma 4 trivially allows us

to compute WS|V1
= WS|V n−1 within polynomial time

in n. For the usefulness of the following argument, we
encapsulate this recursion process by function shift shown
in the pseudocode of Algorithm 1. Let L : 2V1 → Z

|V1| be
the function such that L(X)[i] = |c(vi, V1 \X)|− |c(vi, X)|
holds for any vi ∈ V2. Our O∗(2n)-time algorithm computes
and sums up the values of shift(WX|V 0 , L(X)) over all
partitions of V1. That is, our algorithm computes the right
side of the following equality:

W ′
C⊥(G) =

∑
S⊆V1

shift(WS|V 0 , L(S)). (2)

The correctness of this formula is obvious from the definition
of WS|V1

.

Theorem 2 There is an algorithm computing W ′
C⊥(G) with

O∗(2n) time.
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B. Function shift as a Linear Transformation
Before introducing the faster algorithm, we show several

properties of Function shift. Let H = {hi,j} ∈ R
m×m be

the matrix defined as hi,j = 1 if j = i+1 and 0 otherwise.
It is easy to check this matrix works as the operator σ1,
i.e., for any m-dimensional vector W , WHx = σx(W )
holds. Hence we can describe function shift(W,L) for a
given sequence L = (l0, l1, · · · ln−1) as follows:

shift(W,L) = W

(
n−1∏
i=0

(H li + I)

)
, (3)

where I be the m ×m identity matrix. We can obtain the
following lemma:

Lemma 5 Letting L and L′ be two sequences of integers,
and W1,W2 ∈ N

m. Then the following properties hold:
1) σx(shift(W,L)) = shift(σx(W ), L),
2) shift(shift(W,L), L′) = shift(W,L ◦ L′),
3) σx(W1 +W2) = σx(W1) + σx(W2), and shift(W1 +

W2, L) = shift(W1, L) + shift(W2, L),
where ◦ is the concatenation of two sequences.

Proof: Since σx(W ) = shift(W, (x)), we can treat
σx equivalently to shift. Clearly, Equation 3 implies that
shift(∗, L) is a commutative linear transformation. Thus all
properties obviously hold.

C. Improving Running Time
In this subsection, we consider an improvement of

O∗(2n)-time algorithm. The running time of the improved
algorithm is O∗(2(1−

1
5Δ log Δ )n) and consumes exponential

space, where Δ is the average degree of the input graph.
The underlying principle of the improved algorithm

is very simple: Separating two smaller subproblems. Let
(T1, U1) be a partition of V1 (i.e., T1 = V1\U1) fixed by the
algorithm, N(U1) ⊆ V2 be the set of vertices adjacent to U1,
and v0, v1, · · · vn−1 be an arbitrary ordering of V2 such that
the last |N(U1)| vertices correspond toN(U1). The cardinal-
ity of N(U1) is denoted by h for short. Now we consider the
situation where U1 and T1 are partitioned into (X,U1 \X)
and (Y, T1 \ Y ). If we regards X and Y as variables, the
first n − h entries (l0, l1, · · · ln−h) of L(X ∪ Y ) become a
function of X , which are independent of the value of Y .
In contrast, the last h entries (ln−h, ln−h+1, · · · ln−1) are a
function of both X and Y . Consequently, by two appropriate
functions LT : 2|T1| → Z

n−h and LU : 2T1 × 2U1 → Z
h,

the sequence L(X ∪ Y ) can be described as follows:

L(X,Y ) = LT (X) ◦ LU (X,Y ).

Then the following lemma holds:

Lemma 6

LU (X,Y ) = LU (X, ∅) + LU (∅, Y )− LU (∅, ∅).
Proof: We prove LU (X,Y )[i] = LU (X, ∅)[i] +

LU (∅, Y )[i]−L(∅, ∅)[i] for any i. SinceX ⊆ T1 and Y ⊆ U1

are mutually disjoint, the sets of edges c(vi, X) and c(vi, Y )
are mutually disjoint. Thus we have |c(vi, X ∪ Y )| =
|c(vi, X)| + |c(vi, Y )|. Similarly, we have |c(vi, V1 \ (X ∪
Y ))| = |c(vi, (T1 \ X) ∪ (U1 \ Y ))| = |c(vi, (T1 \ X))| +
|c(vi, (U1 \Y ))|. Then we can obtain the following equality:
LU (X,Y )[i]

= |c(vi, V1 \X ∪ Y )| − |c(vi, (X ∪ Y ))|
= |c(vi, (T1 \X))| − |c(vi, X)|
+ |c(vi, (U1 \ Y ))| − |c(vi, Y )|

= |c(vi, (V1 \X))| − |c(vi, T1)| − |c(vi, X)|
+ |c(vi, (V1 \ Y ))| − |c(vi, U1)| − |c(vi, Y )|

= LU (X, ∅)[i] + LU (∅, Y )[i]− |c(vi, T1)| − |c(vi, U1)|
= LU (X, ∅)[i] + LU (∅, Y )[i]− |c(vi, T1 ∪ U1)|
= LU (X, ∅)[i] + LU (∅, Y )[i]− LU (∅, ∅)[i].

The lemma is proved.
The improved algorithm runs as follows:
• (Step 1) We divide all partitions of T1 into several
classes C0, C1, · · · Cx such that for any two partitions
(X1, T1 \ X1) and (X2, T1 \ X2) in the same class,
LU (X1, ∅) = L(X2, ∅) holds.

• (Step 2) For each i ∈ [1, x], we compute weight
distribution Wi =

∑
(X,T1\X)∈Ci WX|V n−h−1 .

(Note that Wi =
∑

(X,T1\X)∈Ci shift(WX|V 0 , LT (X))
holds.)

• (Step 3) Let L(i) be the value of LU (X, ∅) associated
with class Ci and cY = |c(Y, V2)| for short. For each
i ∈ [0, x] and each partition (Y, U1 \ Y ) of U1, we
compute LU (i, Y ) = L(i) + LU (∅, Y )− LU (∅, ∅) and
shift(σcY (Wi), LU (i, Y )). The sum of all the values
returned by function shift is the output of the algorithm.

We can show the following lemma, which directly leads
the correctness of the algorithm:

Lemma 7

W ′
C⊥(G) =

x∑
i=1

∑
Y⊆U1

shift(σcY (Wi), LU (i, Y )).

Proof: Since WX|V 0 is the distribution over singleton
{(X,V 0 \X)}, we have WX|V 0 [i] = 1 for i = |c(X,V 0 \
X)| and 0 otherwise. Thus, we have σcY (WX|V 0)[i] = 1 for
i = |c(X,V 0 \X)|+ cY and 0 otherwise. Since |c(X,V 0 \
X)|+ cY = |c(X ∪ Y, V \ (X ∪ Y ))| holds, we obtain

σc(Y )(WX|V 0) = WX∪Y |V 0 . (4)
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By using this equation, Lemma 5 and 7, we can obtain
the following equality:

x∑
i=1

∑
Y⊆U1

shift(σcY (Wi), LU (i, Y ))

=
∑

1≤i≤x
Y⊆U1

shift
(
σcY

( ∑
(X,T1\X)∈Ci

WX|V n−h−1

)
, LU (i, Y )

)

=
∑

1≤i≤x
Y⊆U1

∑
(X,T1\X)∈Ci

shift
(
σcY (WX|V n−h−1), LU (X,Y )

)

=
∑

X⊆T1
Y⊆U1

shift
(
σcY (shift(WX|V 0 , LT (X))), LU (X,Y )

)

=
∑

X⊆T1
Y⊆U1

shift
(
shift(σcY (WX|V 0), LT (X)), LU (X,Y )

)

=
∑

X⊆T1
Y⊆U1

shift
(
σcY (WX|V 0), LT (X) ◦ LU (X,Y )

)

=
∑

X⊆T1
Y⊆U1

shift(WX∪Y |V 0 , L(X ∪ Y ))

= W ′
C⊥(G).

The lemma is proved.
We focus on the running time of the algorithm. Clearly

the first and second steps of the algorithm take O∗(2n−|U1|)
time respectively. The third step requires time of O∗(x2|U1|).
Thus the total running time is O∗(2n−|U1| + x2|U1|).
How small can we bound x? Clearly, it is upper bounded

by the size of the domain of LU (X). From the definition,
the value of LU (X)[i − (n − h)] can take d(vi) + 1
different values for any vi ∈ N(U1). It follows x ≤∏

vi∈N(U1)
(d(vi) + 1). By applying the arithmetic mean-

geometric mean inequality, we can further bound x by
((
∑

vi∈N(U1)
(d(vi) + 1))/|N(U1)|)|N(U1)|. Letting ΔX be

the average degree over X ⊆ V in G, we have

x ≤ (ΔN(U1) + 1)|N(U1)|. (5)

We consider how to choose U1. Letting Δ be the average
degree of G, V1 contains a subset X of n/5 vertices
whose degrees are at most 5Δ/4. We choose n/(5Δ logΔ)
vertices from X as U1. For that choice we have |N(U1)| ≤
n/(4 logΔ). Since |N(U1)|ΔN(U1) ≤ Δn holds, we obtain
ΔN(U1) ≤ 4Δ logΔ. By assigning this bound to Inequal-
ity 5, we obtain

x ≤ (4Δ logΔ + 1)
n

4 log Δ ≤ (4Δ2)
n

4 log Δ = O(2
5n
6 )

Consequently, it follows that the running time of our algo-
rithm is O∗(2(1−

1
5Δ log Δ )n).

Theorem 3 There is an an algorithm for counting per-
fect matchings of bipartite graphs which runs with
O∗(2(1−

1
5Δ log Δ )n) time and exponential space.

V. RELATED WORK

As seen in the introduction, we have roughly three lines
about the studies on counting perfect matchings. We intro-
duce the related work along them respectively.
There has been proposed two different approach for

approximating the number of perfect matchings. The first
one is the Markov-chain Monte Carlo method, which
gives a fully-polynomial randomized approximation scheme
(FPRAS) for counting perfect matchings [10–12]. The sec-
ond one is a randomized averaging of the determinant [13–
15]. The fastest approximation algorithm on this approach
is one by Chien et.al. [15], which runs with O(1.2n) time.
It is still an open problem whether there exists a FPRAS
following this approach or not.
The second line is the algorithm design for restricted

inputs. A seminal work on this line is a polynomial-time
exact counting algorithm for planar graphs [16]. As other
restrictions, graphs of bounded genus [17, 18] or bounded
treewidth [4, 5], and chordal graphs with its subclass [19]
are considered.
About the line of exact algorithms, we have already

mentioned the results for bipartite graphs in the intro-
duction. Thus we introduce only the work on counting
perfect matchings for general graphs. A first result breaking
the trivial O∗(2m)-time bound is one by Björklund and
Husfeldt [20], which has shown two algorithms: The first
one runs with O∗(22n) time and polynomial space, and
the second rounds with O∗(1.7332n) time and exponential
space. These algorithms are similar with our result in the
sense that it also reduces the problem into a counting over
a different universe. A number of the following studies
improve this bound [21–25]. The most recent and fastest
one is the algorithm by Björklund [25], which achieves the
same running time as Ryser’s algorithm (that is, currently
we do not find the difference of inherent difficulty between
bipartite and general graphs). About time complexity, Dell
et.al. [26] has shown that any algorithm has an instance ofm
edges incurring Ω(exp(m/ logm)) time if we believe that a
counting version of the Exponential Time Hypothesis [27]
is true.

VI. CONCLUDING REMARKS

In this paper, we presented a new algorithm for the prob-
lem of counting perfect matchings, which has an improved
time bound depending on the average degree Δ of the
input graph. Compared to previous results, our algorithm
runs faster for many cases. In particular, the performance
degradation to the increase of Δ is quite slower than the
previous algorithms. The main idea of our algorithm is a
new reduction to computing the cut-weight distribution of
the input graph. Our algorithm is designed by combining
this reduction with a novel algorithm for the computation
of cut-weight distribution. The approach itself is quite new,
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and may be of independent interest. Finally, we conclude the
paper with several open problems related to our approach.
• Can we achieve the running time exponentially faster
than Ryser’s one by designing a faster algorithm com-
puting cut-weight distribution?

• The reduction part of our result is directly applicable
to any graph (which may not be bipartite). Can we use
the reduction to obtain a faster algorithm for general
graphs? Actually, letting I(G) be the independent sets
of the input graph G, we can easily obtain an algorithm
with O∗(22n−|I(G)|) running time by regarding G as a
”quasi” bipartite graph of two vertex sets I(G) and V \
I(G) and applying our O∗(2n)-time algorithm, which
gives the same performance as the algorithm by [23].

• Is it possible to design a faster FPRAS for counting
perfect matchings based on our method? Note that an
(1 + ε)-approximation of the cut-weight distribution
trivially induces an (1+ε)-approximation of the number
of perfect matchings because of the linearity of the
transformation.

• Computing cut-weight distribution is a special case of
the counting version of 2-CSP, which is addressed by
Williams [28]. In this sense, our reduction gives a new
linkage from counting perfect matchings to CSP. Can
we use this linkage for obtaining some new complexity
result around those problems?

• Can we apply the same technique to other combinato-
rial problems? Interestingly, there has been proposed a
variety of MacWilliams-style Identities in the field of
the coding theory. We may find a useful transformation
from those resources. In addition, it may be an interest-
ing approach to focus on the primal-dual relationship
of two universes. Can we design a kind of primal-dual
algorithms for counting problems?
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