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Abstract—The cutting plane approach to optimal matchings
has been discussed by several authors over the past decades [1]–
[5], and its rate of convergence has been an open question. We
prove that the cutting plane approach using Edmonds’ blossom
inequalities converges in polynomial time for the minimum-cost
perfect matching problem. Our main insight is an LP-based
method to select cutting planes. This cut selection procedure
leads to a sequence of intermediate linear programs with a
linear number of constraints whose optima are half-integral
and supported by a disjoint union of odd cycles and edges. This
structural property of the optima is instrumental in finding
violated blossom inequalities (cuts) in linear time. Moreover,
the number of cycles in the support of the half-integral optima
acts as a potential function to show efficient convergence to an
integral solution.
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I. INTRODUCTION

Integer programming is a powerful and widely used

approach to modeling and solving discrete optimization

problems [6], [7]. Not surprisingly, it is NP-complete and

the fastest known algorithms are exponential in the number

of variables (roughly nO(n) [8]). In spite of this intractabil-

ity, integer programs of considerable sizes are routinely

solved in practice. A popular approach is the cutting plane

method, proposed by Dantzig, Fulkerson and Johnson [9]

and pioneered by Gomory [10]–[12]. This approach can be

summarized as follows:

1) Solve a linear programming relaxation (LP) of the given

integer program (IP) to obtain a basic optimal solution

x.

2) If x is integral, terminate. If x is not integral, find a

linear inequality that is valid for the convex hull of all

integer solutions but violated by x.

3) Add the inequality to the current LP, possibly drop

some of the previous inequalities and solve the resulting

LP to obtain a basic optimal solution x. Go back to Step

2.

For the method to be efficient, we require the following:

(a) an efficient procedure for finding a violated inequality
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(called a cutting plane), (b) convergence of the method to an

integral solution using the efficient cut-generation procedure

and (c) a bound on the number of iterations to convergence.

Gomory gave the first efficient cut-generation procedure

and showed that the the cutting plane method implemented

using his cut-generation procedure converges to an integral

solution [12]. There is a rich theory on the choice of

cutting planes, both in general and for specific problems of

interest. This theory includes interesting families of cutting

planes with efficient cut-generation procedures [10], [13]–

[20], valid inequalities, closure properties and a classification

of the strength of inequalities based on their rank with

respect to cut-generating procedures [21] (e.g., the Chvátal-

Gomory rank [14]), and testifies to the power and generality

of the cutting plane method.
To our knowledge, however, there are no polynomial

bounds on the number of iterations to convergence of the

cutting plane method even for specific problems using spe-

cific cut-generation procedures. The best bound for general

0-1 integer programs remains Gomory’s bound of 2n [12]. It

is possible that such a bound can be significantly improved

for IPs with small Chvátal-Gomory rank [5]. A more realistic

possibility is that the approach is provably efficient for

combinatorial optimization problems that are known to be

solvable in polynomial time. An ideal candidate could be

a problem that (a) has a polynomial-size IP-description

(the LP-relaxation is polynomial-size), and (b) the convex-

hull of integer solutions has a polynomial-time separation

oracle. Note that such problems can be solved in polynomial

time via the Ellipsoid method [22]. Perhaps the first such

interesting problem is minimum-cost perfect matching: given
a graph with costs on the edges, find a perfect matching of
minimum total cost.

A polyhedral characterization of the matching problem

was discovered by Edmonds [23]: Basic solutions of the

following linear program (extreme points of the polytope)

correspond to perfect matchings of the graph.

min
∑
uv∈E

c(uv)x(uv) (P)

x(δ(u)) = 1 ∀u ∈ V

x(δ(S)) ≥ 1 ∀S � V, |S| odd, 3 ≤ |S| ≤ |V | − 3

x ≥ 0
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The relaxation with only the degree and nonnegativity

constraints, known as the bipartite relaxation, suffices to

characterize the convex-hull of perfect matchings in bipartite

graphs, and serves as a natural starting relaxation. The

inequalities corresponding to sets of odd cardinality greater

than 1 are called blossom inequalities. These inequalities

have Chvátal rank 1, i.e., applying one round of all possible

Gomory cuts to the bipartite relaxation suffices to recover

the perfect matching polytope of any graph [14]. Moreover,

although the number of blossom inequalities is exponential

in the size of the graph, for any point not in the perfect

matching polytope, a violated (blossom) inequality can be

found in polynomial time [1]. This suggests a natural cutting

plane algorithm (Figure 1), proposed by Padberg and Rao [1]

and discussed by Lovász and Plummer in their classic book

on matching theory [3]. Experimental evidence suggesting

that this method converges quickly was given by Grötschel

and Holland [2], by Trick [4], and by Fischetti and Lodi [5].

It has been open to rigorously explain their findings. In this

paper, we address the question of whether the method can

be implemented to converge in polynomial time.

Figure 1. Cutting plane method for matchings

1) Start with the bipartite relaxation.

2) While the current solution is fractional,

a) Find a violated blossom inequality and add it to

the LP.

b) Solve the new LP.

The known polynomial-time algorithms for minimum-

cost perfect matching are variants of Edmonds’ weighted

matching algorithm [23]. It is perhaps tempting to interpret

the latter as a cutting plane algorithm, by adding cuts cor-

responding to the shrunk sets in the iterations of Edmonds’

algorithm. However, there is no correspondence between the

solution x of the LP given by non-negativity and degree

constraints and a family F of blossom inequalities, and the

partial matching M in the iteration of Edmonds’ algorithm

when F is the set of shrunk nodes. In particular, the next odd

set S shrunk by Edmonds’ algorithm might not even be a cut

for x (i.e., x(δ(S)) ≥ 1). It is even possible, that the bipartite

relaxation already has an integer optimal solution, whereas

Edmonds’ algorithm proceeds by shrinking and unshrinking

a long sequence of odd sets.

The bipartite relaxation has the nice property that any

basic solution is half-integral and its support is a disjoint

union of edges and odd cycles. This makes it particularly

easy to find violated blossom inequalities – any odd com-

ponent of the support gives one. This is also the simplest

heuristic that is employed in the implementations [2], [4] for

finding violated blossom inequalities. However, if we have a

fractional solution in a later phase, there is no guarantee that

we can find an odd connected component whose blossom

inequality is violated, and therefore sophisticated and sig-

nificantly slower separation methods are needed for finding

cutting planes, e.g., the Padberg-Rao procedure [1]. Thus, it

is natural to wonder if there is a choice of cutting planes

that maintains half-integrality of intermediate LP optimal

solutions.

Graph G Starting opt x0 Opt after

and the cut imposing

to impose the cut

Figure 2. Counterexample to the half-integrality conjecture. All edge costs
are one.

At first sight, maintaining half-integrality seems to be

impossible. Figure 2 shows an example where the starting

solution consists of two odd cycles. There is only one

reasonable way to impose cuts, and it leads to a non half-

integral basic feasible solution. Observe however, that in the

example, the bipartite relaxation also has an integer optimal

solution. The problem here is the existence of multiple basic

optimal solutions. To avoid such degeneracy, we will ensure

that all linear systems that we encounter have unique optimal

solutions.

This uniqueness is achieved by a simple deterministic

perturbation of the integer cost function, which increases the

input size polynomially. We observe that this perturbation

is only a first step towards maintaining half-integrality of

intermediate LP optima. More careful cut retention and cut

addition procedures are needed to maintain half-integrality.

A. Main result

We call a vector x ∈ RE proper-half-integral if x(e) ∈
{0, 1/2, 1} for every e ∈ E and supp(x) is a disjoint union

of edges and odd cycles. It is well-known that every basic

feasible soultion to the bipartite relaxation has this property.

A family F of subsets of V is called laminar, if for any

X,Y ∈ F , one of X∩Y = ∅, X ⊆ Y , Y ⊆ X holds. Given

an integer cost function c : E → Z on the edges of a graph

G = (V,E), let us define the perturbation c̃ by ordering the

edges arbitrarily, and increasing the cost of edge i by 1/2i.

We are now ready to state our main theorem.

Theorem 1. Let G = (V,E) be a graph on n nodes with
edge costs c : E → Z and let c̃ denote the perturbation of
c. Then, there exists an implementation of the cutting plane
method that finds the minimum c̃-cost perfect matching such
that
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(i) every intermediate LP is defined by the bipartite relax-
ation constraints and a collection of blossom inequali-
ties corresponding to a laminar family of odd subsets,

(ii) every intermediate LP optimum is unique and proper-
half-integral, and

(iii) the total number of iterations to arrive at a minimum
c̃-cost perfect matching is O(n log n).

Moreover, the collection of blossom inequalities used at each
step can be identified by solving an LP of the same size as
the current LP. The minimum c̃-cost perfect matching is also
a minimum c-cost perfect matching.

To our knowledge, this is the first polynomial bound on

the convergence of a cutting plane method for matchings. It

is easy to verify that for an n-vertex graph, a laminar family

of nontrivial odd sets may have at most n/2 members, hence

every intermediate LP has at most 3n/2 inequalities apart

from the non-negativity constraints.

B. Cut selection via dual values

Ensuring unique optimal solutions itself does not suffice

to maintain proper-half-integrality of optimal solutions upon

adding any sequence of blossom inequalities. This is the case

even if using laminar families of blossom inequalities. Thus

a careful choice is to be made while selecting new cuts and

it is also crucial that we eliminate certain older ones.

At any iteration, inequalities that are tight for the current

optimal solution are natural candidates for retaining in the

next iteration while the new inequalities are determined by

odd cycles in the support of the current optimal solution.

However, it turns out that keeping all tight inequalities

does not maintain half-integrality. Our main algorithmic

insight is that the choice of cuts for the next iteration can

be determined by examining optimal dual solutions to the

current LP – we retain those cuts whose dual values are

strictly positive. Since there could be multiple dual optimal

solutions, we use a restricted type of dual optimal solution

(later called positively-critical dual in this paper) that can

be computed either by solving a single LP of the same

complexity or combinatorially. Moreover, we also ensure

that the set of cuts imposed in any LP are laminar and

correspond to blossom inequalities.

Eliminating cutting planes that have zero dual values in

any later iteration is common in most implementations of

the cutting plane algorithm; although this is done mainly to

keep the number of inequalities from blowing up, another

justification is that a cut with zero dual value is not a facet

contributing to the current LP optimum.

C. Algorithm C-P-Matching

Let G = (V,E) be a graph, c : E → R a cost function on

the edges, and assume G has a perfect matching. Without

loss of generality we may assume that c ≥ 0.

Let O be the set of all odd subsets of V of size at least

3, and let V denote the set of one element subsets of V . For

a family of odd sets F ⊆ O, consider the following pair of

linear programs.

PF (G, c) DF (G, c)

min
∑
uv∈E

c(uv)x(uv) max
∑

S∈V∪F
Π(S)

x(δ(u)) = 1∀u ∈ V
∑

S∈V∪F :uv∈δ(S)

Π(S) ≤ c(uv)

∀uv ∈ E

x ≥ 0 Π(S) ≥ 0∀S ∈ F

F = ∅ gives the bipartite relaxation, also denoted by

P0(G, c) and D0(G, c). For F = O, the formulation is

identical to (P). Every intermediate LP in our cutting plane

algorithm will be PF (G, c) for some laminar family F . We

will use Π(v) to denote Π({v}) for dual solutions.

Assume we are given a dual feasible solution Γ to

DF (G, c). We say that a dual optimal solution Π to

DF (G, c) is Γ-extremal, if it minimizes

h(Π,Γ) =
∑

S∈V∪F

|Π(S)− Γ(S)|
|S|

among all dual optimal solutions Π. A Γ-extremal dual

optimal solution can be found by solving a single LP if we

are provided with the primal optimal solution to PF (G, c)
(see Section V-B).

Figure 3. Algorithm C-P-Matching

1) Let c denote the cost function on edges after per-

turbation (i.e., after ordering the edges arbitrarily

and increasing the cost of edge i by 1/2i).
2) Starting LP. Let F = ∅. The starting LP, PF (G, c),

is the bipartite relaxation and the starting dual Γ is

identically zero.

3) Repeat until x is integral:

a) Solve LP. Find an optimal solution x to

PF (G, c).
b) Choose old cutting planes. Find a Γ-extremal

dual optimal solution Π to DF (G, c). Let

H′ = {S ∈ F : Π(S) > 0}.
c) Choose new cutting planes. Let C denote the

set of odd cycles in supp(x). For each C ∈ C,

define Ĉ as the union of V (C) and the maximal

sets of H′ intersecting it. Let

H′′ = {Ĉ : C ∈ C}.
d) Set the next F = H′ ∪H′′ and Γ = Π.

4) Return the minimum-cost perfect matching x.
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The proposed cutting plane implementation is shown in

Figure 3. From the previous set of cuts, we retain only those

which have a positive value in an extremal dual optimal

solution; let H′ denote this set of cuts. The new set of cuts

H′′ correspond to odd cycles in the support of the current

solution. However, in order to maintain laminarity of the

cut family, we do not add the vertex sets of these cycles but

instead their union with all the sets in H′ that they intersect.

We will show that these unions are also odd sets and thus

give blossom inequalities. In the first iteration, there is no

need to solve the dual LP as F will be empty.

II. FACTOR-CRITICAL SETS

The notion of factor-critical sets and factor-critical duals

play a central role in showing half-integrality of intermediate

solutions. These are extensions of concepts central to the

analysis of Edmonds’ algorithm.

Let H = (V,E) be a graph and F be a laminar family

of subsets of V . We say that an edge set M ⊆ E is an

F-matching, if it is a matching, and for any S ∈ F , |M ∩
δ(S)| ≤ 1. For a set S ⊆ V , we call a set M of edges to be

an (S,F)-perfect-matching if it is an F-matching covering

precisely the vertex set S.

A set S ∈ F is defined to be (H,F)-factor-critical or F-
factor-critical in H , if for every node u ∈ S, there exists an

(S \ {u},F)-perfect-matching using the edges of H . For a

laminar family F and a feasible solution Π to DF (G, c),
let GΠ = (V,EΠ) denote the graph of tight edges. For

simplicity we will say that a set S ∈ F is (Π,F)-factor-

critical if it is (GΠ,F)-factor critical, i.e., S is F-factor-

critical in GΠ. For a vertex u ∈ S, corresponding matching

Mu is called the Π-critical-matching for u. If F is clear

from the context, then we simply say S is Π-factor-critical.

A feasible solution Π to DF (G, c) is an F-critical dual,

if every S ∈ F is (Π,F)-factor-critical, and Π(T ) > 0 for

every non-maximal set T of F . A family F ⊆ O is called a

critical family, if F is laminar, and there exists an F-critical

dual solution. This will be a crucial notion: the set of cuts

imposed in every iteration of the cutting plane algorithm

will be a critical family. The following observation provides

some context and motivation for these definitions.

Proposition 2. Let F be the set of contracted sets at some
stage of Edmonds’ matching algorithm. Then the corre-
sponding dual solution Π in the algorithm is an F-critical
dual. �

We call Π to be an F-positively-critical dual, if Π is

a feasible solution to DF (G, c), and every S ∈ F such

that Π(S) > 0 is (Π,F)-factor-critical. Clearly, every

F-critical dual is also an F-positively-critical dual, but the

converse is not true. The extremal dual optimal solutions

found in every iteration of Algorithm C-P-Matching will

be F-positively-critical, where F is the family of blossom

inequalities imposed in that iteration.

The following uniqueness property is used to guarantee

the existence of a proper-half-integral solution in each step.

We require that the cost function c : E → R satisfies:

For every critical family F , PF (G, c) has a unique optimal
solution. (*)

Lemma 3. Let c : E → Z be an integer cost function, and c̃
be its perturbation. Then c̃ satisfies the uniqueness property
(*).

III. ANALYSIS OUTLINE AND PROOF OF THE MAIN

THEOREM

The proof of our main theorem is established in two

parts. In the first part, we show that half-integrality of the

intermediate primal optimum solutions is guaranteed by the

existence of an F-positively-critical dual optimal solution to

DF (G, c).

Lemma 4. Let F be a laminar odd family and assume
PF (G, c) has a unique optimal solution x. If there exists an
F-positively-critical dual optimal solution, then x is proper-
half-integral.

The proof is outlined in Section IV using contraction

techniques. The next lemma shows that if F is a critical

family, then the extremal dual optimal solutions found in

the algorithm are in fact F-positively-critical dual optimal

solutions.

Lemma 5. Suppose that in an iteration of Algorithm C-P-
Matching, F is a critical family with Γ being an F-critical
dual solution. Then a Γ-extremal dual optimal solution Π
is an F-positively-critical dual optimal solution. Moreover,
the next set of cuts H = H′ ∪ H′′ is a critical family with
Π being an H-critical dual.

The proof sketch in Section V is based on analyzing

the structure of dual optimal solutions. Lemmas 4 and 5

together guarantee that the unique primal optimal solutions

obtained during the execution of the algorithm are proper-

half-integral. In the second part of the proof of the main

theorem, we show convergence by considering the number

of odd cycles, odd(x), in the support of the current primal

optimal solution x.

Lemma 6. Assume the cost function c satisfies (*). Then
odd(x) is non-increasing during the execution of Algorithm
C-P-Matching.

We observe that similar to Lemma 4, the above Lemma 6

is also true if we choose an arbitrary F-positively-critical

dual optimal solution Π in each iteration of the algorithm.

To show that the number of cycles cannot remain the same

and has to strictly decrease within a polynomial number

of iterations, we need the more specific choice of extremal

duals.
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Lemma 7. Assume the cost function c satisfies (*) and that
odd(x) does not decrease between iterations i and j, for
some i < j. Let Fk be the set of blossom inequalities
imposed in the k’th iteration and H′′k = Fk \ Fk−1 be the
subset of new inequalities in this iteration. Then,

j⋃
k=i+1

H′′k ⊆ Fj+1.

We prove this progress by coupling intermediate primal

and dual solutions with the solutions of a Half-integral
Matching algorithm, a variation of Edmonds’ primal-dual

weighted matching algorithm [23] that we design for this

purpose. Our argument needs one phase of this algorithm

and this is what we analyze in detail in Section VI-A.

Although we introduce it for analysis, we note that the

algorithm can be extended to a strongly-polynomial com-

binatorial algorithm for minimum-cost perfect matching.

Unlike Edmonds’ algorithm, which maintains an integral

matching and extends the matching to cover all vertices, this

extended algorithm maintains a proper half-integral solution

in every iteration.

The half-integral matching algorithm starts from a partial

matching x in G, leaving a set W of nodes exposed, and

a dual Π whose support is a laminar family V ∪ F with

F ⊆ O; x and Π satisfy primal-dual slackness conditions.

The algorithm transforms x to a proper-half-integral perfect

matching and Π to a dual solution with support contained in

V ∪F , satisfying complementary slackness. We now give a

sketch of the proofs of Lemmas 6 and 7 using the algorithm.

Let us consider two consecutive primal solutions xi and

xi+1 in the cutting plane algorithm, with duals Πi and Πi+1.

We contract every set S ∈ O with Πi+1(S) > 0; let Ĝ be

the resulting graph. By Lemma 4 the image x′i+1 of xi+1

is the unique optimal solution to the bipartite relaxation in

Ĝ. The image x′i of xi is proper-half-integral in Ĝ with

some exposed nodes W ; let Π′i be the image of Πi. Every

exposed node in W corresponds to a cycle in supp(xi). We

start in Ĝ with the solutions x′i and Π′i, and we prove that it

must terminate with the primal solution x′i+1. The analysis

of the half-integral matching algorithm reveals that the total

number of exposed nodes and odd cycles does not increase;

this will imply Lemma 6.

To prove Lemma 7, we show that if the number of cycles

does not decrease between phases i and i + 1, then the

algorithm also terminates with the extremal dual optimal

solution Π′i+1. This enables us to couple the performance

of Half-integral Matching between phases i and i + 1 and

between i + 1 and i + 2: the (alternating forest) structure

built in the former iteration carries over to the latter one. As

a consequence, all cuts added in iteration i will be imposed

in all subsequent phases until the number of odd cycles

decreases.

Proof of Theorem 1: We use Algorithm C-P-Matching

given in Figure 3 for a perturbed cost function. By Lemma 3,

this satisfies (*). Let i denote the index of the iteration. We

prove by induction on i that every intermediate solution xi

is proper-half-integral and (i) follows immediately by the

choice of the algorithm. The initial solution x0 is clearly

proper-half-integral. The induction step follows by Lemmas

4 and 5 and the uniqueness property. Further, by Lemma 6,

the number of odd cycles in the support does not increase.

Assume the number of cycles in the i’th phase is �, and

we have the same number of odd cycles � in a later iteration

j. Between iterations i and j, the set H′′k always contains �
cuts, and thus the number of cuts added is at least �(j − i).
By Lemma 7, all cuts in

⋃j
k=i+1H′′k are imposed in the

family Fj+1. Since Fj+1 is a laminar odd family, it can

contain at most n/2 subsets, and therefore j − i ≤ n/2�.
Consequently, the number of cycles must decrease from �
to � − 1 within n/2� iterations. Since odd(x0) ≤ n/3, the

number of iterations is at most O(n log n). Finally, it is easy

to verify that the optimal solution for c̃ is also optimal for

c.

IV. CONTRACTIONS AND HALF-INTEGRALITY

In this section, we introduce contractions to prove

Lemma 4. Given Π, an F-positively-critical dual optimal

solution for the laminar odd family F , we show (Lemma 8)

that contracting every set S ∈ F with Π(S) > 0 preserves

primal and dual optimal solutions (similar to Edmonds’

primal-dual algorithm). Moreover, if we had a unique primal

optimal solution x to PF (G, c), its image x′ in the contracted

graph is the unique optimal solution; if x′ is proper-half-

integral, then so is x.

Let F be a laminar odd family, Π be a feasible solution

to DF (G, c), and let S ∈ F be a (Π,F)-factor-critical set.

Let us define

ΠS(u) :=
∑

T∈V∪F :T�S,u∈T
Π(T )

to be the total dual contribution of sets inside S containing

u.

By contracting S w.r.t. Π, we mean the following: Let

G′ = (V ′, E′) be the contracted graph on node set V ′ =
(V \ S) ∪ {s}, s representing the contraction of S. Let V ′
denote the set of one-element subsets of V ′. For a set T ⊆
V , let T ′ denote its contracted image. Let F ′ be the set of

nonsingular images of the sets of F , that is, T ′ ∈ F ′ if

T ∈ F , and T ′ \ {s} �= ∅. Let E′ contain all edges uv ∈ E
with u, v /∈ S and for every edge uv with u ∈ S, v ∈ V −S
add an edge sv. Let us define the image Π′ of Π to be

Π′(T ′) = Π(T ) for every T ′ ∈ V ′ ∪F ′ and the image x′ of

x to be x′(u′v′) = x(uv). Define the new edge costs

c′(u′v′) =

{
c(uv) if uv ∈ E[V \ S],
c(uv)−ΠS(u) if u ∈ S, v ∈ V \ S.
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Lemma 8. Let F be a laminar odd family, x be an optimal
solution to PF (G, c), Π be a feasible solution to DF (G, c).
Let S ∈ F be a (Π,F)-factor-critical set, and let G′, c′,F ′
denote the graph, costs and laminar family respectively
obtained by contracting S w.r.t. Π and let x′,Π′ be the
images of x,Π respectively. Then the following hold.

(i) Π′ is a feasible solution to DF ′(G′, c′). Furthermore,
if a set T ∈ F , T \ S �= ∅ is (Π,F)-factor-critical,
then its image T ′ is (Π′,F ′)-factor-critical.

(ii) Suppose Π is an optimal solution to DF (G, c) and
x(δ(S)) = 1. Then x′ is an optimal solution to
PF ′(G′, c′) and Π′ is optimal to DF ′(G′, c′).

(iii) If x is the unique optimum to PF (G, c), and Π is an
optimal solution to DF (G, c), then x′ is the unique
optimum to PF ′(G′, c′). Moreover, x′ is proper-half-
integral if and only if x is proper-half-integral. Further,
assume C ′ is an odd cycle in supp(x′) and let T be
the pre-image of V (C ′) in G. Then, supp(x) inside T
consists of an odd cycle and matching edges.

Corollary 9. Assume x is the optimal solution to PF (G, c)
and there exists an F-positively-critical dual optimum Π.
Let Ĝ, ĉ be the graph, and cost obtained by contracting all
maximal sets S ∈ F with Π(S) > 0 w.r.t. Π, and let x̂ be
the image of x in Ĝ.

(i) x̂ and Π̂ are the optimal solutions to the bipartite
relaxation P0(Ĝ, ĉ) and D0(Ĝ, ĉ) respectively.

(ii) If x is the unique optimum to PF (G, c), then x̂ is
the unique optimum to P0(Ĝ, ĉ). If x̂ is proper-half-
integral, then x is also proper-half-integral.

Proof of Lemma 4: Let Π be an F-positively-critical

dual optimum, and let x be the unique optimal solution to

PF (G, c). Contract all maximal sets S ∈ F with Π(S) > 0,

obtaining the graph Ĝ and cost ĉ. Let x̂ be the image of x in

Ĝ. By Corollary 9(ii), x̂ is unique optimum to the bipartite

relaxation P0(Ĝ, ĉ). Consequently, x̂ is proper-half-integral

and hence by Corollary 9(ii), x is also proper-half-integral.

V. STRUCTURE OF DUAL SOLUTIONS

In this section, we show two properties about positively-

critical dual optimal solutions – (1) an optimum Ψ to

DF (G, c) can be transformed into an F-positively-critical

dual optimum (Section V-A) if F is a critical family and (2)

a Γ-extremal dual optimal solution to DF (G, c) as obtained

in the algorithm is also an F-positively-critical dual optimal

solution (Section V-B).

Assume F ⊆ O is a critical family, with Π being an

F-critical dual solution, and let Ψ be an arbitrary dual

optimal solution to DF (G, c). Consider a set S ∈ F . We

say that the dual solutions Π and Ψ are identical inside S, if

Π(T ) = Ψ(T ) for every set T � S, T ∈ F ∪V . We defined

ΠS(u) in the previous section; we also use the analogous

notation for Ψ. Let us now define

ΔΠ,Ψ(S) := max
u∈S

(ΠS(u)−ΨS(u)) .

We say that Ψ is consistent with Π inside S, if ΠS(u) −
ΨS(u) = ΔΠ,Ψ(S) holds for every u ∈ S that is incident

to an edge uv ∈ δ(S) ∩ supp(x). We derive the following

important structural lemmas.

Lemma 10. Let F ⊆ O be a critical family, with Π being an
F-critical dual solution and let Ψ be an optimal solution to
DF (G, c). Let x be an optimal solution to PF (G, c). Then
Ψ is consistent with Π inside every set S ∈ F such that
x(δ(S)) = 1.

Lemma 11. Given a laminar odd family F ⊂ O, let Λ and Γ
be two dual feasible solutions to DF (G, c). If a subset S ∈
F is both (Λ,F)-factor-critical and (Γ,F)-factor-critical,
then Λ and Γ are identical inside S.

A. Finding a positively-critical dual optimal solution

Let F ⊆ O be a critical family with Π being an

F-critical dual. Let Ψ be a dual optimum solution to

DF (G, c). Our goal is to satisfy the property that for every

S ∈ F , if Ψ(S) > 0, then Ψ and Π are identical inside

S. By Lemma 11, it is equivalent to showing that Ψ is

F-positively-critical. We modify Ψ by the algorithm shown

in Figure 4. The correctness of the algorithm follows by

showing that the modified solution Ψ̄ is also dual optimal,

and it is closer to Π.

Figure 4. Algorithm Positively-critical-dual-opt

1) Repeat while Ψ is not F-positively-critical dual.

a) Choose a maximal set S ∈ F with Ψ(S) > 0,

such that Π and Ψ are not identical inside S.

b) Set Δ := ΔΠ,Ψ(S).
c) Let λ := min{1,Ψ(S)/Δ} if Δ > 0 and λ := 1

if Δ = 0.

d) Replace Ψ by the following Ψ̄.

Ψ̄(T ) :=

⎧⎪⎨
⎪⎩

(1− λ)Ψ(T ) + λΠ(T ) if T � S,

Ψ(S)−Δλ if T = S,

Ψ(T ) otherwise .

2) Return F-positively-critical dual optimum Ψ.

Lemma 12. Let F be a critical family with Π being
an F-critical dual feasible solution. Algorithm Positively-
critical-dual-opt in Figure 4 transforms an arbitrary dual
optimal solution Ψ to an F-positively-critical dual optimal
solution in at most |F| iterations.

B. Extremal dual solutions

In this section, we prove Lemma 5. Assume F ⊆ O is a

critical family, with Π being an F-critical dual. Let x be the
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unique optimal solution to PF (G, c). Let Fx = {S ∈ F :
x(δ(S)) = 1} the collection of tight sets for x. A Π-extremal

dual can be found by solving the following LP.

minh(Ψ,Π) =
∑

S∈V∪Fx

r(S)

|S| (D∗F )

−r(S) ≤ Ψ(S)−Π(S) ≤ r(S) ∀S ∈ V ∪ Fx∑
S∈V∪Fx:uv∈δ(S)

Ψ(S) = c(uv) ∀uv ∈ supp(x)

∑
S∈V∪Fx:uv∈δ(S)

Ψ(S) ≤ c(uv) ∀uv ∈ E \ supp(x)

Ψ(S) ≥ 0 ∀S ∈ Fx

The support of Ψ is restricted to sets in V ∪ Fx. Primal-

dual slackness implies that the feasible solutions to this

program coincide with the optimal solutions of DF (G, c),
hence an optimal solution to D∗F is also an optimal solution

to DF (G, c).

Lemma 13. Let F ⊂ O be a critical family with Π being
an F-critical dual. Then, a Π-extremal dual is also an
F-positively-critical dual optimal solution.

The proof of Lemma 5 follows using Lemmas 4 and 13.

VI. CONVERGENCE

The structural properties given in Lemmas 6 and 7 are

established as follows. First, we give a variant of Edmonds’

primal-dual algorithm for half-integral matchings and show

that it converges quickly. Next, we argue that applying

this algorithm to the current primal/dual solution leads to

an optimal solution of the next LP. As a consequence we

get that the number of odd cycles in the support of the

primal is nonincreasing. Finally, we prove the extremal dual

solution of the next LP must be identical to the one found

by this combinatorial algorithm. From the structure of the

dual solution, we can infer that cuts that are added in a

sequence of iterations where the number of odd cycles does

not decrease are not dropped at any point and therefore

cannot be too many (since they also form a laminar family).

A. The half-integral matching algorithm

The algorithm will be applied in certain contractions of

G, but here we present it for a general graph G = (V,E)
and cost c. We use the terminology of Edmonds’ weighted

matching algorithm [23] as described by Schrijver [24, Vol

A, Chapter 26].

Let W ⊆ V , and let F ⊂ O be a laminar family of odd

sets that are disjoint from W . Let VW denote the set of one-

element subsets of V \W . The following primal PW
F (G, c)

and dual DW
F (G, c) programs describe fractional matchings

that leave the set of nodes in W exposed (unmatched)

while satisfying the blossom inequalities corresponding to

a laminar family F . The primal program is identical to

PF (G \ W, c) while optimal solutions to DF (G \ W, c)
that are feasible to DW

F (G, c) are also optimal solutions to

DW
F (G, c).

PW
F (G, c) DW

F (G, c)

min
∑
uv∈E

c(uv)x(uv) max
∑

S∈VW∪F
Π(S)

x(δ(u)) = 1∀u ∈ V −W
∑

S∈VW∪F :uv∈δ(S)

Π(S) ≤

≤ c(uv) ∀uv ∈ E

x(δ(u)) = 0∀u ∈W Π(S) ≥ 0∀S ∈ F
x(δ(S)) ≥ 1∀S ∈ F

The algorithm is iterative. In each iteration, it maintains

a set T ⊆ W , a subset L ⊆ F of cuts, a proper-half-

integral optimal solution z to PT
L (G, c), and an L-critical

dual optimal solution Λ to DT
L(G, c) such that Λ(S) > 0

for every S ∈ L. In the beginning T = W , L = F and the

algorithm terminates when T = ∅.
We work on the graph G∗ = (V∗, E∗), obtained the

following way from G: We first remove every edge in E
that is not tight w.r.t. Λ, and then contract all maximal sets

of L w.r.t. Λ. The node set of V∗ is identified with the

pre-images. Let c∗ denote the contracted cost function and

z∗ the image of z. Since E∗ consists only of tight edges,

Λ(u) + Λ(v) = c∗(uv) for every edge uv ∈ E∗. Since F is

disjoint from W , the nodes in L will always have degree 1

in z∗.
In the course of the algorithm, we may decrease Λ(S) to

0 for a maximal set S of L. In this case, we remove S from

L and modify G∗, c∗ and z∗ accordingly. This operation

will be referred as ‘unshrinking’ S. New sets will never be

added to L.

The algorithm works by modifying the solution z∗ and the

dual solution Λ∗. An edge uv ∈ E∗ is called a 0-edge/ 12 -

edge/1-edge according to the value z∗(uv). A modification

of z∗ in G∗ can be naturally extended using Λ-critical-

matchings inside S.

A walk P = v0v1v2 . . . vk in G∗ is called an alternating

walk, if every odd edge is a 0-edge and every even edge

is a 1-edge. If every node occurs in P at most once, it is

called an alternating path. By alternating along the path P ,

we mean modifying z∗(vivi+1) to 1− z∗(vivi+1) on every

edge of P . If k is odd, v0 = vk and no other node occurs

twice, then P is called a blossom with base v0.

Claim 14 ( [24, Thm 24.3]). Let P = v0v1 . . . v2k+1 be
an alternating walk. Either P is an alternating path, or it
contains a blossom C and an even alternating path from v0
to the base of the blossom.

The algorithm is described in the above figure. The

scenarios in Case I are illustrated in Figure 5. In Case II, we

577



Half-integral Matching
Input. A subset W ⊆ V , a critical family F ⊂ O with all sets in F disjoint from W , a proper-half-integral optimal

solution w to PW
F (G, c), and an F-critical dual optimal solution Γ to DW

F (G, c).
Output. A proper-half-integral optimal solution z to PL(G, c) and an L-critical dual optimal solution Λ to PL(G, c) for

some L ⊆ F .

1) Initialize z = w, L = F , Λ = Γ, and T = W . Let G∗ = (V∗, E∗), where E∗ ⊆ E are edges that are tight w.r.t. Λ,

and all maximal sets of L w.r.t. Λ are contracted; c∗ and z∗ are defined by the contraction. Let R ⊇ T be the set of

exposed nodes and nodes incident to 1
2 -edges in z∗.

2) While T is not empty,

Case I: There exists an alternating T -R-walk in G∗. Let P = v0 . . . v2k+1 denote a shortest such walk.

(a) If P is an alternating path, and v2k+1 ∈ T , then change z by alternating along P .

(b) If P is an alternating path, and v2k+1 ∈ R− T , then let C denote the odd cycle containing v2k+1. Change z by

alternating along P , and replacing z on C by a blossom with base v2k+1.

(c) If P is not a path, then by Claim 14, it contains an even alternating path P1 to a blossom C. Change z by

alternating along P1, and setting z∗(uv) = 1/2 on every edge of C.

Case II: There exists no alternating T -R-walk in G∗. Define B+ := {S ∈ V∗ : ∃an even alternating path from T to

S}, B− := {S ∈ V∗ : ∃an odd alternating path from T to S}.
For some ε > 0, reset

Λ(S) :=

{
Λ(S) + ε if S ∈ B+,

Λ(S)− ε if S ∈ B−.
Choose ε to be the maximum value such that Λ remains feasible.

(a) If some new edge becomes tight, then E∗ is extended.

(b) If Λ(S) = 0 for some S ∈ L ∩ B− after the modification, then unshrink the node S. Set L := L \ S.

observe that T ∈ B+ and further, B+ ∩ B− = ∅ (otherwise,

there exists a T−T alternating walk and hence we should be

in case I). The correctness of the output follows immediately

due to complementary slackness. We show the termination

of the algorithm along very similar lines as the proof of

termination of Edmonds’ algorithm.

Figure 5. The possible modifications in the Half-integral Matching
algorithm.

Let β(z) denote the number of exposed nodes plus the

number of cycles in supp(z). We first note that β(z) =
β(z∗). This can be derived from Lemma 8(iii). Our next

lemma shows that β(z) is non-increasing. If β(z) is un-

changed during a certain number of iterations of the algo-

rithm, we say that these iterations form a non-decreasing
phase. We say that the algorithm itself is non-decreasing, if

β(z) does not decrease anytime.

Lemma 15. Let z be an arbitrary solution during the
algorithm, and let α be the number of odd cycles in supp(w)
that are absent in supp(z). Then |W |+odd(w) ≥ β(z)+2α.
At termination, |W |+ odd(w) ≥ odd(z) + 2α.

The non-decreasing scenario: Let us now analyze the

first non-decreasing phase P of the algorithm, starting from

the input w. These results will also be valid for later non-

decreasing phases as well. Consider an intermediate iteration

with z, Λ being the solutions, L being the laminar family

and T being the exposed nodes. Let us define the set of

outer/inner nodes of G∗ as those having even/odd length

alternating walk from R (the set of exposed nodes and node

sets of 1/2-cycles) in G∗. Let No and Ni denote their sets,

respectively. Clearly, B+ ⊆ No, B− ⊆ Ni in Case II of the

algorithm.

Lemma 16. If P is a non-decreasing phase, then if a node
in V∗ is outer in any iteration of phase P , it remains a node
in V∗ and an outer node in every later iteration of P . If a
node is inner in any iteration of P , then in any later iteration
of P , it is either an inner node, or it has been unshrunk in
an intermediate iteration.

The termination of the algorithm is guaranteed by the

following simple corollary.

Corollary 17. The non-decreasing phase P may consist of
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at most |V |+ |F| iterations.

Proof: Case I may occur at most |W | times as it

decreases the number of exposed nodes. In Case II, either

Ni is extended, or a set is unshrunk. By Lemma 16, the

first scenario may occur at most |V | times and the second

at most |F| times.

Lemma 18. Assume the half-integral matching algorithm
is non-decreasing. Let Γ be the initial dual and z, Λ be
the terminating solution and L be the terminating laminar
family. Let No and Ni denote the final sets of outer and
inner nodes in G∗.
• If Λ(S) > Γ(S) then S is an outer node in V∗.
• If Λ(S) < Γ(S), then either S ∈ F \L, (that is, S was

unshrunk during the algorithm and Λ(S) = 0) or S is
an inner node in V∗, or S is a node in V∗ incident to
an odd cycle in supp(z).

B. Proof of convergence

Let us consider two consecutive solutions in Algorithm C-

P-Matching. Let x be the unique proper-half-integral optimal

solution to PF (G, c) and Π be an F-positively-critical dual

optimal solution to DF (G, c). We define H′ = {S : S ∈
F ,Π(S) > 0} and H′′ based on odd cycles in x, and use the

critical family H = H′ ∪H′′ for the next iteration. Let y be

the unique proper-half-integral optimal solution to PH(G, c),
and let Ψ be an H-positively-critical dual optimal solution

to DH(G, c). We already know that Π is an H-critical dual

feasible solution to DH(G, c) by Lemma 5.

Let us now contract all maximal sets S ∈ H with Ψ(S) >
0 w.r.t. Ψ to obtain the graph Ĝ = (V̂ , Ê) with cost ĉ. Note

that by Lemma 11, Π and Ψ are identical inside S, hence

this is the same as contracting w.r.t. Π. Let x̂, ŷ, Π̂, and Ψ̂
be the images of x, y, Π, and Ψ, respectively.

Let H̄′′ = {S : S ∈ H′′,Ψ(S) > 0}, and let W = ∪H̄′′
denote the union of the members of H̄′′. Let Ŵ denote the

image of W . Then Ŵ is the set of exposed nodes for x̂ in

Ĝ, whereas the image of every set in H′′ \ H̄′′ is an odd

cycle in x̂. Let N = {T ∈ H′ : T ∩W = ∅}, K = {T ∈
N : Ψ(T ) = 0} and N̂ and K̂ be their respective images.

All members of N \K are contracted to single nodes in Ĝ;

observe that K̂ is precisely the set of all sets in N̂ of size

at least 3.

We will start the Half-integral Matching algorithm in Ĝ
with Ŵ , from the initial primal and dual solutions x̂ and Π̂.

Claim 19(ii) justifies the validity of this input choice for the

Half-integral Matching algorithm.

Claim 19. (i) For every L̂ ⊆ K̂, ŷ is the unique optimal
solution to PL̂(Ĝ, ĉ) and Ψ̂ is an optimal solution to
DL̂(Ĝ, ĉ).

(ii) x̂ is a proper-half-integral optimal solution to
P Ŵ
K̂ (Ĝ, ĉ) and Π̂ is a K̂-positively-critical dual optimal

solution to DŴ
K̂ (Ĝ, ĉ).

Lemma 20. Suppose we start the Half-integral Primal-Dual
algorithm in Ĝ, ĉ, K̂, Ŵ , from the initial primal and dual
solutions x̂ and Π̂. Then the output ẑ of the algorithm is
equal to ŷ.

Proof of Lemma 6: Let us start the Half-integral

Matching algorithm in Ĝ, ĉ, K̂, Ŵ , from the initial primal

and dual solutions x̂ and Π̂. Let ẑ be the output of the half-

integral matching algorithm.

By Lemma 20, ẑ = ŷ. We first observe that odd(x) =
|W |+ odd(x̂). This easily follows by Lemma 8(iii), applied

in G \W . Let α = |H′′ \ H̄′′|. There is an odd cycle in

supp(x) corresponding to each set of H′′ \ H̄′′. None of

these cycles may be contained in supp(ẑ) = supp(ŷ) as

otherwise the corresponding cut in H′′ would be violated

by y. Thus Lemma 15 implies odd(ŷ) = odd(ẑ) ≤ |W | +
odd(x̂) − 2α and Lemma 8(iii) implies odd(y) = odd(ŷ).
Hence, odd(y) ≤ odd(x)− 2α.

The following claim is a consequence of the above proof.

Claim 21. If odd(y) = odd(x), then H′′ = H̄′′. Further,
the Half-integral Matching algorithm applied in Ĝ, ĉ, K̂,
Ŵ , with starting solution x̂, Π̂ is non-decreasing. �

This claim already implies Lemma 7 for j = i + 1.

Consider the scenario odd(x) = odd(y). Let us start the

half-integral matching algorithm in Ĝ, ĉ, K̂, Ŵ , from the

initial primal and dual solutions x̂ and Π̂. Consider the final

dual solution Λ̂ with corresponding laminar family L̂ and

define Λ in G as follows.

If S � T for some T ∈ H, Ψ(T ) > 0, then set

Λ(S) = Ψ(S) (this defines the dual solutions for sets

and nodes inside T that were contracted to obtain Ĝ). If

Ŝ ∈ L̂ ∪ V̂ , then set Λ(S) = Λ̂(Ŝ) for its pre-image S (this

defines the dual solutions for sets and nodes on or outside

T that were contracted to obtain Ĝ).

Lemma 22. Assume odd(x) = odd(y) for the consecutive
solutions x and y. Then Λ̂ = Ψ̂ and hence Λ = Ψ.

Proof of Lemma 7: Let xi be the solution in the i’th
iteration (above, we used x = xi and y = xi+1). Assume the

number of odd cycles does not decrease between iterations

i and j. By Claim 21, if we run the half-integral matching

algorithm between xk and xk+1, for i ≤ k < j, it is always

non-decreasing. We first run on the contracted graph Ĝ =
Ĝi starting from primal solution x̂ = x̂i and dual solution

Π̂ = Π̂i. Lemmas 20 and 22 show that it terminates with the

primal optimal solution ŷ = x̂i+1 and dual optimal solution

Λ̂ = Ψ̂.

For j = i + 1, the statement follows by Claim 21 since

H̄′′ = H′′ means that all cuts added in iteration i have

positive dual value in iteration i + 1. Further, all sets in

H′′ were contracted to exposed nodes in x̂i. By Lemma 18,

these will be outer nodes on termination of the half-integral

matching algorithm as well. Let G∗ be the contracted graph

579



upon termination of the Half-Integral Primal-Dual algorithm.

Let J = J ′ ∪ J ′′ be the set of cuts imposed in the

(i + 2)’th round, with J = {S ∈ H : Ψ(Z) > 0}, and let

J ′′ be defined according to odd cycles in xi+1. Let Φ be

the extremal dual optimal solution to DJ (G, c).
Let us run the half-integral matching algorithm from xi+1

to xi+2. We start the algorithm with the contracted graph

Ĝi+1, which results by contracting all sets with Φ(S) > 0,

S ∈ J . Let Ĝ∗i+1 be the initial contraction of Ĝi+1 used by

the algorithm.

The key observation is that while the underlying graphs

Ĝi and Ĝi+1 are different, Ĝ∗i+1 can be obtained from G∗

by contracting those odd cycles corresponding to the sets

of J ′′. Every other node that was inner or outer node in

G∗ will also be inner or outer node in Ĝ∗i+1, including the

members of H′′. By Lemma 18, the members of H′′ will be

outer nodes at termination, along with the new outer nodes

J ′′.
Iterating this argument one can show that every set that

was imposed based on an odd cycle between iterations i and

k will be outer nodes at the termination of the Half-integral

Matching algorithm from xk to xk+1.

VII. OPEN QUESTIONS

Our initial motivation was to bound the number of iter-

ations of the cutting plane method using the Padberg-Rao

procedure. This question remains open and any analysis

would have to deal with non-half-integral solutions.

Given the encouraging results of this paper, it would be

interesting to prove efficient convergence of the cutting plane

method for other combinatorial polytopes. For example,

one could try a similar approach for finding an optimal

solution for b-matchings. Another direction could be to try

this approach for optimizing over the subtour elimination

polytope.

ACKNOWLEDGMENT

We are grateful to William Cook and Richard Karp for

their kind help and encouragement.

REFERENCES

[1] M. Padberg and M. Rao, “Odd minimum cut-sets and b-
matchings,” Mathematics of Operations Research, vol. 7,
no. 1, pp. 67–80, 1982.

[2] M. Grötschel and O. Holland, “Solving matching prob-
lems with linear programming,” Mathematical Programming,
vol. 33, no. 3, pp. 243–259, 1985.

[3] L. Lovász and M. Plummer, Matching theory. North Holland,
1986.

[4] M. Trick, “Networks with additional structured constraints,”
Ph.D. dissertation, Georgia Institute of Technology, 1987.

[5] M. Fischetti and A. Lodi, “Optimizing over the first Chvátal
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