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Abstract—We show that sparse affine-invariant linear
properties over arbitrary finite fields are locally testable
with a constant number of queries. Given a finite field Fq

and an extension field Fqn , a property is a set of functions
mapping Fqn to Fq . The property is said to be affine-
invariant if it is invariant under affine transformations of
Fqn , and it is said to be sparse if its size is polynomial in the
domain size. Our work completes a line of work initiated
by Grigorescu et al. [RANDOM 2009] and followed by
Kaufman and Lovett [FOCS 2011]. The latter showed such
a result for the case when q was prime. Extending to
non-prime cases turns out to be non-trivial and our proof
involves some detours into additive combinatorics, as well
as a new calculus for building property testers for affine-
invariant linear properties.

Index Terms—Affine Invariance; Locally Testable Codes;
Sum-product Estimates; Additive Combinatorics

I. INTRODUCTION

This paper investigates property testing in the context

of linear, affine-invariant properties and proves that all

sparse properties in this class are testable. We describe

these notions more precisely below, before explaining

the context and motivation for this study.

A. The problem and main result

Given finite sets D and R (for domain and range), a

property of functions mapping D to R is simply given by

a subset F ⊆ {D → R} (F is the subset of functions

that satisfy the property). Property testing investigates

the possibility of efficient algorithms that make few

queries to an oracle for f : D → R and accepts f ∈ F
while rejecting f that is very far from F with constant

probability. Distance here is measured in normalized

Hamming distance and so δ(f, g) = 1
|D| · |{x|f(x) �=

g(x)}| and δ(f,F) = ming∈F{δ(f, g)}. A property F
is said to be k-locally testable if there exists a tester

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 240258, and was supported by
NSF grant DMS-0835373, and by the Israel Ministry of Science and
Technology. Work of first two co-authors done while visiting Microsoft
Research New England.

making at most k queries to a function f : D → R, that

accepts f ∈ F with probability 1, while rejecting all f
with probability at least δ(f,F).

A large, and very important, class of properties,

namely the algebraic ones, are abstracted best by the

features of being linear and affine-invariant. In such

settings the range of the property is a (small) finite

field Fq (where Fq denotes the field of size q) and

the domain is a (large) finite extension Fqn . A property

F ⊆ {Fqn → Fq} is linear if it is an Fq-vector space,

i.e., ∀f, g ∈ F and α ∈ Fq we have αf + g ∈ F .

The property F is said to be affine-invariant if it is

invariant under affine-transformations of the domain, i.e.,

∀α, β ∈ Fqn with α �= 0, and ∀f ∈ F it is the case that

fα,β given by fα,β(x) = f(α · x+ β) is also in F .

Finally, we say that F is sparse if it contains only

polynomially many functions in its domain size. More

precisely, we say that F ⊆ {Fqn → Fq} is t-(size-

)sparse if |F| ≤ qnt. Our main theorem shows that all

sparse properties are testable with a constant number of

queries.

Theorem I.1 (Main). For every q and t there exists
k = kq,t such that for every n, every t-sparse, linear,
affine-invariant property F ⊆ {Fqn → Fq} is k-locally
testable.

Our work extends prior work of Grigorescu et al. [1]

and Kaufman and Lovett [2]. The latter, in particular,

proved the above theorem when q is prime, leaving open

the case of all extensions of prime fields. We describe the

relationship to previous work and explain our technical

contributions after discussing the motivation for studying

affine-invariant linear properties.

B. Motivation

a) Property Testing:: The general motivation to

understand linear, affine-invariant, properties is that they

form the most natural abstraction of some of the most

useful class of property tests that have played a role
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in the construction of locally testable codes and prob-

abilistically checkable proofs. Some central properties

that have been utilized in such constructions have been

the “linearity” property and the “low-degree” property.

Affine-invariant properties abstract such properties in as

natural a manner as “graph properties” abstract spe-

cific properties such as triangle-freeness or bipartiteness.

Given the major role played by algebraic properties,

understanding their testability seems as important as

understanding testability of, say, graph properties.

b) Locally testable codes:: If the study of affine-

invariance is natural in the context of property testing,

the restriction to linearity is as natural in the con-

text of error-correcting codes. Most well-studied error-

correcting codes are linear and the locally testable ones

are usually derived from linear locally testable proper-

ties. We note that the very fact that a property is linear,

affine-invariant and locally testable implies that it is an

error-correcting code. By the work of Ben-Sasson et

al. [3] it is known that all locally testable codes must

be what are known as “LDPC codes”, where the code

is defined by a collection of local constraints. However

it is also known, from the work of Ben-Sasson et al.

[4] that in order to be locally testable the LDPC code

must have a redundant collection of local constraints.

Redundancy among local constraints is a relatively rare

phenomenon and imposing some symmetry (such as

affine-invariance) is one way of getting such redundancy.

Indeed the symmetry offered by affine-invariance is the

only setting where (with some additional features) the

redundancy is known to lead to testable codes. Thus

affine-invariant linear properties lead to some of the most

natural and broad classes of locally testable codes.

In spite of our relatively good understanding of the

structure of affine-invariant linear properties we do not

yet have a characterization of what makes such proper-

ties locally testable, as is the case for graph properties

[5], [6]. The current belief seems to be that a k-query

testable property F ⊂ {
F
n
q → Fq

}
is a combination

of a constant number of “base-properties” where base-

properties are of two kinds — “low-degree” properties

(also known as Reed-Muller codes of constant degree)

and “sparse” ones. (For a detailed description of this

belief and its ensuing conjectures see Section 5 in Ben-

Sasson et al. [7].) But our limited understanding of

affine-invariant linear locally testable codes means that

we cannot rule out the existence of some other property,

neither “low-degree” nor “sparse”, that nevertheless is

locally testable. And till this work, it was not even known

that every combination of “base-properties” does indeed

lead to testability. Thus this work finally completes the

“easy direction” of the project aiming to characterize

affine-invariant linear locally testable properties, and

does this by showing that all finite combinations of

“base-properties” that are believed to be testable are

indeed so. What is still lacking now is a limitation result

saying that the remaining classes of affine-invariant

linear properties are not testable.

C. Comparison with previous work

The task of testing sparse codes was initiated in

Kaufman and Litsyn [8], and then pursued further in

Kaufman and Sudan [9] and most recently by Kopparty

and Saraf [10]. All the above results show that if a code

is sparse and of very high distance then it is testable.

([8], [9] only deal with binary codes. The results of [10]

seems to extend to prime-alphabet codes, or even q-ary

alphabet case, though the results are not stated so.)

The task of testing sparse affine-invariant linear prop-

erties was initiated by [1]. They showed that in some

special cases binary sparse affine-invariant linear prop-

erties were testable. [2] extended the result vastly — they

showed that every sparse affine-invariant linear property

over a prime field Fp is testable. The main ingredient in

the proofs of the above results shows that sparse affine-

invariant linear properties satisfy the sufficient condition

(high-distance) required in the results mentioned in the

previous paragraph. While they also give “nice” tests

in the process, this may be viewed as a bonus, but not

necessary for testability.

Testing over non-prime finite fields turns out to be

more involved for a fundamental reason. Codes over Fq

where q = ps, p is a prime and s > 1, have decent

distance, but certainly nowhere close to being “excellent”

in the sense required in all the previous works. Indeed

previous results relied crucially on the fact that every

non-zero function from the sparse property in question

was roughly balanced (took on every value in the range

roughly the same number of times). Such a statement

is simply not true in our setting. The reason is not just

that Fq contains Fp as a subfield, but moreover that Fq

contains many vector spaces over the prime subfield Fp.

Indeed for every such subspace V of Fq it is possible

to create sparse properties that contain functions which

take on values only from V , and take on every value

in V roughly the same number of times. This obstacle

turns out to be sufficient enough to derail the previous

proof techniques (which are still useful, but insufficient).

To overcome this obstacle we revisit the structure of

affine-invariant linear properties and introduce a simple

calculus for building tests for such properties. Our final

tests also use some of the algebraic machinery coming

from the proofs of the sum-product theorems to build

the necessary tests.

D. Technical contributions

Previous works on testing affine-invariant linear prop-

erties have already shown that it suffices to consider tests
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that distinguish some “basic” functions. Specifically, if

we let Trace : Fqn → Fq denote the standard trace

map given by Trace(x) = x + xq + · · · + xqn−1

, then

it (roughly) suffices to build “tests” that simultaneously

accept some good functions, of the form Trace(xd)
with d ∈ G, while rejecting all bad ones, of the form

Trace(xe) for e ∈ B. For simplicity think of a “test”

of arity k as specified by a tuple α1, . . . , αk ∈ Fqn in

conjunction with a Fq-linear form (λ1, . . . , λk) ∈ F
k
q .

The “test” accepts d if
∑k

i=1 λiTrace(α
d
i ) = 0 and it

rejects e if
∑k

i=1 λiTrace(α
e
i ) �= 0. The sets G and

B depend on the property F being tested. Previous

analysis, especially [2], picked a random test of constant

size that accepted all the good functions and were able to

claim that with (overwhelmingly) high probability such

a test would reject all bad functions. This claim relied

on the fact that all non-zero functions (good/bad) took

on each value in the range roughly equally often. This

fact is no longer true in our case and translates into

an algebraic challenge. For some d ∈ G and e ∈ B
it is no longer the case that a random “test” that accepts

Trace(xd) will reject Trace(xe) with high probability.

A particularly challenging case for us is when e = pid,

where p is the characteristic of the field we are working

with. For this specific case, we manage to “handcraft”

a test, using some methods from additive combinatorics,

that accepts Trace(xd) while rejecting Trace(xpid). This

is the central technical contribution of this work and we

give some insight into it next.

If we are so lucky as to have an element α in Fqn

such that λ � αd is contained in Fq but not contained

in Fpi then we are in good shape: The “test” that checks

whether “λ · f(1) = f(α)?” accepts f(x) = Trace(xd)
while rejecting f(x) = Trace(xpid). In general we can-

not guarantee the existence of such a lucky α. Therefore

we consider the set A =
{
αd | α ∈ Fqn

}
and its �-wise

sum-set �A = {a1 + . . .+ a� | ai ∈ A}. If we could

prove that �A contains an element λ ∈ Fq \ Fpi for

some constant � (possibly depending on the sparsity

of F and q) we would still be okay. This also seems

plausible, since the set A is completely closed under

multiplication and so the sum-product estimates [11]

show that |�A| 	 |A|. Thus it is conceivable that the

larger set �A might contain a nice λ, and if so we would

have a constraint of arity roughly � separating Trace(xd)
from Trace(xpid).

Determining the smallest � for which �A is closed

under addition (for a given d) is well-studied as War-

ing’s problem for finite fields. The best bound, due to

Cochrane and Cipra, is roughly of the form � ≤ d1/ log |A|

[12] (see [13] for more information). For general d,

the parameter � may need to grow with n, however

in our case d is restricted (due to the sparsity of F),

so the above bound gives constant �. For the sake of

presenting a simple and self-contained proof, we provide

a solution to a problem that is somewhat more specific

than Waring’s problem, yet suffices for our purposes and

lends more easily to analysis. Based on the simplified

analysis of the sum-product theorem in [14], we consider

sets A� of the form A� = (�A − �A)/(�A − �A) (i.e.,

sets containing ratios of two elements each of which is

expressible as the difference of two elements of �A). We

show, with a self-contained elementary proof, that for

sufficiently large � the set A� is closed under addition,

hence contains a λ ∈ Fq \ Fpi . With some additional

work we are then able to mimic the “lucky” case above

to get a constraint of arity O(�) separating Trace(xd)
from Trace(xpid).

Unfortunately, while the handcrafted test manages to

settle the toy challenge for a single pair d, e, it fails

to build a single test that simultaneously accepts all

the good functions Trace(xd), d ∈ G, while rejecting

all the bad functions. In particular, the literature on

affine-invariant property testing that reduced testing to

distinguishing basic functions seemed to crucially rely

on the fact that the tests simultaneously accepted all the

functions Trace(xd) for d ∈ G. Tests that accept just

one of the basic functions seem to be useless in their

setting. Indeed we call our tests distinguishing Trace(xd)
from Trace(xe) “pseudo-tests” due to this reason. To

use our pseudo-tests, we build a calculus for combining

pseudo-tests which allows us to build larger pseudo-tests

which combine smaller pseudo-tests to either enlarge

the set of good functions being accepted or to enlarge

the set of bad functions being rejected. Other than

the “handcrafted” pseudo-test mentioned above, we also

use the proof method of Kaufman and Lovett to find

pseudo-tests distinguishing other pairs of good and bad

functions. We then combine them using our calculus till

we get a “pseudo-test” which does accept all the good

functions, and rejects all the bad functions. At this stage

we can now apply the previous works to get a tester for

the family F .

E. Organization of rest of the paper

In Section III we prove our main theorem after re-

calling in Section II the required tools from previous

works. In Section IV we use additive combinatorics to

construct a “pseudo-test” for the most challenging case

of separating xd from xe for e = pid (see the discussion

in the previous subsection). Due to space limitations

some of the details are omitted from the conference

proceeding version and can be found online at [15]. This

includes a generalization of the main theorem of [2] used

to construct a “pseudo-test” for separating xd from xe

for other e’s of interest; A new calculus for composing

“pseudo-tests”; A useful simplification of the constraints
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used in the study of affine-invariant property testing.

II. PRELIMINARIES

We start by recalling the notions of k-single-orbit

characterizability, the degree set and the border set of

an affine-invariant linear family and their role in the

testing of these properties. All information presented in

this section has already appeared in previous works [16],

[17], [1], [18], [7]. We follow the presentation in [7,

Sections 2, 3].

A. Establishing the k-single-orbit characterization prop-
erty is sufficient for k-local testability

Our tester for sparse affine-invariant linear properties

comes from a structural theorem which shows that every

such property has a “single-orbit characterization”. To

describe this notion we need a couple of definitions.

Definition II.1 (k-(basic)-constraint, k-characterization).
A k-constraint C = (α,

{
λi

}r

i=1
) over Fqn is given by a

vector α = (α1, . . . , αk) ∈ F
k
qn together with r vectors

λi = (λi,1, . . . λi,k) ∈ F
k
q for 1 ≤ i ≤ r. We say that

the constraint C accepts a function f : Fqn → Fqn if∑k
j=1 λi,jf(αj) = 0 for all 1 ≤ i ≤ r. Otherwise we

say that C rejects f . We say a constraint is basic if

r = 1.

Let F ⊆ {Fqn → Fq} be a linear property. A k-
characterization of F is a collection of k-constraints

C1, . . . , Cm such that f ∈ F if and only if Cj accepts

f , for every j ∈ {1, . . . ,m}.
It is well-known [3] that every k-locally testable

linear property must have a k-characterization. In the

case of affine-invariant linear properties some special

characterizations are known to lead to k-testability. We

describe these special characterizations next.

Definition II.2 (k-single-orbit characterization

(k-s-o-c)). Let C =
(
α,

{
λi

}r

i=1

)
be a k-constraint over

Fqn . The orbit of C under the set of affine transforma-

tions is the following set of k-constraints {T ◦ C}T ={(
(T (α1), . . . , T (αk)),

{
λi

}r

i=1

) | T is Fqn − affine
}

We say that C is a k-single-orbit characterization (k-s-

o-c) of F if the orbit of C forms a k-characterization

of F .

We say that F has a basic k-s-o-c if the constraint

C above is a basic one. A theorem due to Kaufman and

Sudan [16] (see also [19]) says that k-s-o-c implies local

testability.

Theorem II.3 (k-s-o-c implies local testability,[19] The-

orem 2.9.). Let F ⊆ {Fqn → Fq} be an affine-invariant
linear property. If F has a k-single-orbit characteriza-
tion, then F is also poly(k)-locally testable.

B. Degree sets of affine-invariant linear properties

Let F ⊆ {Fqn → Fq} be a linear affine-invariant

property of functions. Note that every member of

{Fqn → Fq} can be written uniquely as a polynomial of

degree at most qn − 1 from Fqn [x]. Thus for a function

f : Fqn → Fq we define its support, denoted supp(f), to

be the set of exponents in the support of the associated

polynomial. I.e., supp(f) = {d ∈ {0, . . . , qn − 1}|cd �=
0} where f(x) =

∑
d cdx

d. The degree set of F is

simply the union of the supports of the functions in F :

Deg(F) = ∪f∈F supp(f).

Conversely, for a set of degrees D ⊆ {0, . . . , qn − 1} let

Famq(D) = {f | f : Fqn → Fq, supp(f) ⊆ D} .
Affine-invariant linear properties are characterized in

terms of their degree-sets (this is stated formally in

the next lemma) and these degree-sets have a special

structure — they are “closed” under “p-shadows” and

“(q, n)-shifts” as explained next.

Define the p-shadow of an integer d to be the set of

integers whose base-p representation is not larger, point-

wise, than the base-p representation of d. More precisely,

writing d in base p as
∑

i≥0 dip
i we define

Shadowp(d) =

⎧⎨
⎩
∑
i≥0

eip
i | ei ∈ {0, 1, . . . , di} ∀i ≥ 0

⎫⎬
⎭ .

It is known from [16] that whenever d ∈ Deg(F)
for some affine-invariant linear property F then

q · d mod qn − 1 also belongs to Deg(F).
This motivates the following definition of the

(q, n)-shift of an integer d denoted Shiftq,n(d),
as 0 if d = 0 and otherwise Shiftq,n(d) ={
c ∈ {1, . . . , qn − 1} | c ≡ qi · d mod qn − 1

}
for

some 0 ≤ i ≤ n and 1 ≤ d ≤ qn − 1. The reason

for treating 0 differently than qn − 1 is that these two

exponents induce somewhat different functions, namely

00 = 1 but 0q
n−1 = 0.

The p-shadow of a set of integers D is

Shadowp(D) =
⋃

d∈D Shadowp(d). We say D is

p-shadow closed if D = Shadowp(D). The (q, n)-shift

of D is similarly defined and we say D is (q, n)-shift
closed if D = Shiftq,n(D).

The following lemma is [7, Lemma 2.11]. It says

that an affine-invariant linear property in {Fqn → Fq}
is characterized by its degree-set, and this degree-set is

p-shadow and (q, n)-shift closed.

Lemma II.4 (Characterization of affine-invariant lin-

ear properties by degree-sets). let F ⊆ {Fqn → Fq}
be an affine-invariant linear property. Then Deg(F)
is (q, n)-shift-closed, p-shadow-closed, and F =
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Famq(Deg(F)). Conversely, suppose that D is a (q, n)-
shift-closed and p-shadow-closed set of degrees. Then
Famq(D) is an affine-invariant linear property and
D = Deg(Famq(D)).

Remark II.5 (The role of p and q in Lemma II.4). We

point out that the characteristic p of the field Fq and

its size q play different roles in the lemma above. The

shadow of an integer is with respect to base-p represen-

tations, whereas the shift of an integer is computed by

taking q-multiples of it.

C. The border set of affine-invariant linear properties

The fact that the degree sets of affine-invariant linear

properties are p-shadow closed motivates the following

definition of the Border introduced in [7]. This notion

will play a central role in constructing our tester for

sparse affine-invariant linear properties.

Definition II.6 (Border). The border of an affine-

invariant linear property F ⊂ {Fqn → Fq}, where q is

a power of a prime p, denoted Border(F), is the set of

degrees e that are “just outside” of Deg(F), meaning that

e is not in Deg(F) but every element in the p-shadow

of e is in Deg(F).
In what follows, we say that a constraint C over Fqn

accepts the degree d if it accepts the function f(x) = xd,

otherwise we say that C rejects the degree d. For a

set of degrees D ⊆ {0, 1, . . . , qn − 1}, we say that the

constraint C accepts D if it accepts all degrees in D. In

our proof of Theorem I.1 we shall use the following

equivalent definition of k-single-orbit characterization

via the notion of the border.

Lemma II.7 (Equivalent definition of k-single-orbit

characterizable property via the border, [20], Lemma

3.2.). Let F be an affine-invariant linear property, and
let C be a k-constraint. Then C forms a k-single-orbit
characterization of F if and only if C accepts all degrees
in Deg(F) and rejects all degrees in Border(F).

III. PROOF OF MAIN THEOREM

In this section we prove our main theorem (Theorem

I.1) and along the way explain the main new ingredients

and the need for them. Like all previous works on k-

local testability of affine-invariant linear properties, our

main theorem is obtained from showing the existence of

the k-s-o-c property.

Theorem III.1 (Sparse affine-invariant linear properties

have a k-single-orbit characterization). For every q that
is a power of a prime p and every integer t there exists
an integer k = k(t, q) such that the following holds. If
F ⊆ {Fqn → Fq} is a t-sparse linear affine-invariant
property then F has a k-single-orbit characterization.

Proof of Main Theorem I.1: Follows immediately

from Theorem III.1 and Theorem II.3.

A. Pseudo-tests suffice for local testability

Our single-orbit characterizations are obtained by in-

troducing a notion that we call a “pseudo-test”, which

we define below.

Definition III.2 (Pseudo-test). For disjoint sets D,B ⊆
{0, . . . , qn − 1}, and a k-constraint C = (α,

{
λi

}r

i=1
),

we say that C is a k-pseudo-test separating D from B
if C accepts all degrees in D and rejects all degrees in

B. We say that C is a basic-pseudo-test if it is a basic-

constraint. (When the arity k is clear from context we

will often drop it, calling it simply a “pseudo-test”.)

As such the pseudo-test above need not satisfy any

semantic properties. While the test itself accepts every

function in the span of the monomials {xd|d ∈ D} it

clearly accepts a vast number of other functions (since

it is a single deterministic test and hence accepts a

subspace of dimension qn − r). So it is far from being

sound. Our intent is to use the orbit of the pseudo-test as

the test, but then this orbit is now not complete! It may

not accept xd with probability 1, even for d ∈ D. Thus

pseudo-tests seem to be completely irrelevant to the task

at hand.

However as we note below in the next corollary, in

some circumstances they do work well as tests. Further-

more, somewhat surprisingly it is possible to take two

pseudo-tests each of which is incomplete, or unsound,

and combine them to get something that is complete

and sound. Indeed the value of the pseudo-tests are

that they can be composed together nicely. Indeed, the

Composition Lemma III.10 says that it is possible to

construct (“nice”) pseudo-tests “piecemeal” from (not so

nice but) simpler pseudo-tests.

The relation between pseudo-tests and single-orbit

characterizability is given by the following Corollary

which is an immediate consequence of Lemma II.7 and

the definition of a pseudo-test.

Corollary III.3 (Equivalent definition of k-single-orbit

characterizable property via pseudo-tests). Let F be
an affine-invariant linear property, and let C be a k-
constraint. Then C forms a k-single-orbit characteriza-
tion of F if and only if F is a pseudo-test separating
Deg(F) from Border(F).

When applying the above corollary it will be useful

for us to use the following simple lemma which says

that a constraint over Fqn accepts a degree d if and only

if it accepts all degrees in its (q, n)-shift.

Lemma III.4. Let d be a degree in {0, 1, . . . , qn − 1},
and let C be a k-constraint over Fqn . Then C accepts
d if and only if it accepts all degrees in Shiftq,n(d).
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Proof: Let d′ ∈ Shiftq,n(d) be such that d′ ≡ d · q�
mod qn − 1. Then for all 1 ≤ i ≤ r we have that

( k∑
j=1

λi,jα
d
j

)q�

=

k∑
j=1

λq�

i,jα
d·q�
j =

k∑
j=1

λi,jα
d′
j ,

where the first equality is due to the fact that raising to

the power q� is a linear operation over Fqn , while the

second equality is due to the fact that λi,j ∈ Fq , and

hence λq�

i,j = λi,j . Thus we have that
∑k

j=1 λi,jα
d
j = 0

if and only if
∑k

j=1 λi,jα
d′
j = 0.

Given the notion of pseudo-test we can state the

main technical theorem whose proof occupies the rest

of this paper. In what follows we say D′ is a (q, n)-
shift representative set for a (q, n)-shift closed set D if

Shiftq,n(D
′) = D.

Theorem III.5 (Main Technical — Sparse affine-invari-

ant linear properties have a k-pseudo-test). For every
q that is a power of a prime p and every integer
t there exists an integer k = k(t, q) such that the
following holds. Let F ⊆ {Fqn → Fq} be a t-sparse
affine-invariant linear property and let D′, B′ be (q, n)-
representative sets of Deg(F), Border(F) respectively.
Then there exists a k-pseudo-test that separates D′ from
B′.

Proof of Theorem III.1: Follows immediately from

Theorem III.5, Corollary III.3 and Lemma III.4.

B. Overview of the proof of Main Technical Theo-
rem III.5

Fix (q, n)-shift representative sets D′, B′ for Deg(F)
and Border(F) respectively. We construct a pseudo-test

that separates D′ from B′ in three steps as follows.

1) Cover D′ × B′ by a constant number of product

sets

D′ ×B′ = D′0 ×B′0 ∪ . . . ∪D′� ×B′� (1)

where the constant � depends only on t and q, and,

crucially, is independent of n. The cover is chosen

in such a way that for each pair D′i, B
′
i there exists

a k′-pseudo-test that separates D′i from B′i for k′

which is independent on n.

2) For each i = 1, . . . , � construct a k′-pseudo-test

that separates D′i from B′i, where k′ does not

depend on n (it, too, depends on q and t).
3) Show that all � of the k′-pseudo-tests can be

“composed” to derive a single k-pseudo-test that

separates D′ from B′ with k = k(k′, t, �). This

separates D′ from B′ by a pseudo-test of size that

depends only on q and t and is independent of n
and thereby proves Theorem III.5.

We now elaborate on each of the steps. The second step

will be broken up into two sub-steps because there are

two very different kinds of pair-sets that we need to

consider, and each requires its own set of tools.

C. Covering the (q, n)-shift representative sets

First we define the cover of D′ × B′ by set-pairs

and then bound the number of set-pairs in our cover

in Lemma III.7. (Inspection reveals that our cover is

actually a partition of D′×B′ but the rest of our proofs

only need the weaker assumption of a cover.)

Definition III.6 (Cover). Given D′, B′ that are (q, n)-
shift representative sets of Deg(F) and Border(F) re-

spectively, where q = ps for a prime p, partition B′ into

B0 = B′ \ Shiftp,sn(D′); B1 = B′ ∩ Shiftp,sn(D
′).
(2)

Set D′0 = D′ and B′0 = B0. Order the pairs in D′ ×B1

arbitrarily as {(d1, b1), . . . , (d�, b�)} where � = |D′| ·
|B1| and let D′i = {di} and B′i = {bi} for all i =
1, . . . , �.

Notice that although elements of Border(F) do not

belong to Deg(F) (cf. Definition II.6), they can poten-

tially belong to Shiftp,sn(Deg(F)), so the set B1 can

indeed be nonempty.

Inspection reveals that the above set of pairs in Defini-

tion III.6 covers D′ ×B′. The following lemma bounds

the number of pairs by bounding |D′| · |B1|. The second

part of the lemma will be used soon and since its proof

relies on the first part we find it convenient to include

it here. To state the second part we define the p-weight
wtp(d) of an integer d as the sum of digits of the base-

p representation of d. Formally, if d =
∑

i≥0 dip
i then

wtp(d) =
∑

i≥0 di.

Lemma III.7 (t-sparse properties have sparse repre-

sentative sets). Suppose that F ⊆ {Fqn → Fq} is
a t-sparse affine-invariant linear property. Then the
following holds:

1) There exist (q, n)-shift representative sets D′, B′

for Deg(F), Border(F) respectively such that
|D′| ≤ 2t + 1, and assuming q = ps where p
is a prime, B1 = Border(F)∩Shiftp,sn(D

′) is of
size at most s(2t+ 1).

2) All integers in Deg(F) have p-weight at most 2t
and those of Border(F) have p-weight at most
2t+ 1.

Proof: Our starting point is Lemma 2.15 from

[7]. It says that if F is t-sparse then it has a (q, n)-
shift representative set D′ of size at most 2t + 1. The

border could be potentially of much larger size but if

we restrict our attention only to the elements that lie in

Shiftp,sn(D
′), then they can be represented by a set B1

of size at most s|D′| because for each nonzero d ∈ D′

the (q, n)-shifts of d, dp, . . . , dps−1 cover the (p, sn)-
shift of d.
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To prove the second part we claim that Deg(F)
contains integers of p-weight at most 2t. By definition,

this will immediately imply (cf. Definition II.6) that the

p-weight of every element of Border(F) is at most

2t+1. To see that Deg(F) cannot contain an integer of

p-weight greater than 2t notice that Lemma II.4 implies

that if an integer of p-weight r belongs to Deg(F) then

there are integers of p-weight r′ in Deg(F) for every

r′ = 0, 1, . . . , r − 1. Since the (q, n)-shift of an integer

d contains only integers of the same p-weight as d, this

implies that |D′| > r. The assumption |D′| ≤ 2t + 1
therefore shows that no integer in Deg(F) has p-weight

greater than 2t as claimed and this completes our proof.

D. Separating a pair of sets with disjoint p-shifts

We now turn to the task of separating individual pairs

of sets from our cover given in Definition III.6. We start

by showing a pseudo-test which separates a pair of sets

D, B such that B does not contain any p-shift of a degree

in D. This pseudo-test will be used for separating the

sets D′0 from B′0 and in addition for separating all pairs

(di, bi) such that the degree bi does not belong to a p-

shift of the degree di. Our proof method uses the work of

Kauffman and Lovett [2]. Stated using our language of

pseudo-tests, they proved that for every t-sparse affine-

invariant linear property F ⊆ {Fpn → Fp} over a prime
field Fp there exists a k(t)-pseudo-test that separates D′

from B′, where D′, B′ are (p, n)-shift representative sets

of Deg(F), Border(F) respectively. And by Corollary

III.3 and Lemma III.4. this readily implies F is also

k(t)-single-orbit characterizatable. We observe that the

proof method of [2] actually gives the following more

general pseudo-test.

Lemma III.8 (Separation of distinct (p, n)-shifts). For
every t, w and prime p there exists k = k(t, w) such
that the following holds for sufficiently large n: Let
D,B ⊆ {0, . . . , pn − 1} such that |D| ≤ t, B does not
contain any (p, n)-shift of a degree in D and in addition
wtp(d) ≤ w for every degree d ∈ D ∪ B. Then there
exists a single (basic) k-pseudo-test C that separates D
from B.

The proof of the above lemma is omitted from the con-

ference proceeding version due to space considerations.

To see that the result of [2] is a special case of it note that

if F ⊆ {Fpn → Fp} is a t-sparse affine-invariant linear

property over a prime field Fp then Lemma III.7 implies

that Deg(F) has a (p, n)-shift representative set D′ of

size at most 2t+1. Moreover, Part 2 of the same Lemma

implies that if B′ is a (p, n)-shift representative set of

Border(F) then wtp(d) ≤ 2t+1 for every d ∈ D′∪B′.
Finally, note that the fact that F is an affine-invariant

linear property over Fp implies that it is (p, n)-shift-

closed and hence B′ does not contain any (p, n)-shift of

a degree in D′.

E. Separating a pair of degrees in the same p-shift

Lemma III.8 only gives a pseudo-test which separate

pairs of degrees that belong to different (p, n)-shifts.

As explained above, this suffices in order to prove

single-orbit characterizability of affine-invariant linear

properties over a prime field Fp since the degree sets

of such properties are (p, n)-shift closed. However, in

the case of non-prime fields of size q = ps affine-

invariant linear properties are not necessarily (p, sn)-
shift closed, and thus we need to be able to separate

also pairs of degrees that belong to the same (p, sn)-
shift. The following lemma covers this case.

Lemma III.9 (Separation of two degrees in the same

(p, sn)-shift). Let q = ps for a prime p, and let d ∈
{0, . . . , qn− 1}, b ∈ Shiftp,sn(d) \Shiftq,n(d) be a pair
of degrees of p-weight at most w. Then there exists a
single (basic) k-pseudo-test C that separates {d} from
{b} for k = 4 · 84qw+1

.

As mentioned earlier this is the case where we have to

design the pseudo-tests explicitly. We prove this lemma,

using machinery that comes from the proofs of the sum-

product theorem, in Section IV .

F. A Calculus for composing pseudo-tests

So far we have managed to find a separating pseudo-

test for each pair of sets in our cover of D′ × B′

given in Definition III.6. In order to obtain a single
pseudo-test that separates all of D′ from all of B′

and thereby prove Theorem III.5 we introduce a natural

calculus for composing pseudo-tests that separate distinct

pairs of degree-sets. Suppose C1 is a k1-pseudo-test that

separates D1 from B1 and C2 is a k2-pseudo-test that

separates D2 from B2. One of the basic operations in

our calculus takes the “union” of C1 and C2 and gives

a (k1 + k2)-pseudo-test that separates D1 ∩ D2 from

B1∪B2 . The second operation takes the “tensor” of C1

and C2 and gives a (k1 ·k2)-pseudo-test which separates

D1 ∪ D2 from B1 ∩ B2 . The combination of the two

operations yields the following result that allows us to

combine many different pseudo-tests into one.

Lemma III.10 (Composition of pseudo-tests). For every
k′, t and �, there exists k = k(k′, t, �) such that the
following holds. Let D,B ⊆ {0, . . . , qn− 1} be disjoint
sets with |D| ≤ t and let D×B = D1×B1∪. . .∪D�×B�

be a cover of D × B. Suppose that for all i = 1, . . . , �
there exists a k′-pseudo-test Ci which separates Di from
Bi. Then there exists a k-pseudo-test C that separates
D from B.
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The proof of the above lemma is omitted from the

conference proceeding version due to space considera-

tions.

G. Completing the proof of Theorem III.5

We are now in the position to complete the formal

proof of the main technical theorem.

Proof of Main Technical Theorem III.5: Let q = ps

for a prime p and let F ⊆ {Fqn → Fq} be a t-sparse

affine-invariant linear property. Let B′, D′ be the (q, n)-
shift representative sets for Deg(F),Border(F) respec-

tively guaranteed by Lemma III.7. By the lemma we

have |D′| ≤ 2t+1 and |B′∩Shiftp,sn(D′)| ≤ s(2t+1)
and all integers in D′ have p-weight at most 2t and those

of B′ have p-weight at most 2t + 1. Cover D′ × B′ as

in Definition III.6 and notice the number of sets in this

cover is bounded by 1 + |D′| · |B1| ≤ s(2t+ 1)2 + 1.

Apply Lemma III.8 to conclude that D′0 can be

separated from B′0 by a k1-pseudo-test C0 for k1 that

depends only on t. Apply Lemma III.8 also to each

pair D′i ×B′i, i = 1, . . . , � which satisfy Shiftp,sn(di) ∩
Shiftp,sn(bi) = ∅ to obtain a k1-pseudo-test Ci that

separates D′i from B′i. Finally, apply Lemma III.9 to each

pair D′i × B′i, i = 1, . . . , � that satisfy Shiftp,sn(di) ∩
Shiftp,sn(bi) �= ∅ to obtain a k2-pseudo-test Ci that

separates D′i from B′i where k2 depends only on t.
Apply the composition Lemma III.10 to C0, . . . , C�

and, recalling � is bounded by a polynomial in s, t and

|D′| ≤ 2t+1 we conclude the existence of a k-pseudo-

test C that separates D′ from B′ where k depends only

on t and q. This completes the proof of Theorem III.5.

IV. SEPARATING PAIRS OF DEGREES IN THE SAME

p-SHIFT — PROOF OF LEMMA III.9

In this section we prove Lemma III.9, showing for

every pair of degrees d ∈ {0, . . . , qn − 1}, b ∈
Shiftp,sn(d) \ Shiftq,n(d) of constant p-weight the exis-

tence of a k-constraint which separates d from b.
The proof idea of Lemma III.9 is the following. Sup-

pose we wish to find a constraint which separates the de-

gree d from the degree d ·pi ∈ Shiftp,sn(d)\Shiftq,n(d).
Let A =

{
αd|α ∈ Fqn

}
, and assume for simplicity that

A∩ (Fq \Fpi) �= ∅. Then in this case there exists a con-

straint C = (α, λ) of arity 2 which separates d from d·pi:
Let γd ∈ A∩(Fq\Fpi) and α = (α1, α2) = (1, γ) ∈ F

2
qn ,

and let λ = (λ1, λ2) = (−1, γ−d) ∈ F
2
q (the fact that

γ−d � 1/γd is in Fq follows from our assumption that

γd ∈ Fq). Then for the degree d we have that

λ1α
d
1 + λ2α

d
2 = −1 + γ−dγd = 0, (3)

and hence C accepts d. On the other hand, for the degree

d · pi we have that

λ1α
d·pi

1 + λ2α
d·pi

2 = −1 + γ−dγd·pi

. (4)

Note that (4) equals zero if and only if (γd)p
i

= γd. But

by assumption γd /∈ Fpi , and hence (γd)p
i �= γd which

implies in turn that (4) is non-zero.

However, our assumption that A∩ (Fq \Fpi) �= ∅ was

too optimistic. To resolve this we resort to the closure

F(A) of A in Fqn , defined as the smallest subfield of

Fqn containing A. Note that Fp ⊆ F(A) ⊆ Fqn . We first

prove (in Lemma IV.1) that F(A)∩ (Fq \Fpi) �= ∅. Then

in Lemma IV.2 we prove, using machinery developed for

the proof of a version of the sum-product theorem from

[14], that if d ≤ q(1−ε)n then every element γ ∈ F(A)
can be written as γ = γ1

γ2
where both γ1 and γ2 are

the sum of a constant number of elements in A (this

constant depends only on ε). This gives in turn the

desired constraint C = (α, λ) which separates d from

d · pi.
We start by claiming that F(A) contains an element

in Fq \ Fpi .

Lemma IV.1. Let q = ps for some prime p, and let
d ∈ {0, . . . , qn − 1} be such that d · pi /∈ Shiftq,n(d).
Let A =

{
αd|α ∈ Fqn

}
, and let F(A) be the smallest

subfield of Fqn containing A. Then F(A)∩(Fq\Fpi) �= ∅.
Proof: Let F(A) = Fpm , and suppose by way of

contradiction that Fpm ∩ (Fq \ Fpi) = ∅. Then Fpm ∩
Fq ⊆ Fpi . In order to arrive at a contradiction, we will

show that d · pi is a (q, n)-shift of d contradicting our

assumption.

Let r = gcd(s,m). Then we have Fpm ∩ Fq = Fpr ⊆
Fpi and hence r divides i. Our first observation is that

since r = gcd(s,m) there exists a pair of integers t, �
such that tm + �s = r. Let t′ = it

r , �′ = i�
r . Since r

divides i we have that t′, �′ are integers and

t′m+ �′s =
it

r
m+

i�

r
s =

i

r
(tm+ �s) = i. (5)

Our second observation is that since F(A) = Fpm then

for every α ∈ Fqn we have that (αd)p
m

= αd and hence

the polynomial xd·pm − xd is identically zero over Fqn .

This implies in turn that

d · pm ≡ d mod qn − 1. (6)

From (5) and (6) we have

d · pi ≡ d · pt′m+�′s mod qn − 1 (From (5))

≡ d · p�′s mod qn − 1 (From (6))

≡ d · q�′ mod qn − 1 (Since q = ps)

Thus we have that d · pi is a (q, n)-shift of d — a

contradiction.

We now prove that if d is not too large then every

element γ ∈ F(A) can be written in the form γ = γ1

γ2

where both γ1 and γ2 are sums of a constant number of

elements in A.

568



Lemma IV.2. Let d ∈ {0, 1, . . . , qn − 1} be a degree
which satisfies d ≤ q(1−ε)n, let A =

{
αd|α ∈ Fqn

}
,

and let F(A) be the smallest subfield of Fqn containing
A. Then F(A) ⊆ �A−�A

�A−�A for � = 84
�1/ε�

.

Using [12, Theorem 1.2] the bound on � above can

be improved to exponential in 1/ε, i.e., � = 2O(1/ε).

For the sake of presenting a simple self-contained proof,

we prove the above lemma using the following theorem

from [14] which was proved there as a step towards

a simplified version of the sum-product theorem of

[21]. For a set A and � an arithmetic operation in

{+,−,÷,×} let A�A = {a� a′|a, a′ ∈ A}.
Theorem IV.3 ([14], Claim A.4.). Let F be a finite field,
and let A ⊆ F and k ∈ N (with k ≥ 2) be such that
|F|1/k < |A| ≤ |F|1/(k−1). Then |A−A

A−A | ≥ |F|1/(k−1).

Proof of Lemma IV.2: Apply Theorem IV.3 it-

eratively. Set A0 := A and for i = 1, 2, 3, . . . let

A′i = Ai−1−Ai−1

Ai−1−Ai−1
, and Ai = A′i + A′i · A′i. The proof

consists of two main steps. In the first step we will argue

that there exists t ≤ �1/ε� + 1 for which F(A) ⊆ At.

In the second step we will prove by induction on i that

Ai ⊆ 84
i−1

A−84
i−1

A

84i−1A −84i−1A
for every i = 1, 2, 3, . . .. Lemma

IV.2 follows from the i = t case.

We start by showing the existence of t ≤ �1/ε� + 1
for which F(A) ⊆ At. To see this note first that since

d ≤ q(1−ε)n, for every β ∈ Fqn there are at most

q(1−ε)n solutions in x to the equation xd = β. Thus

|A0| ≥ qn

q(1−ε)n = qεn. Choose k = � 1ε � + 1, and note

that ε > 1
k . Theorem IV.3 implies that |A′1| = |A0−A0

A0−A0
| ≥

(qn)
1/(k−1)

. If A′1 is a field then we are done since it

can be verified that A ⊆ A′1 (since 0 ∈ A) and hence

F(A) ⊆ A′1 from the minimality of F(A). Otherwise

we have that |A1| = |A′1 + A′1 · A′1| is strictly greater

than (qn)
1/(k−1)

, and thus we can apply Theorem IV.3

again to the set A1. Continuing this process iteratively

we have that at the i-th step either A′i is a field and hence

F(A) ⊆ A′i ⊆ Ai or that |Ai| > |A′i| ≥ (qn)
1/(k−i)

.

Since Ai ⊆ Fqn for all i, this process must terminate

after at most k = � 1ε � + 1 steps, and thus we have that

F(A) ⊆ At for t ≤ � 1ε �+ 1.

Next we show by induction on i that Ai ⊆
84

i−1
A−84

i−1
A

84i−1A −84i−1A
for every i = 1, 2, 3, . . .. This will imply

in turn that F(A) ⊆ At ⊆ 84
�1/ε�A−84

�1/ε�A

84
�1/ε�A−84

�1/ε�A Base case
— i = 1. Noting that A is closed under multiplication,

in this case we have that

A1 = A′1 + A′1 · A′1 = A−A
A−A + A−A

A−A · A−A
A−A ⊆

A−A
A−A + 2A−2A

2A−2A ⊆ 8A−8A
4A−4A ⊆ 8A−8A

8A−8A Induc-
tion step. Suppose that the claim holds for index

i and we will prove that it holds for index i + 1
as well. Ai+1 = A′i+1 + A′i+1 · A′i+1 = Ai−Ai

Ai−Ai
+

Ai−Ai

Ai−Ai
· Ai−Ai

Ai−Ai
⊆ 84

i−1
A−84

i−1
A

84i−1A −84i−1A
+ 84

i−1
A−84

i−1
A

84i−1A −84i−1A
·

84
i−1

A−84
i−1

A

84i−1A −84i−1A
(Induction hypothesis, continuing we

have) ⊆ 84
i−1

A−84
i−1

A

84i−1A −84i−1A
+ 2·82·4i−1

A−2·82·4i−1
A

2·82·4i−1A−2·82·4i−1A
⊆

8·83·4i−1
A−8·83·4i−1

A

4·83·4i−1A −4·83·4i−1A
⊆ 84

i
A−84

i
A

84iA −84iA
In our proof of Lemma III.9 we would like to apply

Lemma IV.2 to the degree d. In order to apply this lemma

we need d to be small. However, all we know about d
is that it has small p-weight and this does not guarantee

that d is small. In order to deal with this we shall first

prove that since d has a small p-weight, it has a degree

d′ in its (q, n)-shift that is small. We will then show a

constraint over Fqn which separates d′ from d′ ·pi. From

Lemma III.4 this will also imply that the constraint C
separates d from d · pi. The following lemma says that

every degree of small q-weight has a degree in its (q, n)-
shift that is small.

Lemma IV.4. For every degree d ∈ {0, 1, . . . , qn − 1}
there exists a degree d′ ∈ Shiftq,n(d) such that d′ ≤
q(1−1/wtq(d))n+1

Proof: Let t = wtq(d), and let d =∑n−1
i=0 diq

i be the representation of d in base-q. Since

wtq(d) ≤ t the pigeonhole principle implies that

d has at least n−t
t = n

t − 1 consecutive digits

dj , dj+1 mod n, . . . , dj+n
t −2 mod n which equal zero.

Let d′ ∈ Shiftq,n(d) be such that d′ ≡ d ·
qn+1−n/t−j mod qn − 1. Then d′ satisfies that all

indices d′n−n
t +1, . . . , d

′
n−1 equal zero, where d′ =∑n−1

i=0 d′iq
i is the representation of d′ in base-q. But

this implies in turn that d′ ≤ ∑n(1−1/t)
i=0 (q − 1)qi ≤

qn(1−1/t)+1.
We now proceed to the proof of Lemma III.9

Proof of Lemma III.9: Suppose that b /∈ Shiftq,n(d)
such that b ≡ d · pi mod qn − 1. Since wtq(d) ≤
q · wtp(d) ≤ qw, from Lemma IV.4 we have that

there exists a degree d′ ∈ Shiftq,n(d) such that d′ ≤
q(1−1/w)n+1 ≤ q(1−1/(qw+1))n for sufficiently large n.

Let b′ /∈ Shiftq,n(d
′) such that b′ ≡ d′ · pi mod qn − 1

and note that b′ ∈ Shiftp,sn(d
′) \ Shiftq,n(d

′). From

Lemma III.4 it suffices to show a k-constraint which

separates d′ from b′.
Let A =

{
αd′ |α ∈ Fqn

}
, and let F(A) be the smallest

subfield of Fqn containing A. From Lemma IV.1 we have

that F(A)∩(Fq\Fpi) �= ∅, let γ ∈ F(A)∩(Fq\Fpi). From

Lemma IV.2 and since d′ ≤ q(1−1/(qw+1))n we have that

F(A) ⊆ �A−�A
�A−�A for � = 84

qw+1

, and thus γ ∈ �A−�A
�A−�A . In

particular there exist β1, . . . , β4� ∈ Fqn such that

γ =
(βd′

1 + . . .+ βd′
� )− (βd′

�+1 + . . .+ βd′
2�)

(βd′
2�+1 + . . .+ βd′

3�)− (βd′
3�+1 + . . .+ βd′

4�)
(7)

The constraint C = (α, λ) will be the (4�)-constraint

defined by α = (α1, . . . , α4�) ∈ F
4�
qn and λ =
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(λ1, . . . λ4�) ∈ F
4�
q , where αi = βi for all 1 ≤ i ≤ 4�,

and

λi =

⎧⎪⎪⎨
⎪⎪⎩

−1 1 ≤ i ≤ �
1 �+ 1 ≤ i ≤ 2�
γ 2�+ 1 ≤ i ≤ 3�
−γ 3�+ 1 ≤ i ≤ 4�

.

It remains to show that the constraint C accepts d′

and rejects b′. For the degree d′ we have from (7) that∑4�
i=1 λiα

d′
i = −

(∑�
i=1 β

d′
i − ∑2�

i=�+1 β
d′
i

)
+

γ

(∑3�
i=2�+1 β

d′
i −

∑4�
i=3�+1 β

d′
i

)
= 0

On the other hand, for the degree b′ we have∑4�
i=1 λiα

b′
i =

∑4�
i=1 λiα

d′·pi

i

= −
(∑�

i=1 β
d′·pi

i − ∑2�
i=�+1 β

d′·pi

i

)
+

γ

(∑3�
i=2�+1 β

d′·pi

i −∑4�
i=3�+1 β

d′·pi

i

)
=

−
(∑�

i=1 β
d′
i −

∑2�
i=�+1 β

d′
i

)pi

+

γ

(∑3�
i=2�+1 β

d′
i −

∑4�
i=3�+1 β

d′
i

)pi

=

(∑�
i=1 β

d′
i −

∑2�
i=�+1 β

d′
i

)pi

(−1 + γ · γ−pi

)

To see that the above equation is non-zero note that

γ /∈ Fpi and hence γpi �= γ. This implies in turn that

−1+ γ · γ−pi �= 0. Also, since γ �= 0, from (7) we have

that

(∑�
i=1 β

d′
i −

∑2�
i=�+1 β

d′
i

)pi

�= 0. Hence the above

equation is non-zero which concludes the proof of the

lemma.
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