
Partially Symmetric Functions are Efficiently Isomorphism-Testable

Eric Blais
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA.
Email: eblais@cs.cmu.edu

Amit Weinstein
Blavatnik School of Computer Science

Tel Aviv University
Tel Aviv, Israel.

Email: amitw@tau.ac.il

Yuichi Yoshida
National Institute of Informatics, and

Preferred Infrastructure, Inc.
Tokyo, Japan.

Email: yyoshida@nii.ac.jp

Abstract—Given a Boolean function 𝑓 , the 𝑓 -isomorphism
testing problem requires a randomized algorithm to distinguish
functions that are identical to 𝑓 up to relabeling of the
input variables from functions that are far from being so. An
important open question in property testing is to determine for
which functions 𝑓 we can test 𝑓 -isomorphism with a constant
number of queries. Despite much recent attention to this
question, essentially only two classes of functions were known
to be efficiently isomorphism testable: symmetric functions and
juntas.

We unify and extend these results by showing that all
partially symmetric functions—functions invariant to the re-
ordering of all but a constant number of their variables—
are efficiently isomorphism-testable. This class of functions,
first introduced by Shannon, includes symmetric functions,
juntas, and many other functions as well. We conjecture that
these functions are essentially the only functions efficiently
isomorphism-testable.

To prove our main result, we also show that partial symme-
try is efficiently testable. In turn, to prove this result we had
to revisit the junta testing problem. We provide a new proof of
correctness of the nearly-optimal junta tester. Our new proof
replaces the Fourier machinery of the original proof with a
purely combinatorial argument that exploits the connection
between sets of variables with low influence and intersecting
families.

Another important ingredient in our proofs is a new notion
of symmetric influence. We use this measure of influence to
prove that partial symmetry is efficiently testable and also to
construct an efficient sample extractor for partially symmetric
functions. We then combine the sample extractor with the
testing-by-implicit-learning approach to complete the proof
that partially symmetric functions are efficiently isomorphism-
testable.

Keywords-Boolean functions; property testing; partial sym-
metry;

I. INTRODUCTION

Property testing considers the following general problem:
given a property 𝒫 , identify the minimum number of queries
required to determine with high probability whether an input
has the property 𝒫 or whether it is far from 𝒫 . This question
was first formalized by Rubinfeld and Sudan [1].

Definition 1 (Property tester). Let 𝒫 be a set of Boolean
functions. An 𝜖-tester for 𝒫 is a randomized algorithm which
queries an unknown function 𝑓 : {0, 1}𝑛 → {0, 1} on a
small number of inputs and

1) Accepts with probability at least 2/3 when 𝑓 ∈ 𝒫;
2) Rejects with probability at least 2/3 when 𝑓 is 𝜖-far

from 𝒫 ,
where 𝑓 is 𝜖-far from 𝒫 if dist(𝑓, 𝑔) := ∣{𝑥 ∈ {0, 1}𝑛 ∣
𝑓(𝑥) ∕= 𝑔(𝑥)}∣ ≥ 𝜖2𝑛 holds for every 𝑔 ∈ 𝒫 .

Goldreich, Goldwasser, and Ron [2] extended the scope
of this definition to graphs and other combinatorial objects.
Since then, the field of property testing has been very active.
For an overview of recent developments, we refer the reader
to the surveys [3], [4] and the book [5].

A notable achievement in the field of property testing is
the complete characterization of graph properties that are
testable with a constant number of queries [6]. An ambitious
open problem is obtaining a similar characterization for
properties of Boolean functions. Recently there has been a
lot of progress on the restriction of this question to properties
that are closed under linear or affine transformations [7], [8].
More generally, one might hope to settle this open problem
for all properties of Boolean functions that are closed under
relabeling of the input variables.

An important sub-problem of this open question is func-
tion isomorphism testing. Given a Boolean function 𝑓 , the
𝑓 -isomorphism testing problem is to determine whether a
function 𝑔 is isomorphic to 𝑓—that is, whether it is the same
up to relabeling of the input variables—or far from being so.
A natural goal, and the focus of this paper, is to characterize
the set of functions for which isomorphism testing can be
done with a constant number of queries.

A. Previous work

The function isomorphism testing problem was first raised
by Fischer et al. [9]. They observed that fully symmetric
functions are trivially isomorphism testable with a constant
number of queries. They also showed that every 𝑘-junta, that
is every function which depends on at most 𝑘 of the input
variables, is isomorphism testable with poly(𝑘) queries. This
bound was recently improved by Chakraborty et al. [10],
who showed that 𝑂(𝑘 log 𝑘) queries suffice. These results
imply that juntas on a constant number of variables are
isomorphism testable with a constant number of queries.

The first lower bound for isomorphism testing was also
provided by Fischer et al. [9]. They showed that for small

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.53

551

enough values of 𝑘, testing isomorphism to a 𝑘-linear
function (i.e., a function that returns the parity of 𝑘 variables)
requires Ω(log 𝑘) queries.1 Following a series of recent
works [11], [12], [13], the exact query complexity for testing
isomorphism to 𝑘-linear functions has been determined to be
Θ̃(min(𝑘, 𝑛− 𝑘)).

More general lower bounds for isomorphism testing were
obtained by Blais and O’Donnell [14]. In particular, they
showed that testing isomorphism to any 𝑘-junta that is far
from being a (𝑘 − 1)-junta requires Ω(log log 𝑘) queries.
This lower bound gives a large family of functions for
which testing isomorphism requires a super-constant number
of queries. Alon et al. proved even more general lower
bounds showing that for almost every function 𝑓 , testing
isomorphism to 𝑓 requires Θ̃(𝑛) queries [15] (see also [16],
[10]).

B. Partially symmetric functions

As seen above, the only functions which we know are
isomorphism testable with a constant number of queries are
fully symmetric functions and juntas. Our motivation for
the current work was to see if we can unify and generalize
the results to encompass a larger class of functions. While
symmetric functions and juntas may seem unrelated, there is
in fact a strong connection. Symmetric functions, of course,
are invariant under any relabeling of the input variables. Jun-
tas satisfy a similar but slightly weaker invariance property.
For every 𝑘-junta, there is a set of at least 𝑛 − 𝑘 variables
such that the function is invariant to any relabeling of these
variables. Functions that satisfy this condition are called
partially symmetric.

Definition 2 (Partially symmetric functions). For a subset
𝐽 ⊆ [𝑛] := {1, . . . , 𝑛}, a function 𝑓 : {0, 1}𝑛 → {0, 1}
is 𝐽-symmetric if permuting the labels of the variables of
𝐽 does not change the function. Moreover, 𝑓 is called 𝑡-
symmetric if there exists 𝐽 ⊆ [𝑛] of size at least 𝑡 such that
𝑓 is 𝐽-symmetric.

Shannon first introduced partially symmetric functions as
part of his investigation on the circuit complexity of Boolean
functions [17]. He showed that while most functions require
an exponential number of gates to compute, every partially
symmetric function can be implemented much more effi-
ciently. Research on the connection between partial symme-
try and the complexity of Boolean functions has remained
active ever since [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27].2 Our results suggest that studying partially
symmetric functions may also yield greater understanding
of property testing on Boolean functions.

1More precisely, they showed that non-adaptive testers require Ω̃(
√
𝑘)

queries. Here and in the rest of this section, tilde notation is used to hide
logarithmic factors.

2Different definitions of partial symmetry have been introduced since the
original work of Shannon [17]. All of these definitions are related and, in
fact, many of them are equivalent [28].

C. Our results

The set of partially symmetric functions includes both
juntas and symmetric functions, but the set also contains
many other functions as well. A natural question is whether
this entire class of functions is isomorphism testable with a
constant number of queries. Our first main result gives an
affirmative answer to this question.

Theorem 1. For every (𝑛 − 𝑘)-symmetric function 𝑓 :
{0, 1}𝑛 → {0, 1} there exists an 𝜖-tester for 𝑓 -isomorphism
that performs 𝑂(𝑘 log 𝑘/𝜖2) queries.

A simple modification of an argument in Alon et al. [15]
can be used to show that the bound in the above theorem
is tight up to logarithmic factors. Indeed by this argument,
testing isomorphism to almost every (𝑛 − 𝑘)-symmetric
function requires Ω(𝑘) queries.

We believe that the theorem might also be best possible in
a different way. That is, we conjecture that the set of partially
symmetric functions is essentially the set of functions for
which testing isomorphism can be done with a constant
number of queries. We discuss this conjecture with some
supporting evidence in Section VI.

The proof of our first main theorem follows the general
outline of the proof that isomorphism testing to juntas can be
done in a constant number of queries. The observation which
allows us to make this connection is the fact that partially
symmetric functions can be viewed as junta-like functions.
More precisely, an (𝑛−𝑘)-symmetric function is a function
that has 𝑘 special variables where for each assignment for
these variables, the restricted function is fully symmetric on
the remaining 𝑛− 𝑘 variables.

The proof for testing isomorphism of juntas has two main
components. The first is an efficient junta testing algorithm.
This enables us to reject functions that are far from being
juntas. The second is a query efficient sampler of the “core”
of the input function given that the function is close to a
junta. The sampler can then be used in order to verify if
the two juntas are indeed isomorphic. We generalize both of
these components for partially symmetric functions.

Our second main result, and the first component of the
isomorphism tester, is an efficient algorithm for testing
partial symmetry.

Theorem 2. The property of being (𝑛 − 𝑘)-symmetric for
𝑘 < 𝑛/10 is testable with 𝑂(𝑘𝜖 log

𝑘
𝜖) queries.

The natural approach for proving this theorem is to try
to generalize the result on junta testing in [29]. That result
heavily relied on the notion of influence of variables. The
influence of a set 𝑆 of variables in a function 𝑓 is the
probability that 𝑓(𝑥) ∕= 𝑓(𝑦) when 𝑥 is chosen uniformly
at random and 𝑦 is obtained from 𝑥 by re-randomizing
the values of 𝑥𝑖 for each 𝑖 ∈ 𝑆. The notion of influence
characterizes juntas: when 𝑓 is a 𝑘-junta, there is a set of

552

size 𝑛 − 𝑘 whose influence is 0, whereas when 𝑓 is 𝜖-far
from being a 𝑘-junta, every set of size 𝑛− 𝑘 has influence
at least 𝜖.

We introduce a different notion of influence which we call
symmetric influence. The symmetric influence of a set 𝑆 of
variables in 𝑓 is the probability that 𝑓(𝑥) ∕= 𝑓(𝑦) when 𝑥
is chosen uniformly at random and 𝑦 is obtained from 𝑥 by
permuting the values of {𝑥𝑖}𝑖∈𝑆 . This notion characterizes
partially symmetric functions and satisfies several other
useful properties. We provide the details in Section III.

The proof of the junta testing result in [29] relies on
nice properties of the Fourier representation of the notion
of influence. While symmetric influence also has a clean
Fourier representation, it unfortunately does not have the
properties needed to carry over the proof in [29] to the
setting of partially symmetric functions. Instead, we must
come up with a new proof technique.

Our proof of Theorem 2 uses a new connection to
intersecting families. A family ℱ of subsets of [𝑛] is 𝑡-
intersecting if for every pair of sets 𝑆, 𝑇 ∈ ℱ , their
intersection size is at least ∣𝑆 ∩ 𝑇 ∣ ≥ 𝑡. This notion was
introduced by Erdős, Ko, and Rado and a sequence of works
led to the complete characterization of the maximum size
of 𝑡-intersecting families that contain sets of fixed size [30],
[31], [32], [33]. Dinur, Safra, and Friedgut recently extended
those results to give bounds on the biased measure of
intersecting families [34], [35].

Using results in intersecting families, we obtain a new
and improved proof for the main lemma at the heart of the
junta testing result [29]. The new proof is the first purely
combinatorial analysis of a junta testing algorithm, as all
previous proofs [9], [29] used Fourier-analytic arguments.3

We describe the new proof and the connection to intersecting
families in Section II. The same technique can also be
extended to complete the proof of Theorem 2. We present
this proof in Section IV.

The second and final component of the isomorphism test
for partially symmetric functions is an efficient way to
sample the core of such functions. An (𝑛 − 𝑘)-symmetric
function 𝑓 , which is symmetric over the complement of a
set 𝐽 ⊆ [𝑛] of size ∣𝐽 ∣ = 𝑘, has a concise representation
as a function 𝑓core : {0, 1}𝑘 × {0, 1, . . . , 𝑛 − 𝑘} → {0, 1}
which we call the core of 𝑓 . The core is the restriction
of 𝑓 to the variables in 𝐽 (in the natural order), with
the additional Hamming weight of the variables outside of
𝐽 . To determine if two partially symmetric functions are
isomorphic, it suffices to determine whether their cores are
isomorphic. We do so with the help of an efficient sample
extractor.

3While Friedgut [35] used tools from Fourier analysis to bound the biased
measure of intersecting families, he did so in order to obtain stability results
that we do not use in this paper. The result that we use, stated below
in Theorem 4, is easily obtained by extending Dinur and Safra’s purely
combinatorial argument [34].

Definition 3. A (1 query) 𝛿-sampler for the (𝑛 − 𝑘)-
symmetric function 𝑓 : {0, 1}𝑛 → {0, 1} is a randomized
algorithm that queries 𝑓 on a single input and returns a triplet
(𝑥,𝑤, 𝑧) ∈ {0, 1}𝑘 × {0, 1, . . . , 𝑛− 𝑘} × {0, 1} where

∙ The distribution of (𝑥,𝑤) is 𝛿-close, in total variation
distance, to 𝑥 being uniform over {0, 1}𝑘 and 𝑤 being
binomial over {0, 1, . . . , 𝑛− 𝑘} independently, and

∙ 𝑧 = 𝑓core(𝑥,𝑤) with probability at least 1− 𝛿.

Our third main result is that for any (𝑛 − 𝑘)-symmetric
function 𝑓 , there is a query-efficient algorithm for construct-
ing a 𝛿-sampler for 𝑓 .

Theorem 3. Let 𝑓 : {0, 1}𝑛 → {0, 1} be (𝑛−𝑘)-symmetric
with 𝑘 < 𝑛/10. There is an algorithm that queries 𝑓 on
𝑂(𝑘

𝜂𝛿 log
𝑘
𝜂𝛿) inputs and with probability at least 1 − 𝜂

outputs a 𝛿-sampler for 𝑓 .

This theorem is a generalization of a recent result of
Chakraborty et al. [36], who gave a similar construction
for sampling the core of juntas. Their result has many
applications related to testing by implicit learning [37].
Our result may be of independent interest for similar such
applications. We elaborate on this topic and present the proof
of Theorem 3 in Section V.

D. Parallel and subsequent work

Chakraborty et al. [28] independently and simultaneously
obtained a different proof that testing isomorphism to par-
tially symmetric functions can be done with a constant
number of queries. Their proof is significantly different than
ours. The key to their argument is a clever reduction from the
problem of testing partial symmetry to testing juntas. Thus,
instead of having to generalize the junta testing algorithm
(as we do in the current paper), they are able to use it as
a black box to obtain an efficient partial symmetry tester.
Our approach has a couple advantages. Notably, we obtain
a nearly optimal bound of 𝑂(𝑘 log 𝑘) queries for testing
𝑘-symmetry, whereas the result in [28] gives a weaker
𝑂(𝑘4 log 𝑘) bound for the same task.

Another advantage of our approach is that the notion of
symmetric influence, introduced in Section III and a key
component of our analysis, appears to be a valuable tool for
the study of partially symmetric functions in other contexts.
Indeed, since the completion of the current work, Alon and
Weinstein [38] have used symmetric influence in the analysis
of a new algorithm for the local correction of partially
symmetric functions.

II. INTERSECTING FAMILIES AND TESTING JUNTAS

We begin by revisiting the problem of junta testing. In
this section, we give a new proof of the correctness of the
𝑘-junta tester first introduced in [29]. At a high level, the
junta tester is quite simple: it partitions the set of indices
into a large enough number of parts, then tries to identify all

553

the parts that contain a relevant variable. If at most 𝑘 such
parts are found, the test accepts; otherwise it rejects. The
algorithm is described in JUNTA-TEST.4 In the algorithm
and the discussion that follows, given a set 𝐽 ⊆ [𝑛] and
inputs 𝑥, 𝑦 ∈ {0, 1}𝑛, we write 𝑥𝐽𝑦𝐽 to represent the vector
𝑧 ∈ {0, 1}𝑛 that satisfies 𝑧𝑖 = 𝑥𝑖 for each 𝑖 ∈ 𝐽 and 𝑧𝑖 = 𝑦𝑖
for each 𝑖 ∈ [𝑛] ∖ 𝐽 .

Algorithm JUNTA-TEST(𝑓, 𝑘, 𝜖)

1: Create a random partition ℐ of the set [𝑛] into 𝑟 = Θ(𝑘2)
parts, and initialize 𝐽 = ∅.

2: for each 𝑖 = 1 to Θ(𝑘/𝜖) do
3: Sample 𝑥, 𝑦 ∈ {0, 1}𝑛 uniformly at random.
4: if 𝑓(𝑥) ∕= 𝑓(𝑥𝐽𝑦𝐽) then
5: Use binary search to find a set 𝐼 ∈ ℐ that contains

a relevant variable.
6: Set 𝐽 := 𝐽 ∪ 𝐼 .
7: if 𝐽 is the union of > 𝑘 parts then reject.
8: Accept.

It is clear that the JUNTA-TEST always accepts 𝑘-juntas.
The non-trivial part of the analysis involves showing that
functions that are far from 𝑘-juntas are rejected by the
tester with sufficiently high probability. To do so, we must
argue that the inequality in Step 4 is satisfied with non-
negligible probability whenever 𝑓 is far from 𝑘-juntas and
𝐽 is the union of at most 𝑘 parts. This is accomplished by
considering the influence of variables in a function.

The influence of the set 𝐽 ⊆ [𝑛] in 𝑓 : {0, 1}𝑛 → {0, 1}
is Inf𝑓 (𝐽) := Pr𝑥,𝑦[𝑓(𝑥) ∕= 𝑓(𝑥𝐽𝑦𝐽)]. By definition, the
probability that the inequality in Step 4 is satisfied is exactly
Inf𝑓 (𝐽). To complete the analysis of correctness of the
algorithm, we want to show that when 𝑓 is 𝜖-far from 𝑘-
juntas, then with high probability over the choice of the
random partition ℐ , for every set 𝐽 obtained by taking the
union of at most 𝑘 parts in ℐ , Inf𝑓 (𝐽) ≥ 𝜖

4 . We do so
by exploiting only a couple basic facts about the notion of
influence.

Lemma 1 (Fischer et al. [9]). For every 𝑓 : {0, 1}𝑛 →
{0, 1} and every 𝐽,𝐾 ⊆ [𝑛], Inf𝑓 (𝐽) ≤ Inf𝑓 (𝐽 ∪ 𝐾) ≤
Inf𝑓 (𝐽) + Inf𝑓 (𝐾). Also, if 𝑓 is 𝜖-far from 𝑘-juntas and
∣𝐽 ∣ ≤ 𝑘, then Inf𝑓 (𝐽) ≥ 𝜖.

We also use the fact that when 𝑓 is far from 𝑘-juntas,
the family of sets 𝐽 ⊆ [𝑛] whose complements have small
influence in 𝑓 is an intersecting family. For a fixed 𝑡 ≥ 1,
a family ℱ of subsets of [𝑛] is called 𝑡-intersecting if any
two sets 𝐽 and 𝐾 in ℱ have intersection size ∣𝐽 ∩𝐾∣ ≥ 𝑡.
Much of the work in this area focused on bounding the size
of 𝑡-intersecting families that contain only sets of a fixed
size. Dinur and Safra [34] considered general families and
asked what the maximum 𝑝-biased measure of such families

4See also [29] for more details on this algorithm.

can be. For 0 < 𝑝 < 1, this measure is defined as 𝜇𝑝(ℱ) :=
Pr𝐽 [𝐽 ∈ ℱ] where the probability over 𝐽 is obtained by
including each coordinate 𝑖 ∈ [𝑛] in 𝐽 independently with
probability 𝑝. They showed that 2-intersecting families have
small 𝑝-biased measure [34] and Friedgut showed how the
same result also extends to 𝑡-intersecting families for 𝑡 >
2 [35].

Theorem 4 (Dinur and Safra [34]; Friedgut [35]). Let ℱ
be a 𝑡-intersecting family of subsets of [𝑛] for some 𝑡 ≥ 1.
For any 𝑝 < 1

𝑡+1 , the 𝑝-biased measure of ℱ is bounded by
𝜇𝑝(ℱ) ≤ 𝑝𝑡.

We are now ready to complete the analysis of JUNTA-
TEST.

Lemma 2. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a function that
is 𝜖-far from 𝑘-juntas and ℐ be a random partition of [𝑛]
into 𝑟 = 20𝑘2 parts. Then with probability at least 5/6,
Inf𝑓 (𝐽) ≥ 𝜖/4 for any union 𝐽 of 𝑘 parts from ℐ.

Proof: For 0 ≤ 𝑡 ≤ 1
2 , let ℱ𝑡 = {𝐽 ⊆ [𝑛] : Inf𝑓 (𝐽) <

𝑡𝜖} be the family of all sets whose complements have
influence at most 𝑡𝜖. For any two sets 𝐽,𝐾 ∈ ℱ1/2, the
sub-additivity of influence implies that

Inf𝑓 (𝐽 ∩𝐾) = Inf𝑓 (𝐽 ∪𝐾) ≤ Inf𝑓 (𝐽) + Inf𝑓 (𝐾) < 𝜖 .

But 𝑓 is 𝜖-far from 𝑘-juntas, so every set 𝑆 ⊆ [𝑛] of size
∣𝑆∣ ≤ 𝑘 satisfies Inf𝑓 (𝑆) ≥ 𝜖. Therefore, ∣𝐽 ∩ 𝐾∣ > 𝑘
and, since this argument applies to every pair of sets in the
family, ℱ1/2 is a (𝑘 + 1)-intersecting family.

Let us now consider two separate cases: when ℱ1/2

contains a set of size less than 2𝑘; and when it does not.
In the first case, let 𝐽 ∈ ℱ1/2 be one of the sets of size
∣𝐽 ∣ < 2𝑘. With high probability, the set 𝐽 is completely
separated by the partition ℐ, i.e., each element of 𝐽 occupies
a distinct part of ℐ. When this event occurs, then for every
other set 𝐾 ∈ ℱ1/2, the fact that ∣𝐽∩𝐾∣ ≥ 𝑘+1 implies that
𝐾 is not covered by any union of 𝑘 parts in ℐ. Therefore,
Inf𝑓 (𝐽) ≥ 𝜖

2 > 𝜖
4 for any union 𝐽 of 𝑘 parts from ℐ , as we

wanted to show.
Consider now the case where ℱ1/2 contains only sets of

size at least 2𝑘. Then we claim that ℱ1/4 is a 2𝑘-intersecting
family: otherwise, we could find sets 𝐽,𝐾 ∈ ℱ1/4 such that
∣𝐽 ∩𝐾∣ < 2𝑘 and Inf𝑓 (𝐽 ∩𝐾) ≤ Inf𝑓 (𝐽) + Inf𝑓 (𝐾) < 𝜖

2 ,
contradicting our assumption.

Let 𝐽 ⊆ [𝑛] be the union of 𝑘 parts in ℐ. Since ℐ is a
random partition, 𝐽 is a random subset obtained by including
each element of [𝑛] in 𝐽 independently with probability 𝑝 =
𝑘
𝑟 < 1

2𝑘+1 . By Theorem 4, Prℐ [Inf𝑓 (𝐽) < 𝜖
4] = Pr[𝐽 ∈

ℱ1/4] = 𝜇𝑘/𝑟(ℱ1/4) ≤ (𝑘/𝑟)
2𝑘

. By the union bound, the
probability that there exists a set 𝐽 ⊆ [𝑛] that is the union
of 𝑘 parts in ℐ for which Inf𝑓 (𝐽) <

𝜖
4 is bounded above by(

𝑟
𝑘

) (
𝑘
𝑟

)2𝑘 ≤ (
𝑒𝑟
𝑘

)𝑘 (𝑘
𝑟

)2𝑘 ≤ (
𝑒𝑘
𝑟

)𝑘
=

(
𝑒

20𝑘

)𝑘
< 1

6 .

554

III. SYMMETRIC INFLUENCE

The main focus of this paper is partially symmetric
functions, that is, functions invariant under any reordering
of the variables of some set 𝐽 ⊆ [𝑛]. Let 𝒮𝐽 denote the set
of permutations of [𝑛] which only move elements from the
set 𝐽 . A function 𝑓 : {0, 1}𝑛 → {0, 1} is 𝐽-symmetric if
𝑓(𝑥) = 𝑓(𝜋𝑥) for every input 𝑥 and a permutation 𝜋 ∈ 𝒮𝐽 ,
where 𝜋𝑥 is the vector whose 𝜋(𝑖)-th coordinate is 𝑥𝑖.

To analyze partially symmetric functions, we introduce
a new measure named symmetric influence. The symmetric
influence of a set of coordinates measures the sensitivity of
a function to random permutations of the labels of those
coordinates.

Definition 4. The symmetric influence of a set 𝐽 ⊆ [𝑛]
of variables in a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is
defined as SymInf𝑓 (𝐽) = Pr𝑥∈{0,1}𝑛,𝜋∈𝒮𝐽 [𝑓(𝑥) ∕= 𝑓(𝜋𝑥)] .

It is not hard to see that a function 𝑓 is 𝑡-symmetric iff
there exists a set 𝐽 of size 𝑡 such that SymInf𝑓 (𝐽) = 0.
A much stronger connection, however, exists between these
properties as we will shortly describe.

Before showing some nice properties of symmetric influ-
ence, we mention that it also has a simple representation
using Fourier coefficients of the function. Although we do
not use the representation in this paper, we feel it might be
of independent interest. We describe this connection in more
details in the full version of the paper.

Lemma 3. Fix 𝑓 : {0, 1}𝑛 → {0, 1} and 𝐽 ⊆ [𝑛]. Let
𝑓𝐽 be the 𝐽-symmetric function closest to 𝑓 . The symmetric
influence of 𝐽 satisfies

dist(𝑓, 𝑓𝐽) ≤ SymInf𝑓 (𝐽) ≤ 2 ⋅ dist(𝑓, 𝑓𝐽).

Proof: For every weight 0 ≤ 𝑤 ≤ 𝑛 and 𝑧 ∈ {0, 1}∣𝐽∣,
define the layer 𝐿𝑤

𝐽←𝑧
:= {𝑥 ∈ {0, 1}𝑛 ∣ ∣𝑥∣ = 𝑤∧𝑥𝐽 = 𝑧}

to be the vectors of Hamming weight 𝑤 which identify with
𝑧 over the set 𝐽 (where ∣𝐿𝑤

𝐽←𝑧
∣ = (∣𝐽∣

𝑤−∣𝑧∣
)

if ∣𝑧∣ ≤ 𝑤 ≤
∣𝐽 ∣+ ∣𝑧∣ or 0 otherwise). Let 𝑝𝑤𝑧 ∈ [0, 12] be the fraction of
the vectors in 𝐿𝑤

𝐽←𝑧
one has to modify in order to make the

restriction of 𝑓 over 𝐿𝑤
𝐽←𝑧

constant.
With this notation, we can restate the definition of the

symmetric influence of 𝐽 as follows.

SymInf𝑓 (𝐽) =
∑

𝑧

∑

𝑤

Pr
𝑥∈{0,1}𝑛

[𝑥 ∈ 𝐿𝑤
𝐽←𝑧

]⋅

Pr
𝑥∈{0,1}𝑛,𝜋∈𝒮𝐽

[𝑓(𝑥) ∕= 𝑓(𝜋𝑥) ∣ 𝑥 ∈ 𝐿𝑤
𝐽←𝑧

]

=
1

2𝑛

∑

𝑧

∑

𝑤

∣𝐿𝑤
𝐽←𝑧

∣ ⋅ 2𝑝𝑤𝑧 (1− 𝑝𝑤𝑧) .

The last identity holds because in each layer, the probability
that 𝑥 and 𝜋𝑥 result in two different outcomes is the
probability that 𝑥 is chosen out of the smaller part and 𝜋𝑥
from the complement, or vice versa.

The function 𝑓𝐽 can be obtained by modifying 𝑓 at 𝑝𝑤𝑧
fraction of the inputs in each layer 𝐿𝑤

𝐽←𝑧
, since each layer

can be addressed separately and we want to modify as
few inputs as possible. By this observation, we have that
dist(𝑓, 𝑓𝐽) =

1
2𝑛

∑
𝑧

∑
𝑤 ∣𝐿𝑤

𝐽←𝑧
∣⋅𝑝𝑤𝑧 . Since 1−𝑝𝑤𝑧 ∈ [12 , 1],

we have that 𝑝𝑤𝑧 ≤ 2𝑝𝑤𝑧 (1 − 𝑝𝑤𝑧) ≤ 2𝑝𝑤𝑧 and therefore
dist(𝑓, 𝑓𝐽) ≤ SymInf𝑓 (𝐽) ≤ 2 ⋅ dist(𝑓, 𝑓𝐽).
Corollary 1. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a function that
is 𝜖-far from being 𝑡-symmetric. Then every set 𝐽 ⊆ [𝑛] of
size ∣𝐽 ∣ ≥ 𝑡 has symmetric influence SymInf𝑓 (𝐽) ≥ 𝜖.

Proof: Fix 𝐽 ⊆ [𝑛] of size ∣𝐽 ∣ ≥ 𝑡 and let 𝑔 be a 𝐽-
symmetric function closest to 𝑓 . Since 𝑔 is symmetric on
any subset of 𝐽 , it is in particular 𝑡-symmetric and therefore
dist(𝑓, 𝑔) ≥ 𝜖 as 𝑓 is 𝜖-far from being 𝑡-symmetric. Thus,
by Lemma 3, SymInf𝑓 (𝐽) ≥ dist(𝑓, 𝑔) ≥ 𝜖 holds.

Corollary 1 demonstrates the strong connection between
symmetric influence and the distance from being partially
symmetric, similar to the second part of Lemma 1 for
influence and juntas. The additional properties of influ-
ence used in Section II are monotonicity and sub-additivity
(Lemma 1). The following lemmas show that the same
properties approximately hold for symmetric influence. The
proofs of these lemmas are in the full version of the paper.

Lemma 4 (Monotonicity). For any function 𝑓 : {0, 1}𝑛 →
{0, 1} and any sets 𝐽 ⊆ 𝐾 ⊆ [𝑛],

SymInf𝑓 (𝐽) ≤ SymInf𝑓 (𝐾).

Lemma 5 (Weak sub-additivity). There is a universal con-
stant 𝑐 such that for any constant 0 < 𝛾 < 1, any function
𝑓 : {0, 1}𝑛 → {0, 1}, and any sets 𝐽,𝐾 ⊆ [𝑛] of size at
least (1− 𝛾)𝑛,

SymInf𝑓 (𝐽 ∪𝐾) ≤ SymInf𝑓 (𝐽) + SymInf𝑓 (𝐾) + 𝑐
√
𝛾.

Note that symmetric influence does not satisfy the (strong)
sub-additivity property. For example, consider the function
𝑓(𝑥) = 𝑓1(𝑥𝐽)⊕ 𝑓2(𝑥𝐾) where 𝐽 and 𝐾 partition [𝑛] and
where 𝑓1, 𝑓2 are symmetric functions. While SymInf𝑓 (𝐽) =
SymInf𝑓 (𝐾) = 0, the function 𝑓 may be far from symmet-
ric, in which case SymInf𝑓 ([𝑛]) = SymInf𝑓 (𝐽 ∪𝐾) > 0.

IV. TESTING PARTIAL SYMMETRY

Let us now return to the problem of testing partial symme-
try. The goal of this section is to introduce an efficient tester
for this property by combining the ideas from Sections II
and III.

We first introduce the testing algorithm PARTIALLY-
SYMMETRIC-TEST. This algorithm is conceptually similar
to the junta tester in Section II. Again, the main idea is
to partition the variables into 𝑂(𝑘2) parts and identify the
parts that contain “asymmetric” variables. More precisely,
given a function 𝑓 : {0, 1}𝑛 → {0, 1}, let 𝐽 ⊆ [𝑛] be the
minimum set of variables such that 𝑓 is 𝐽-symmetric. We

555

call the variables in 𝐽 asymmetric and the variables in [𝑛]∖𝐽
are called symmetric. A function is (𝑛 − 𝑘)-symmetric iff
it contains at most 𝑘 asymmetric variables. The algorithm
exploits this characterization by trying to identify 𝑘+1 parts
that contain asymmetric variables.

Notice that unlike the tester for juntas, the Hamming
weight of our queries plays an important role. Therefore,
we dedicate one of the parts in our random partition to be a
workspace, which we hope will not contain any asymmetric
variables. We use the workspace to maintain the Hamming
weight constant while modifying our query gradually to
identify an additional part with an asymmetric variable.

Algorithm PARTIALLY-SYMMETRIC-TEST(𝑓, 𝑘, 𝜖)

1: Create a random partition ℐ of [𝑛] into 𝑟 = Θ(𝑘2/𝜖2)
parts, and initialize 𝐽 := ∅.

2: Pick a random workspace 𝑊 ∈ ℐ , and if ∣𝑊 ∣ < 𝑛
2𝑟

then fail.
3: for each 𝑖 = 1 to Θ(𝑘/𝜖) do
4: Let 𝐼 := FIND-ASYMMETRIC-SET(𝑓, ℐ, 𝐽,𝑊).
5: if 𝐼 ∕= ∅ then
6: Set 𝐽 := 𝐽 ∪ 𝐼 .
7: if 𝐽 is the union of > 𝑘 parts then reject.
8: Accept.

The idea behind the FIND-ASYMMETRIC-SET algorithm
is as follows. Suppose that we have two inputs 𝑥, 𝑦 ∈ {0, 1}𝑛
with 𝑥𝐽 = 𝑦𝐽 , ∣𝑥∣ = ∣𝑦∣ such that 𝑓(𝑥) ∕= 𝑓(𝑦). Given
such inputs, we know there exists some asymmetric variable
outside of 𝐽 . In order to efficiently find a set from a partition
ℐ which contains such a variable, we use binary search over
the sets. First, we construct a refinement 𝒥 of ℐ . Every set of
ℐ∖{𝑊} is partitioned further into parts so that each part has
size at most ⌈∣𝑊 ∣/4⌉. Let 𝑡 = ∣𝒥 ∖ {𝑊}∣ be the number of
parts in 𝒥 excluding the workspace. Notice that the number
of parts is at most 𝑡 ≤ 𝑟 + 4𝑛/∣𝑊 ∣ = 𝑂(𝑟). Then, we
construct a series of inputs 𝑥0 = 𝑥, 𝑥1, . . . , 𝑥𝑡 = 𝑦 by each
step permuting only elements from some set 𝐼 ∈ 𝒥 ∖ {𝑊}
and the workspace 𝑊 (that is, applying a permutation from
𝒮𝐼∪𝑊). In each such step, we guarantee that 𝑥𝑖

𝐼 = 𝑦𝐼 for
one more set 𝐼 ∈ 𝒥 ∖ {𝑊}, and therefore after (at most) 𝑡
steps we would reach 𝑦 (notice that we can choose the last
step such that 𝑥𝑡

𝑊 = 𝑦𝑊 as the Hamming weight of all the
inputs in the sequence is identical).

Using this construction, we can now describe the algo-
rithm FIND-ASYMMETRIC-SET as follows.

The following analysis of the FIND-ASYMMETRIC-SET

algorithm shows that it satisfies the properties we need for
testing partial symmetry.

Lemma 6. Let 𝑓 be a function, let ℐ be a partition of [𝑛] into
𝑟 parts, let 𝑊 ∈ ℐ, ∣𝑊 ∣ ≥ 𝑛

2𝑟 be a workspace, and let 𝐽 be
a union of parts from ℐ ∖ {𝑊}. Then FIND-ASYMMETRIC-
SET(𝑓, ℐ, 𝐽,𝑊) performs 𝑂(log 𝑟) queries and

Algorithm FIND-ASYMMETRIC-SET(𝑓, ℐ, 𝐽,𝑊)

1: Generate 𝑥 ∈ {0, 1}𝑛 and 𝜋 ∈ 𝒮𝐽 uniformly at random.
2: if 𝑓(𝑥) ∕= 𝑓(𝜋𝑥) then
3: Define 𝑥0, . . . , 𝑥𝑡.
4: Perform binary search on 𝑥 = 𝑥0, . . . , 𝑥𝑡 = 𝑦, and

find 𝑖 such that 𝑓(𝑥𝑖−1) ∕= 𝑓(𝑥𝑖).
5: return the only part 𝐼 ∈ ℐ ∖ {𝑊} such that 𝑥𝑖−1

𝐼 ∕=
𝑥𝑖
𝐼 .

6: return ∅.

1) With probability SymInf𝑓 (𝐽), it returns a set 𝐼 ∈ ℐ ∖
{𝑊} disjoint to 𝐽; otherwise it returns ∅.

2) If 𝑊 has no asymmetric variable and 𝐼 ∈ ℐ is
returned, then 𝐼 contains an asymmetric variable.

Proof: Since we perform binary search over the se-
quence 𝑥0, . . . , 𝑥𝑡, the query complexity of the algorithm is
indeed 𝑂(log 𝑡) = 𝑂(log 𝑟). Also, it is easy to verify that
we only output an empty set or a part in ℐ ∖ {𝑊} disjoint
to 𝐽 (since 𝑥𝐽 = 𝑦𝐽).

Two random inputs 𝑥 and 𝑦 := 𝜋𝑥, for 𝜋 ∈ 𝒮𝐽 , satisfy
𝑓(𝑥) ∕= 𝑓(𝑦) with probability SymInf𝑓 (𝐽). Thus, it suffices
to show that we can always define a sequence of 𝑥0, . . . , 𝑥𝑡,
given that ∣𝑊 ∣ ≥ 𝑛

2𝑟 . In order to see that this is always
feasible, we consider the sequence after already defining
𝑥0, . . . , 𝑥𝑖, and we show that we can define 𝑥𝑖+1.

Let 𝒥 + = {𝐼 ∈ 𝒥 ∣ ∣𝑥𝑖
𝐼 ∣ > ∣𝑦𝐼 ∣} and 𝒥− = {𝐼 ∈

𝒥 ∣ ∣𝑥𝑖
𝐼 ∣ < ∣𝑦𝐼 ∣} denote the sets which require increasing or

decreasing the Hamming weight of 𝑥𝑊 respectively, when
applying a permutation from 𝒮𝐼∪𝑊 to ensure 𝑥𝑖+1

𝐼 = 𝑦𝐼 .
Notice that we ignore sets 𝐼 for which ∣𝑥𝑖

𝐼 ∣ = ∣𝑦𝐼 ∣, as they
do not impact the Hamming weight of 𝑥𝑖

𝑊 . If ∣𝒥 +∣ > 0 and
∣𝒥−∣ > 0, then since max(∣𝑥𝑖

𝑊 ∣, ∣𝑊 ∣ − ∣𝑥𝑖
𝑊 ∣) ≥ ⌈∣𝑊 ∣/2⌉

and the size of every set 𝐼 ∈ 𝒥 ∖ {𝑊} is at most ⌈∣𝑊 ∣/4⌉,
there must exists a set we can use to define 𝑥𝑖+1. On
the other hand, if ∣𝒥 +∣ = 0 for example, then we can
define 𝑥𝑖+1 using any set from 𝒥− as ∣𝑥𝑖

𝑊 ∣ − ∣𝑦𝑊 ∣ =
−∑

𝐼∈𝒥∖{𝑊} ∣𝑥𝑖
𝐼 ∣ − ∣𝑦𝐼 ∣ (recall that ∣𝑥∣ = ∣𝑥𝑖∣ = ∣𝑦∣).

It remains to show that when 𝑊 contains no asymmetric
variables and we output a part 𝐼 ∈ ℐ ∖ {𝑊}, 𝐼 contains
an asymmetric variable. Suppose that the output 𝐼 is the
part which was modified between 𝑥𝑖−1 and 𝑥𝑖. Then, since
𝑓(𝑥𝑖−1) ∕= 𝑓(𝑥𝑖), ∣𝑥𝑖−1∣ = ∣𝑥𝑖∣, and 𝑥𝑖−1 and 𝑥𝑖 differ only
on 𝐼 ∪𝑊 , an asymmetric variable exists in 𝐼 ∪𝑊 and we
know it is not in 𝑊 .

Another important challenge in the analysis of
PARTIALLY-SYMMETRIC-TEST is the use of symmetric
influence (rather than influence). Similar to Lemma 2 for
influence, we prove that if a function is far from being
(𝑛− 𝑘)-symmetric, then it is also far from being symmetric
on any union of all but 𝑘 parts of a random partition
(assuming it has enough parts). The formal statement is
given in Lemma 7.

556

Lemma 7. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a function that is
𝜖-far from (𝑛−𝑘)-symmetric and ℐ be a random partition of
[𝑛] into 𝑟 = 𝑐⋅𝑘2/𝜖2 parts, for some large enough constant 𝑐.
Then with probability at least 8/9, SymInf𝑓 (𝐽) ≥ 𝜖

9 holds
for any union 𝐽 of 𝑘 parts.

The proof of this lemma is very similar to that of
Lemma 2. The main difference between the two proofs
is due to the weak-subadditivity of symmetric influence
(compared to the subadditivity of influence). In light of
this difference, our definition of families of sets whose
complement has small symmetric influence includes only
sets which are not too big. We use the observation that
adding sets which contain elements of a family does not
change its existing intersection. In addition, due to the
additive factor of the sub-additivity we prove a slightly
weaker result where the symmetric influence is at least 𝜖/9
and not 𝜖/4. The complete proof of Lemma 7 appears in the
full version of this article.

We now complete the proof that partial symmetry is
efficiently testable.

Proof of Theorem 2: Note that ∣𝑊 ∣ ≥ 𝑛
2𝑟 indeed

holds with probability at least 8/9 from the Chernoff
bound. By Lemma 6, FIND-ASYMMETRIC-SET performs
𝑂(log 𝑘

𝜖) queries according to our choice of 𝑟, and therefore
the query complexity of PARTIALLY-SYMMETRIC-TEST is
𝑂(𝑘𝜖 log

𝑘
𝜖).

Suppose 𝑓 is an (𝑛 − 𝑘)-symmetric function. The prob-
ability that 𝑊 contains an asymmetric variable is at most
𝑘/𝑟 ≤ 2/9. Conditioned on this event not occurring, every
set returned by FIND-ASYMMETRIC-SET contains an asym-
metric variable. Since there are at most 𝑘 such variables, 𝐽
would be the union of at most 𝑘 sets and we would accept.

Suppose 𝑓 is a function that is 𝜖-far from being (𝑛 −
𝑘)-symmetric. From Lemma 7, with probability at least
8/9, SymInf𝑓 (𝐽) ≥ 𝜖/9 holds while 𝐽 consists of at
most 𝑘 parts. Conditioned on that, by executing FIND-
ASYMMETRIC-SET 𝑂(𝑘/𝜖) times we obtain more than 𝑘
parts with probability at least 8/9, according to Lemma 6.
Thus, we reject with probability at least 2/3.

V. ISOMORPHISM TESTING OF PARTIALLY SYMMETRIC

FUNCTIONS

In this section we prove that isomorphism testing of
partially symmetric functions can be done with a constant
number of queries. The algorithm we describe consists of
two main components, and follow a similar approach to
the one used in [10] to show that juntas are isomorphism
testable. The first component, which we already described
in Section IV, is an efficient tester for the property of being
partially symmetric. Once we know the input function is
indeed close to being partially symmetric, we can verify it
is isomorphic (or at least very close to isomorphic) to the
target function. The second component of the algorithm is

therefore an efficient sampler from the core of a function
which is (close to) partially symmetric. Comparing the cores
of two partially symmetric functions suffices to identify if
two such functions are isomorphic or far from it.

Ideally, when sampling the core of a partially symmetric
function 𝑓 , we would like to sample it according to the
marginal distribution of sampling 𝑓 at a uniform input 𝑥 ∈
{0, 1}𝑛. We denote this marginal distribution over {0, 1}𝑘×
{0, 1, . . . , 𝑛 − 𝑘} by 𝒟∗𝑘,𝑛, which is in fact uniform over
{0, 1}𝑘 and binomial over {0, 1, . . . , 𝑛− 𝑘}, independently.

In our scenario, sampling the core of a function according
to this distribution is not possible since we do not know the
exact location of all the 𝑘 asymmetric variables. Instead, we
use the knowledge discovered by the partial symmetry tester,
i.e., sets with asymmetric variables. Given these sets, we are
able to define a sampling distribution over {0, 1}𝑛 such that
we know the input of the core for each query, and whose
marginal distribution over the core is close enough to 𝒟∗𝑘,𝑛.

Definition 5. Let ℐ be some partition of [𝑛] into an odd
number of parts and let 𝑊 ∈ ℐ be the workspace. Define
the distribution 𝒟𝑊

ℐ over {0, 1}𝑛 to be as follows. Pick
a random Hamming weight 𝑤 according to the binomial
distribution over {0, . . . , 𝑛} and output, if it exists, a random
𝑥 ∈ {0, 1}𝑛 of Hamming weight ∣𝑥∣ = 𝑤 such that for every
part 𝐼 ∈ ℐ ∖ {𝑊}, either 𝑥𝐼 ≡ 0 or 𝑥𝐼 ≡ 1. When no such
𝑥 exists, return the all zeros vector.

The sampling distribution which we just defined, together
with the random choice of the partition and workspace,
satisfies two important properties: it is close to uniform over
the inputs of the function, and its marginal distribution over
the core of a partially symmetric function close to 𝒟∗𝑘,𝑛.
These properties are formally written here as Proposition 1,
whose proof is rather technical and deferred to the full
version.

Proposition 1. Let 𝐽 = {𝑗1, . . . , 𝑗𝑘} ⊆ [𝑛] be a set of size
𝑘, and 𝑟 = Ω(𝑘2) be odd. If 𝑥 ∼ 𝒟𝑊

ℐ for a random partition
ℐ of [𝑛] into 𝑟 parts and a random workspace 𝑊 ∈ ℐ, then

∙ 𝑥 is 𝑜(1/𝑛)-close to being uniform over {0, 1}𝑛, and
∙ (𝑥𝐽 , ∣𝑥𝐽 ∣) is 𝑐/𝑘-close to being distributed according

to 𝒟∗𝑘,𝑛, for our choice of 0 < 𝑐 < 1.

We are now ready to describe the algorithm for isomor-
phism testing of (𝑛 − 𝑘)-symmetric functions. Given an
(𝑛 − 𝑘)-symmetric function 𝑓 , the algorithm tests whether
the input function 𝑔 is isomorphic to 𝑓 or 𝜖-far from being
so.

The analysis of the algorithm is based on the fact that
functions which pass the PARTIALLY-SYMMETRIC-TEST

satisfy some conditions, and particularly are close to being
partially symmetric, as described the following lemma.

Lemma 8. Let 𝑔 be a function that is 𝜖-close to being (𝑛−
𝑘)-symmetric and that passed the PARTIALLY-SYMMETRIC-

557

Algorithm PARTIALLY-SYMMETRIC-ISO-TEST(𝑓, 𝑘, 𝑔, 𝜖)

1: Perform PARTIALLY-SYMMETRIC-TEST(𝑔, 𝑘, 𝜖/1000)
and reject if failed.

2: Let ℐ and 𝑊 ∈ ℐ be the partition and workspace used
by the algorithm.

3: Let 𝐽 be the union of the 𝑘 parts identified by the
algorithm (adding arbitrary parts if needed).

4: for each 𝑖 = 1 to Θ(𝑘 log 𝑘/𝜖2) do
5: Query 𝑔(𝑥) at a random 𝑥 ∼ 𝒟𝑊

ℐ .
6: Accept iff (1−𝜖/2)-fraction of the queries are consistent

with some isomorphism 𝑓𝜋 of 𝑓 where 𝜋 maps the
asymmetric variables of 𝑓 into all 𝑘 parts of 𝐽 .

TEST(𝑔, 𝑘, 𝜖). In addition, let ℐ,𝑊 and 𝐽 be the partition,
workspace and identified parts used by the algorithm. With
probability at least 9/10, there exists a function ℎ which
satisfies the following properties.

∙ ℎ is 4𝜖-close to 𝑔,
∙ ℎ is (𝑛− 𝑘)-symmetric, and
∙ the asymmetric variables of ℎ are contained in 𝐽 and

separated by ℐ.

Proof: Let 𝑔∗ be the (𝑛−𝑘)-symmetric function closest
to 𝑔 (which can be 𝑓 itself, up to some isomorphism) and
let 𝑅 be the set of (at most) 𝑘 asymmetric variables of 𝑔∗.
By Lemma 3 and our assumption on 𝑔,

SymInf𝑔(𝑅) ≤ 2 ⋅ dist(𝑔, 𝑔∗) ≤ 2𝜖 .

Notice however that 𝑅 is not necessarily contained in 𝐽 and
therefore 𝑔∗ may not be a good enough candidate for ℎ. Let
𝑈 = 𝑅 ∩ 𝐽 be the intersection of the asymmetric variables
of 𝑔∗ and the sets identified by the algorithm. In order to
show that 𝑔 is also close to being 𝑈 -symmetric, we bound
SymInf𝑔(𝑈) using Lemma 5 with the sets 𝑅 and 𝐽 . Notice
that since ∣𝑅∣ ≤ 𝑘 and ∣𝐽 ∣ ≤ 2𝑘𝑛/𝑟 ≤ 𝜖2𝑛/𝑐′ for our
choice of 𝑐′, we can bound the error term (in the notation
of Lemma 5) by 𝑐

√
𝛾 ≤ 𝑐

√
𝜖2/𝑐′ ≤ 𝜖. We therefore have

SymInf𝑔(𝑈) ≤ SymInf𝑔(𝑅) + SymInf𝑔(𝐽) + 𝜖 ≤ 4𝜖

where we know SymInf𝑔(𝐽) ≤ 𝜖 with probability at least
19/20 as the algorithm did not reject.

By applying Lemma 3 again, we know there exists a 𝑈 -
symmetric function ℎ, whose distance to 𝑔 is bounded by
dist(𝑔, ℎ) ≤ 4𝜖. Moreover, with probability at least 19/20,
all its asymmetric variables are completely separated by the
partition ℐ (and they were all identified as part of 𝐽).

Given Lemma 8, we are now ready to analyze
PARTIALLY-SYMMETRIC-ISO-TEST.

Proof of Theorem 1: Before analyzing the algorithm we
just described, we consider the case where 𝑘 > 𝑛/10. Since
Theorem 2 does not hold for such 𝑘’s, we apply the basic al-
gorithm of 𝑂(𝑛 log 𝑛/𝜖) random queries, which is applicable
for testing isomorphism of any given function (since there

are 𝑛! possible isomorphisms, the random queries will rule
out all of them with good probability, assuming we should
reject). Since 𝑘 = Ω(𝑛), the complexity of this algorithm
fits the statement of our theorem.

We first analyze the query complexity of the algo-
rithm. The step of PARTIALLY-SYMMETRIC-TEST per-
forms 𝑂(𝑘𝜖 log

𝑘
𝜖) queries, and therefore the majority of the

queries are performed at the sampling stage, resulting in
𝑂(𝑘 log 𝑘/𝜖2) queries as required. In order to prove the
correctness of the algorithm, we consider the following
cases.

∙ 𝑔 is 𝜖-far from being isomorphic to 𝑓 and 𝜖/1000-far
from being (𝑛− 𝑘)-symmetric.

∙ 𝑔 is 𝜖-far from being isomorphic to 𝑓 but 𝜖/1000-close
to being (𝑛− 𝑘)-symmetric.

∙ 𝑔 is isomorphic to 𝑓 .

In the first case, with probability at least 9/10, PARTIALLY-
SYMMETRIC-TEST will reject and so will we, as re-
quired. We assume from this point on that PARTIALLY-
SYMMETRIC-TEST did not reject, as it will only reject 𝑔
which is isomorphic to 𝑓 with probability at most 1/10,
and that we are not in the first case. Notice that these cases
match the conditions of Lemma 8, and therefore from this
point onward we assume there exists an ℎ satisfying the
lemma’s properties (remembering we applied the algorithm
with 𝜖/1000).

In order to bound the distance between ℎ and 𝑔 in our
samples, we use Proposition 1, indicating

Pr
ℐ,𝑊∈ℐ,𝑥∼𝒟𝑊

ℐ
[𝑔(𝑥) ∕= ℎ(𝑥)] = dist(𝑔, ℎ) + 𝑜(1/𝑛) .

By Markov’s inequality, with probability at least 9/10, the
partition ℐ and the workspace 𝑊 satisfy

Pr
𝑥∼𝒟𝑊

ℐ
[𝑔(𝑥) ∕= ℎ(𝑥)] ≤ 10 ⋅ dist(𝑔, ℎ) + 𝑜(1/𝑛)

≤ 10 ⋅ 4𝜖/1000 + 𝑜(1/𝑛) < 𝜖/20 .

By Proposition 1, if we were to sample ℎ according to
𝒟𝑊
ℐ , it should be 𝜖/20-close to sampling its core (assuming

the partition size is large enough). Combined with the
distance between 𝑔 and ℎ in our samples, we expect our
samples to be 𝜖/20 + 𝜖/20 = 𝜖/10 close to sampling ℎ’s
core.

The last part of the proof consists of showing that the only
way that there can be an almost consistent isomorphism of
𝑓 is when 𝑔 is isomorphic to 𝑓 . Notice however that we care
only for isomorphisms which map the asymmetric variables
of 𝑓 to the 𝑘 sets of 𝐽 . Therefore, the number of different
isomorphisms we need to consider is 𝑘!.

Assume we are in the second case and 𝑔 is 𝜖-far from
being isomorphic to 𝑓 . Let 𝑓𝜋 be some isomorphism of 𝑓 .
By our assumptions and Lemma 8,

dist(𝑓𝜋, ℎ) ≥ dist(𝑓𝜋, 𝑔)− dist(𝑔, ℎ) ≥ 𝜖− 𝜖/250 .

558

Each sample we perform is inconsistent with 𝑓𝜋 with
probability at least 𝜖 − 𝜖/250 − 𝜖/10 > 8𝜖/9. By the
Chernoff bounds and the union bound, if we perform
𝑞 = 𝑂(𝑘 log 𝑘/𝜖2) queries, we rule out all 𝑘! possible
isomorphisms with probability at least 9/10 and reject the
function as required.

On the other hand, if 𝑔 is isomorphic to 𝑓 , then we know
there exists with probability at least 9/10 some isomorphism
𝑓𝜋 which maps the asymmetric variables of 𝑓 into the sets
of 𝐽 , such that

dist(𝑓𝜋, ℎ) ≤ dist(𝑓𝜋, 𝑔) + dist(𝑔, ℎ) ≤ 𝜖/500 + 𝜖/250 .

Notice that we cannot assume that dist(𝑓𝜋, 𝑔) = 0 as the
algorithm may not identify all the asymmetric sets, if some
barely influence the output. Using arguments similar to the
ones in the proof of Lemma 8, we can bound this distance
by 𝜖/500.

For this isomorphism, with high probability much more
than (1− 𝜖/2)-fraction of the queries are consistent and we
therefore accept 𝑔, as we should.

As we outlined above, we in fact build an efficient
sampler for the core of (𝑛 − 𝑘)-symmetric functions (or
functions close to being so). Given the parts identified by
PARTIALLY-SYMMETRIC-TEST, assuming it did not reject,
we can sample the function’s core by querying it at a single
location, where the distribution over the core’s inputs is close
to 𝒟∗𝑘,𝑛. The algorithm and proof of Theorem 3 are deferred
to the full version.

VI. DISCUSSION

Our result unifies the previous classes of functions that
are efficiently isomorphism-testable. More importantly, we
believe that the query complexity for testing 𝑓 -isomorphism
is determined by the partial symmetry of 𝑓 . Specifically, let
𝑘𝜖(𝑓) be the smallest 𝑘 such that the function 𝑓 is 𝜖-close to
an (𝑛 − 𝑘)-symmetric function and 𝑞𝜖(𝑓) be the minimum
query complexity for testing 𝑓 -isomorphism with an error
parameter 𝜖. We raise the following conjecture, which is
analogous to the result by Fischer on the isomorphism
testability of graphs [39].

Conjecture 1. There exist a constant 𝑐 and functions
𝐿𝜖(𝑘), 𝑈𝜖(𝑘) with lim𝑘→∞ 𝐿𝜖(𝑘) =∞ such that, for every
function 𝑓 : {0, 1}𝑛 → {0, 1}, we have 𝐿𝜖(𝑘𝑐𝜖(𝑓)) ≤
𝑞𝜖(𝑓) ≤ 𝑈𝜖(𝑘𝜖/𝑐(𝑓)).

Using symmetric influence and the analysis tools devel-
oped in the current paper, we can show that the upper bound
of the conjecture holds. The lower bound remains open, but
it is consistent with all known hardness results on testing
function isomorphism. In particular, by the result in [15],
we know that testing 𝑓 -isomorphism requires at least Ω(𝑘)
queries for almost all functions 𝑓 that are 𝜖-far from (𝑛−𝑘)-
symmetric. A simple extension of the proof in [14] shows
that for every (𝑛 − 𝑘)-symmetric function 𝑓 that is 𝜖-far

from (𝑛−𝑘+1)-symmetric, testing 𝑓 -isomorphism requires
Ω(log log 𝑘) queries (assuming 𝑘/𝑛 is bounded away from
1).

Lastly, let us consider another natural definition of partial
symmetry that encompasses both symmetric functions and
juntas. The function 𝑓 : {0, 1}𝑛 → {0, 1} is 𝑘-part symmet-
ric if there is a partition ℐ = {𝐼1, . . . , 𝐼𝑘} of [𝑛] such that 𝑓
is invariant under any permutation 𝜋 of [𝑛] where 𝜋(𝐼𝑖) = 𝐼𝑖
for every 𝑖 = 1, . . . , 𝑘. One may be tempted to guess
that 𝑘-part symmetric functions are efficiently isomorphism-
testable. That is not the case, even when 𝑘 = 2. To see this,
consider the function 𝑓(𝑥) = 𝑥1 ⊕ 𝑥2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑥𝑛/2. This
function is 2-part symmetric, but testing isomorphism to 𝑓
requires Ω(𝑛) queries [12].

ACKNOWLEDGMENT

We thank Noga Alon, Per Austrin, Irit Dinur, Ehud
Friedgut, and Ryan O’Donnell for useful discussions and
valuable feedback.

A.W.’s research was supported in part by an ERC Ad-
vanced grant and by the Israeli Centers of Research Excel-
lence (I-CORE) program.

Most of this research was completed while Y.Y. was at
Kyoto University.

REFERENCES

[1] R. Rubinfeld and M. Sudan, “Robust characterizations of
polynomials with applications to program testing,” SIAM
Journal on Computing, vol. 25, no. 2, pp. 252–271, 1996.

[2] O. Goldreich, S. Goldwasser, and D. Ron, “Property testing
and its connection to learning and approximation,” Journal of
the ACM, vol. 45, no. 4, pp. 653–750, 1998.

[3] D. Ron, “Algorithmic and analysis techniques in property
testing,” Foundations and Trends in Theoretical Computer
Science, vol. 5, pp. 73–205, 2010.

[4] R. Rubinfeld and A. Shapira, “Sublinear time algo-
rithms,” Electronic Colloquium on Computational Complexity
(ECCC), vol. 18, 2011, tR11-013.

[5] O. Goldreich, Ed., Property Testing: Current Research and
Surveys, ser. LNCS. Springer, 2010, vol. 6390.

[6] N. Alon, E. Fischer, I. Newman, and A. Shapira, “A combi-
natorial characterization of the testable graph properties: It’s
all about regularity,” SIAM Journal on Computing, vol. 39,
pp. 143–167, 2009.

[7] A. Bhattacharyya, E. Grigorescu, and A. Shapira, “A unified
framework for testing linear-invariant properties,” in Proc.
51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2010, pp. 478–487.

[8] T. Kaufman and M. Sudan, “Algebraic property testing: the
role of invariance,” in Proc. 40th Annual ACM Symposium on
Theory of Computing (STOC), 2008, pp. 403–412.

559

[9] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorod-
nitsky, “Testing juntas,” Journal of Computer and System
Sciences, vol. 68, no. 4, pp. 753–787, 2004.

[10] S. Chakraborty, D. Garcı́a-Soriano, and A. Matsliah, “Nearly
tight bounds for testing function isomorphism,” in Proc.
22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2011, pp. 1683–1702.

[11] O. Goldreich, “On testing computability by small width OB-
DDs,” Proc. 14th International Workshop on Randomization
and Approximation Techniques in Computer Science, pp. 574–
587, 2010.

[12] E. Blais, J. Brody, and K. Matulef, “Property testing lower
bounds via communication complexity,” in Proc. 26th Annual
IEEE Conference on Computational Complexity (CCC), 2011,
pp. 210–220.

[13] E. Blais and D. Kane, “Testing linear functions,” 2011,
manuscript.

[14] E. Blais and R. O’Donnell, “Lower bounds for testing func-
tion isomorphism,” in Proc. 25th Conference on Computa-
tional Complexity (CCC), 2010, pp. 235–246.

[15] N. Alon, E. Blais, S. Chakraborty, D. Garcı́a-Soriano, and
A. Matsliah, “Nearly tight bounds for testing function iso-
morphism,” 2011, manuscript.

[16] N. Alon and E. Blais, “Testing boolean function isomor-
phism,” Proc. 14th International Workshop on Randomization
and Approximation Techniques in Computer Science, pp. 394–
405, 2010.

[17] C. E. Shannon, “The synthesis of two-terminal switching
circuits,” Bell System Technical Journal, vol. 28, no. 1, pp.
59–98, 1949.

[18] R. F. Arnold and M. A. Harrison, “Algebraic properties of
symmetric and partially symmetric boolean functions,” IEEE
Transactions on Electronic Computers, vol. EC-12, no. 3, pp.
244–251, 1963.

[19] L. Babai, R. Beals, and P. Takácsi-Nagy, “Symmetry and com-
plexity,” in Proc. 24th Annual ACM Symposium on Theory of
Computing, 1992, pp. 438–449.

[20] P. Clote and E. Kranakis, “Boolean functions, invariance
groups, and parallel complexity,” SIAM Journal on Comput-
ing, vol. 20, pp. 553–590, 1991.

[21] S. Das and C. Sheng, “On detecting total or partial symmetry
of switching functions,” IEEE Trans. on Computers, vol. C-
20, no. 3, pp. 352–355, 1971.

[22] C. Meinel and T. Theobald, Algorithms and Data Structures
in VLSI Design. Springer, 1998.

[23] H. A. Nienhaus, “Efficient multiplexer realizations of sym-
metric functions,” in Southeastcon ’81, 1981, pp. 522–525.

[24] T. Pitassi and R. Santhanam, “Effectively polynomial simu-
lations,” in Proc. 1st Symposium on Innovations in Computer
Science (ICS), 2010, pp. 370–382.

[25] T. Sasao and P. Besslich, “On the complexity of mod-2l sum
PLA’s,” IEEE Transactions on Computers, vol. 39, no. 2, pp.
262–266, 1990.

[26] D. Sieling, “Variable orderings and the size of OBDDs
for random partially symmetric boolean functions,” Random
Structures & Algorithms, vol. 13, no. 1, pp. 49–70, 1998.

[27] S. S. Yau and C. K. Tang, “Universal logic modules and their
applications,” Computers, IEEE Transactions on, vol. C-19,
no. 2, pp. 141–149, 1970.

[28] S. Chakraborty, E. Fischer, D. Garcı́a-Soriano, and A. Mat-
sliah, “Junto-symmetric functions, hypergraph isomorphism,
and crunching,” in Proc. 27th Annual IEEE Conference on
Computational Complexity (CCC), 2012.

[29] E. Blais, “Testing juntas nearly optimally,” in Proc. 41st
Annual ACM Symposium on Theory of Computing (STOC),
2009, pp. 151–158.

[30] P. Erdős, C. Ko, and R. Rado, “Intersection theorems for
systems of finite sets,” The Quarterly Journal of Mathematics,
vol. 12, no. 1, pp. 313–320, 1961.

[31] P. Frankl, “The Erdős-Ko-Rado theorem is true for 𝑛 =
𝑐𝑘𝑡,” in Combinatorics (Proc. Fifth Hungarian Colloquium,
Keszthely), vol. 1, 1976, pp. 365–375.

[32] R. M. Wilson, “The exact bound in the Erdős-Ko-Rado
theorem,” Combinatorica, vol. 4, no. 2–3, pp. 247–257, 1984.

[33] R. Ahlswede and L. H. Khachatrian, “The complete intersec-
tion theorem for systems of finite sets,” European Journal of
Combinatorics, vol. 18, pp. 125–136, 1997.

[34] I. Dinur and S. Safra, “On the hardness of approximating
minimum vertex cover,” Annals of Mathematics, vol. 162,
no. 1, pp. 439–485, 2005.

[35] E. Friedgut, “On the measure of intersecting families, unique-
ness and stability,” Combinatorica, vol. 28, no. 5, pp. 503–
528, 2008.

[36] S. Chakraborty, D. Garcı́a-Soriano, and A. Matsliah, “Ef-
ficient sample extractors for juntas with applications,” Au-
tomata, Languages and Programming, pp. 545–556, 2011.

[37] I. Diakonikolas, H. Lee, K. Matulef, K. Onak, R. Rubinfeld,
R. Servedio, and A. Wan, “Testing for concise representa-
tions,” in Proc. 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2007, pp. 549–558.

[38] N. Alon and A. Weinstein, “Local correction with constant
error rate,” 2012, manuscript.

[39] E. Fischer, “The difficulty of testing for isomorphism against
a graph that is given in advance,” in Proc. 36th Annual ACM
Symposium on Theory of Computing (STOC). ACM, 2004,
pp. 391–397.

560

