
Almost Optimal Canonical Property Testers for Satisfiability

Christian Sohler ∗

Department of Computer Science
TU Dortmund University

Dortmund, Germany
Email: christian.sohler@tu-dortmund.de

Abstract—In the (k, d)-Function-SAT problem we are given
a set of n variables {X1, . . . , Xn} that can take values
from the set {1, . . . , d} and a set of Boolean constraints
on these variables, where each constraint is of the form
f : {1, . . . , d}k → {0, 1}, i.e. the constraint depends on exactly
k of these variables. We will treat k and d as constants. The goal
is to determine whether the set of constraints has a satisfying
assignment, i.e. an assignment to the variables such that all
constraints simultanuously map to 1. In this paper, we study
(k, d)-Function-SAT in the property testing model for dense
instances. We call an instance ε-far from satisfiable, if every
assignment violates more than εnk constraints. A property
testing algorithm is a randomized algorithm that, given oracle
access to the set of constraints, must accept with probability
at least 3/4 all satisfiable inputs and rejects with probability
at least 3/4 all inputs, which are ε-far from satisfiable.

We analyze the canonical non-adaptive property testing
algorithm with one-sided error: Sample r variables and accept,
if and only if the induced set of constraints has a satisfying
assignment. The value of r will be called the sample complexity
of the algorithm. We show that there is an r0 = ˜O(1/ε)
such that for any instance that is ε-far from satisfiable, the
probability, that a random sample on r ≥ r0 variables is
satisfiable, is at most 1/4. This implies that the above algorithm
is a property tester. The obtained sample complexity is nearly
optimal for canonical testers as a lower bound of Ω(1/ε) on
the sample complexity is known.

Previously, a tester with sample complexity o(1/ε2) was only
known for the very special case of testing bipartiteness in the
dense graph model [3]. Our new general result improves the
best previous result for testing satisfiability (and even for the
special case of 3-colorability in graphs) from sample complexity
˜O(1/ε2) to ˜O(1/ε). It also slightly improves the sample
complexity for the special case of bipartiteness. Improving the
sample complexity for (k, d)-Function-SAT (or special cases
of it) had been posed in several papers as an open problem
[3], [4], [17]. This paper solves this problem nearly optimally
for canonical testers and, in the case of k = 2, also for non-
adaptive testers as there is a lower bound of Ω(1/ε2) on the
query complexity of non-adaptive testers for bipartiteness in
the dense graph model [6], where the query complexity denotes
the number of queries asked about the graph (for a canonical
tester in graphs, the query complexity is the square of its
sample complexity).

As a byproduct, we obtain an algorithm, which, given a
satisfiable set of constraints, computes in time O(n/εO(1) +

2
˜O(1/ε)) a solution, which violates at most εnk constraints.

Keywords-Property Testing, Satisfiability Problems

∗ Supported by DFG grant So 514/3-2.

I. INTRODUCTION

The problem (k, d)-Function-SAT is a fairly general sat-

isfiability problem that contains problems like 3-SAT, k-

SAT, and k-colorability of hypergraphs as special cases. In

this problem we deal with Boolean functions of the form

f : {1, . . . , d}k → {0, 1}. In this paper, we will assume k
and d to be constants. We are given a set V = {X1, . . . , Xn}
of variables that can take values from {1, . . . , d} and a

set E of Boolean functions each defined on k of these

variables. We will also refer to these functions as constraints.

A constraint f is satisfied by an assignment to the variables

in V , if f evaluates to 1. The set E is satisfied by an as-

signment to the variables in V , if all functions in E evaluate

simultanously to 1. If there exists a satisfying assignment

for E, we call E satisfiable. Satisfiability problems play

a central role both in practice and in theory and a decent

amount of research has been put into trying to solve them

as efficiently and accurately as possible. It is well-known

that even solving special cases of (k, d)-Function-SAT like

the ones mentioned above is NP-hard. Since we do not

know how to solve (k, d)-Function-SAT efficiently, a natural

question is whether we can at least approximately decide

whether a given instance is satisfiable. A question of this

type is typically studied in the framework of property testing

that was introduced by Rubinfeld and Sudan [18].

The property testing problem considered in this paper can

also be viewed as the following promise problem. We are

either given an instance that is satisfiable or an instance, in

which we have to delete more than εnk constraints to make

it satisfiable. In the latter case we say that the instance is ε-

far from satisfiable. Can we efficiently distinguish between

these two cases?

A natural approach to this problem is to sample a small

subset S of variables and accept, iff the induced set of

constraints, i.e. the set of all constraints that include only

variables of S, is satisfiable. Such an algorithm is also

called a canonical property tester [13]. Obviously, if an input

instance is satisfiable, then also the subset of constraints is

satisfiable and a canonical tester accepts. This raises the

question how large S has to be to guarantee that with

reasonable probability we do not accept instances of the

second type. Similarly to [4] we define SATk,d(n, ε) to

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.59

541

be the minimal value, such that for every instance E of

(k, d)-Function-SAT on n variables {X1, . . . , Xn} that is ε-

far from satisfiable, a random, uniformly distributed subset

of the variables of size SATk,d(n, ε) is not satisfiable with

probability at least 3/4. Furthermore (and also similarly

to [4]), we define COLk,d as the minimum value, such

that for every k-uniform hypergraph that is ε-far from

having a proper d-coloring in the dense hypergraph model, a

hypergraph induced by a random sample of COLk,d vertices

is not d-colorable with probability at least 3/4. In this

context, a hypergraph is d-colorable, if there is an assigment

Φ : V → {1, ..., d} such that there is no monochromatic

edge, i.e. no edge e such that |{Φ(v) : v ∈ e}| = 1.

In the remainder of the paper we will use the term sample
complexity to denote the number of sampled variables. We

will assume that our algorithm can query in constant time

(recall that we treat k and d as constants) for a set Q of

k variables the set of constraints that contain only variables

from Q (since we assume that each constraint is defined on

exactly k variables, this will be the set of constraints whose

set of variables is Q). The query complexity of an algorithm

will denote the number of queries about functions in E. If

a canonical algorithm samples a set S of r variables then it

has to query for the Θ(rk) possible constraints defined on

S. Thus, if a canonical tester has sample complexity Θ(r)
then its query complexity is Θ(rk).

A. Results

In this paper we prove that, for constant k and d,

SATk,d(n, ε) = Õ(1/ε), i.e. the sample complexity of a

canonical tester for (k, d)-Function-SAT is Õ(1/ε). This

sample complexity is almost optimal as it is known that

SATk,d(n, ε) = Ω(1/ε). This can be seen by considering

an instance that has a set S of εn special variables and an

all zero constraint for every set of k variables that contains

at least one variable from S. This instance is c · ε-far from

satisfiable for a constant c > 0 and in order to recognize

it, one needs to sample at least one variable from S, which

requires to sample Ω(1/ε) variables. The previously best

upper bound on the sample complexity was Õ(1/ε2) [4].

Theorem 1. For constant d and k,

SATk,d(n, ε) = O(
log2(1/ε) log log(1/ε)

ε
).

Furthermore, the problem of d-coloring a hypergraph is

a special case of (k, d)-Function-SAT since one can have a

variable for each vertex and then replace every hyperedge e
by a constraint not allowing to assign the same value c ∈
{1, . . . , d} to all vertices of e.

Corollary 2. For constant d and k,

COLk,d(n, ε) = O(
log2(1/ε) log log(1/ε)

ε
).

Again, we improve the best previous results from Õ(1/ε2)
to Õ(1/ε). Even for the case of testing 3-colorability in

the dense graph model the best previous result on the

sample complexity was Õ(1/ε2) [4][8][3]. The only special

case, where a sample complexity of Õ(1/ε) was known,

was for testing bipartiteness in the dense graph model, i.e.

k = d = 2 and required a relatively complex proof [3]. Our

new result also slightly improves this bound by a factor of

Θ(log2(1/ε)).

Another property, which can be described as an instance

of (2, d)-Function-SAT, is the graph property of not having

a homomorphism into a fixed graph H = (V ′, E′) (a graph

homomorphism is a map f : V → V ′ with (u, v) ∈ E
implying (f(u), f(v)) ∈ E′). This property generalizes d-

colorability, which is equivalent to not having a homomor-

phism into the complete graph on d vertices Kd. Note that

by a lower of Ω(1/ε2) on the query complexity of any non-

adaptive tester for bipartiteness in the dense graph model

[6], this also implies that our algorithm with its sample

complexity of Õ(1/ε) is nearly optimal among non-adaptive

property testers.

Corollary 3. The property of not having a homomorphism
into a fixed (constant size) graph H can be tested in the
dense graph model with a canonical tester with sample
complexity

O(
log2(1/ε) log log(1/ε)

ε
).

The more specialized problem of being a blow-up of

a constant size graph (which can also be phrased as an

instance of (2, d)-Function-SAT) is already known to be non-

adaptively testable in the dense graph model with Õ(1/ε)
query complexity [5], where a graph G = (V,E) is a blow-

up of a graph H = (VH , EH), VH = {1, . . . , d}, if the

vertices in G can be clustered in upto d clusters such that

a vertex in cluster i is connected to a vertex in cluster j, if

and only if (i, j) ∈ EH .

B. Techniques

The algorithm we consider samples a set of variables

and checks whether the set of constraints that include

only sampled variables is satisfiable. Such an algorithmic

approach is fairly standard for property testing. The difficult

part is the analysis of the algorithm. Here, we build upon

a previous proof technique introduced in [8] for coloring of

hypergraphs and, independently, in [3] for coloring of graphs

(both building upon earlier work by Goldreich, Goldwasser

and Ron [11]) and then generalized and first applied to

satisfiability in [4] (see also [9]). In order to prove that an

ε-far instance is rejected, the main idea of this technique is

to show that, a random sample of the variables will contain

with probability at least 3/4 a collection of subsets of sample

variables such that

542

• each assignment to the variables is already violated on

the constraints induced by at least one of these subsets,

• the size of each subset is small, i.e. Õ(1/ε).

These subsets then constitute a ’proof of rejectance’, i.e.

whenever we find such a collection of sets, the sample set

is not satisfiable and so the canonical algorithm rejects.

In order to construct the subsets, it will be convenient to

view the sample as being sampled sequentially. Furthermore,

we will fix a sequence σ of values that will be assigned to

variables added to the subset in the order they are consid-

ered, i.e. the ith variable added will receive the ith value

from the sequence. At the end we will use the union bound

over all sequences σ to argue that the analysis works for all

sequences. For the proof we design a deterministic rule that

chooses whether or not to add the next sample variable to the

subset. The decision is based only on the current variable,

its number in the sequence, and the variables that were

previously added to the subset and their assigned values.

The crux of the analysis is to construct a good rule to

add or discard variables (and this is only interesting for

the case that the input in ε-far from satisfiable as otherwise

the algorithm always accepts). Previously [8], [4], this rule

was based on the current assignment and the current sample

variable. Our new idea is to design a more complex rule

that also takes the history of constructing this assignment

into account. In more detail, we will introduce the notion of

the potential of a variable and the rule will be to add only

variables, whose potential is above a certain threshold. The

potential has the nice property that it decreases monotoni-

cally as more variables are included (this stands in contrast

to a notion of heaviness that has previously been used as a

criterion to add variables). Furthermore, the sample sequence

will be subdivided into different stages and the threshold

to decide whether or not to add a variable to the subset

will be different for different stages. In general, the early

stages try to add only variables with very high potential.

These variables may occur less frequently but it will also

suffice to include few of them to prove that the current

assignment is not a satisfying assignment. This means that

it suffices to consider short sequences σ, which makes it

easier to apply a union bound to prove that the argument

works for all of them. In the later stages, we will lower

the threshold for inclusion in the sample set. This has the

effect that we need to include more variables to obtain a

proof for infeasibility but in instances that are ε-far there

will be many such variables, so we can find enough of them

with high probability and the union bound (now over longer

sequences) will work again. The fact that the potential is

monotonically decreasing allows us to combine the different

stages. A somewhat similar idea has been used in [3] in the

context of testing bipartiteness in graphs, where the sample

set was split into O(log(1/ε)) subsets and the ith subset

dealt with vertices of degree roughly n/ei.

C. Related Work

The first result in the direction of testing satisfiability was

a one-sided error tester by Frieze and Kannan [10]. They

showed that one can approximate Max-(k, 2)-Function-SAT

with additive error εnk with a sample complexity, which

is exponential (for k > 2) in 1/ε. Then Andersson and

Engebretsen developed a tester with two-sided error and

sample complexity Õ(1/ε5) [1]. Alon, Fernandez de la Vega,

Kannan and Karpinski gave a tester that can estimate the

distance to satisfiability and that has a sample complexity

of Õ(1/ε12) variables [2]. Very recently, Karpinski and

Schudy showed that in time O(n/ε2+2O(1/ε2)) one can find

an approximate solution for dense Max-(k, d)-Function-SAT

with additive error εnk [15].

The problem of testing (k, d)-Function-SAT with one-

sided error was first studied by Alon and Shapira [4].

They obtained a property testing algorithm that samples

a set of O(1/ε2) variables. The special case of testing

k-colorability in graphs and hypergraphs has received a

lot of attention. It has been first studied in the context

of property testing by Goldreich, Goldwasser and Ron

[11], who showed that COL2,2(n, ε) = Õ(1/ε2) and that

COL2,d(n, ε) = Õ(d2/ε3). Alon and Krivelevich improved

the result to COL2,2(n, ε) = Õ(1/ε) and COL2,d(n, ε) =

Õ(d/ε2) [3]. Independently, Czumaj and Sohler[8] showed

that COLk,d(n, ε) = Õ(k2d2/ε2). Finally, Alon and Shapira

proved the most general result of this form known upto now

by showing that SAT(n, ε) = O(dk−12d
2k

log d/ε2) [4] and

COLk,d = O(dk−1 log d/ε2).

As has been noted in [4], there are earlier papers [7], [16]

that imply that COL2,d(n, ε) is bounded by some function

independent of n. These papers are based on the regularity

lemma and the bounds are significantly weaker than the ones

in the papers cited above.

Adaptivity vs. Non-Adaptivity.: An interesting direction

of research is to study the power of adaptive testers. It

is known that any tester for graph properties with query

complexity q(ε) implies a non-adaptive canonical tester

with query complexity q(ε)2 [13]. Gonen and Ron [14]

showed that for graph with maximum degree O(εn) one

can test bipartiteness in Õ(1/ε3/2) time matching a lower

bound by Bogdanov and Trevisan [6]. The question without

the degree bound of O(εn) remained open. Goldreich and

Ron [12] proved that there are properties which can be

tested adaptively with Õ(1/ε) query complexity but which

require Ω(1/ε3/2) query complexity for any non-adaptive

tester. Furthermore, they showed in [12] that there are also

properties where adaptivity does not help (much).

In this paper, we only consider one-sided canonical

testers, i.e. testers that sample variables uniformly at random

and decide based on the sample. These testers are non-

adaptive and we do not know whether adaptivity can be

used to improve upon our results.

543

II. PRELIMINARIES

A Boolean function f : {1, . . . , d}k → {0, 1} is called

a (k, d)-function. Let V = {X1, . . . , Xn} be a set of n
variables and let E be a set of (k, d)-functions on the

variables from V . For a function f ∈ E we write V (f) to

denote the set of k variables f is defined on. An assignment

to the variables in V is a function ΦV : V → {1, . . . , d}.
We use the index of an assignment to denote its domain.

Given an assignment ΦV : V → {1, . . . , d} we use ΦV |U
to denote the restriction of ΦV to the set U . A function

f ∈ E is satisfied under an assignment ΦV , if f maps to

1 for the values assigned by ΦV to V (f). In this case Φ is

called a satisfying assignment. Furthermore, if for a given

assignment Φ at least one constraint evaluates to 0, we say

that the assignment violates the set of constraints, or for

short, is a violating assignment. A subset E′ ⊆ E is satisfied

by an assignment ΦV , if every function f ∈ E′ is satisfied

by ΦV . The problem (k, d)-Function-SAT is to decide on

input H = (V,E) whether there exists an assignment to the

variables in V such that all functions in E are satisfied.

Definition 4. An instance (V,E) of (k, d)-Function-SAT is
ε-far from satisfiable, if every assignment to the variables
in V violates more than εnk constraints from E.

For a subset of variables U ⊆ V we use E[U] = {f ∈
E : V (f) ⊆ U} to denote the subset of functions from E
induced by U , i.e. that depend only on variables from U and

we write H[U] = (U,E[U]).
An algorithm with access to instances of (k, d)-Function-

SAT is a property tester, if it accepts every satisfiable

instance with probability at least 3/4 and rejects every

instance that is ε-far from satisfiable with probability at least

3/4.

Similarly to [4], our approach to the general problem of

testing (k, d)-Function-SAT is via the special case of testing

(k, d)-CNF. A (k, d)-CNF clause has the form (Xi1 �= c1 ∨
Xi2 �= c2 ∨ · · · ∨Xik �= ck) where c1, . . . , ck ∈ {1, . . . , d}.
It evaluates to 0 for every assignment that simultanuously

assigns c1 to Xi1 , c2 to Xi2 , ..., and ck to Xik and to 1 for

every remaining assignment. A (k, d)-CNF is a special case

of a (k, d)-function. The problem (k, d)-CNF is to decide on

input H = (V,E), where E is a set of (k, d)-CNFs, whether

there exists an assignment to the variables in V such that

every C ∈ E is satisfied. Thus, (k, d)-CNF is a special case

of (k, d)-Function-SAT. We will treat (k, d)-CNF clauses as

sets of k constraints, i.e. (X1 �= c1 ∨X2 �= c2) denotes the

same clause as (X2 �= c2 ∨X1 �= c1).
In the paper we will prove the following main technical

result.

Theorem 5. Let k and d be fixed constants. Then there
is r = O(log

2(1/ε)·log log(1/ε)
ε) such that the algorithm that

samples r variables uniformly at random and accepts if and
only if the induced subset of (k, d)-CNFs is satisfiable, is a

property tester for the (k, d)-CNF problem.

A simple argument given in [4] shows that this theorem

implies Theorem 1. From now on, we will therefore focus

on proving Theorem 5. We will also need the following

definition of assigned variables.

Definition 6. Given an instance (V,E) of (k, d)-CNF, a pair
(U,ΦU) with U ⊆ V and ΦU : U → {1, . . . , d} is called a
set of assigned variables.

III. PROOF TECHNIQUE

We next describe the high-level proof technique to an-

alyze canonical testers, which was introduced in [8] (and,

independently in [3]) and which is based on earlier work in

[11]. This technique was first designed to analyze canonical

property testers for colorability problems and later used in

the proof for testing satisfiability [4]. We will state it in

the general setting of testing satisfiability. Recall that on

input H = (V,E) a canonical algorithm samples a set

S of r variables uniformly at random and accepts, if and

only if there is a satisfying assignment for H[S]. Since any

subset of a satisfiable input is also satisfiable, we know that

the algorithm accepts any satisfiable input H = (V,E).
Thus, we only need to prove that any input, which is ε-

far from satisfiable, is rejected with probability at least 3/4.

Therefore, in the following, we will assume that the input

H = (V,E) is ε-far from satisfiable.

We will view the sample set S as being drawn sequentially

and with repetition. The chance of variables being sampled

multiple times only decreases our probability of success.

Thus, our sample set S will be the sequence of variables

〈s1, . . . , sr〉. We will also use S(i) to denote the sequence

〈s1, . . . , si〉. With slight abuse of notation, we will also use

S = S(r) and S(i) to denote the sets {s1, . . . , sr} and

{s1, . . . , si}, respectively.

In order to prove that the canonical tester rejects with

probability 3/4 on an ε-far input, we will consider the

following slightly more complicated algorithm and argue

that if this algorithm rejects a sample S, then so does

the canonical tester. The input to the algorithm consists of

the input instance (V,E) and the parameters n = |V |, ε, d
and k. The parameter r determines the sample size of the

canonical tester and depends on ε, d and k. The parameter

m is determined later in the analysis. It depends on ε, d
and k and determines the length of a sequence of values

that will be assigned to some of the variables of the random

sample set. The construction is done in a way that if for

every such sequence the subset of sample variables that have

been assigned a value violates some constraint then the set of

constraints induced by the sample variables is not satisfiable.

More details follow below.

PROOFOFSATISFIABILITYTESTER(V,E, n, ε, d, k)
Sample a sequence of variables S = 〈s1, . . . , sr〉

544

uniformly at random with repetition from V
for every sequence σ = 〈c1, . . . , cm〉 of values from

{1, . . . , d} do
j = 1; U

(0)
σ = ∅; Φ

U
(0)
σ

= empty assignment

for i = 1 to r do
U

(i)
σ = U

(i−1)
σ ; Φ

U
(i)
σ

= Φ
U

(i−1)
σ

if SELECT(U
(i−1)
σ ,Φ

U
(i−1)
σ

, i, S(i)) then
U

(i)
σ = U

(i)
σ ∪ {si};

define Φ
U

(i)
σ
(si) = cj ; j = j + 1

if Φ
U

(r)
σ

is a satisfying assignment for E[U
(r)
σ] then

accept
reject

The algorithm aims at constructing a ’proof’ that S is

not satisfiable. Such a proof will consist of a collection

{(Uσ,ΦUσ
)}σ of subsets Uσ ⊆ S such that for each

assignment ΦS of values to the variables in S, there exists

a set Uσ such that ΦS agrees with ΦUσ with respect to the

assignment to the variables in Uσ , i.e. ΦS|Uσ
= ΦUσ , and

ΦUσ
is not satisfying. In this context, σ will be a sequence of

values from {1, . . . , d} and given S any such sequence will

uniquely identify the set Uσ and the assignment ΦUσ
(but

there maybe σ �= σ′ with Uσ = Uσ′ and ΦUσ = ΦU ′σ).

Obviously, if for each assignment of values to S there

exists a σ such that H[Uσ] is violated for this assignment,

then the union of the Uσ is not satisfiable (and so is S).

In order to identify the variables in Uσ , for any σ the

algorithm iterates over the sample sequence and constructs

sets U
(0)
σ := ∅, U (1)

σ , . . . , U
(r)
σ =: Uσ and the assignments

Φ
U

(0)
σ

,Φ
U

(1)
σ

, . . . ,Φ
U

(r)
σ

=: ΦUσ
, where Φ

U
(0)
σ

is the empty

assignment and where here and in the remainder of the paper

we use U
(i)
σ and Φ

U
(i)
σ

to refer to the final values of U
(i)
σ

and Φ
U

(i)
σ

, i.e. the values that have been obtained after the

i-th iteration of the inner for-loop of algorithm PROOFOF-

SATISFIABILITYTESTER. The algorithm uses a deterministic
subroutine SELECT to determine whether U

(i)
σ = U

(i−1)
σ or

U
(i)
σ = U

(i−1)
σ ∪{si}. In the latter case, we say that SELECT

adds variable si. We define Φ
U

(i)
σ
(X) = Φ

U
(i−1)
σ

(X) for all

X ∈ U
(i−1)
σ and, in the case that si is added, we define

Φ
U

(i)
σ
(si) = cj , where j = |U (i)

σ |, i.e the number of variables

accepted until step i. We will assume that SELECT never

accepts if |U (i−1)
σ | = m as otherwise, the next assigned

value would be undefined. The exact design of SELECT in

our algorithms will not be required at this point and is the

main technical challenge of the proof.
The following important observation was (implicitly)

made in [8] and follows by induction and the fact that

SELECT is deterministic.

Observation 7. Let σ = 〈c1, . . . , cm〉. The result
of SELECT(U

(i−1)
σ ,Φ

U
(i−1)
σ

, i, S(i)) depends only on S(i)

and the sequence 〈c1, . . . , ck−1〉, where k is the cur-
rent value of variable j used in the algorithm when

SELECT(U
(i−1)
σ ,Φ

U
(i−1)
σ

, i, S(i)) is invoked.

The following lemma has been implicitly proved in [8].

We include the simple proof for completeness.

Lemma 8. If algorithm PROOFOFSATISFIABILITYTESTER

rejects a sequence of variables S, then E[S] is not satisfi-
able.

Proof: Assume E[S] is satisfiable with satisfying as-

signment ΦS . We show that ΦS can be used to construct

a sequence of colors σ = 〈c1, . . . , cm〉 for which algorithm

PROOFOFSATISFIABILITYTESTER accepts. We inductively

define a sequence σ′ of colors as follows. If our current

sequence σ′ = 〈c1, . . . , ck−1〉 has length k − 1 and if si
is the next variable added by SELECT, then ck = ΦS(si).
If for a given k no variable is selected until the algorithm

finishes, then we define σ to be any sequence that has σ′ as a

prefix. Note that by the observation above, the next variable

(if it exists) is uniquely determined and so the construction

is well-defined. Furthermore, observe that our construction

ensures that ΦU is always a satisfying assignment for U .

Hence, the algorithm accepts.

In order to prove that the canonical algorithm rejects, by

Lemma 8, it suffices to prove that PROOFOFSATISFIABIL-

ITYTESTER rejects. This can be done by proving that for

a fixed sequence σ the acceptance probability is small and

then use the union bound over all sequences. This approach

has been used in the previous papers and we will require

slightly more involved arguments.

Corollary 9. If (for some values of m and r) algorithm
PROOFOFSATISFIABILITYTESTER rejects every input H =
(V,E) that is ε-far from satisfiable with probability at least
3/4 then the canonical tester is a property tester with sample
complexity r.

IV. POTENTIAL OF VARIABLES

Assigning values to some of the variables affects all

clauses that contain some of these variables. For example, a

clause (Xi1 �= c1 ∨Xi2 �= c2 ∨ · · · ∨Xik �= ck) is satisfied,

if, say, Xi1 is set to a value different from c1. Similarly, if

Xi1 is set to c1 we can replace the clause by the smaller

clause (Xi2 �= c2 ∨ · · · ∨Xik �= ck). Given a set of assigned

variables, we will consider the set of reduced constraints that

can be deduced from E in a similar way as in the example

above.

Definition 10. Given a set E of constraints and a set of
assigned variables (U,ΦU), U ⊆ V , a clause C = (Xi1 �=
c1∨· · ·∨Xil �= cl) is called a reduced clause, if there exists a
clause (Xi1 �= c1∨· · ·∨Xil �= cl∨Xil+1

�= cil+1
∨· · ·∨Xik �=

cik) ∈ E with ΦU (Xij) = cij for j = l + 1, . . . , k. We use
E[U,ΦU] to denote the set of all reduced clauses of E for
(U,ΦU).

545

In our proof we will use the set of reduced clauses to

describe additional constraints imposed by a set of assigned

variables on the assignment of the remaining variables. Note

that if a constraint intersects more than one variable from

U then we may have reduced clauses for any subset of the

intersection. This will be required in the proof of Claim 17.

Also note that ΦU is not satisfying, if the empty clause is in

E[U,ΦU]. There may be many clauses of length k in E that,

under the given assignment of U , are reduced to the same

clause C with |C| = � < k. In the following definition of

the weight of a variable, we will therefore take care of this

fact by weighting reduced clauses C ∈ E[U,ΦU], |C| =
�, by a factor of nk−�. This weighting factor reflects the

maximum possible number of witnesses in E for a given

reduced constraint of arity �.
Our next step is to define the weight weight(U,ΦU , Xj)

of a variable Xj with respect to a satisfying assignment ΦU

to the variables in U . The weight of a variable Xj reflects

the minimum (weighted) number of new constraints that will

be added to the current set E[U,ΦU], if the assignment is

extended to a satisfying assignment for the set of variables

U ∪Xj .

Let T (U,ΦU , Xj) be the set of values c such that there

is no clause (Xj �= c) ∈ E[U,ΦU], i.e. the set of valid

extensions of the current assignment ΦU to the set U∪{Xj}.
The weight of a variable Xj /∈ U reflects the minimum

(weighted) number of new constraints that will be added

to E[U,ΦU], when the assignment ΦU is extended to an

assignment ΦU∪{Xj} with ΦU∪{Xj}(X) = ΦU (X) for all

X ∈ U and ΦU∪{Xj}(Xj) ∈ T (U,ΦU , Xj). If Xj ∈ U then

the weight of Xj is 0. Note that the number of witnesses for

a reduced constraint that includes Xj is at most nk−�−1, i.e.

a factor n smaller than the weight of the reduced constraint,

which reflects the maximum number of overall witnesses.

This will become important later in the proof.

Definition 11 (Weight of a variable). The weight
weight(U,ΦU , Xj) of a variable Xj with respect to a set of
assigned variables (U,ΦU) is defined as follows. If Xj ∈ U
then weight(U,ΦU , Xj) = 0. Otherwise, if T (U,ΦU , Xj) =
∅, then weight(U,ΦU , Xj) =∞. Otherwise,

weight(U,ΦU , Xj) = dk · min
c∈T (U,ΦU ,Xj)

k−1∑
�=1

nk−� ·
∣∣{C | C ∈ E[U ∪ {Xj},ΦU∪{Xj},c] \ E[U,ΦU] and |C| = �}∣∣,
where ΦU∪Xj ,c is the extension of ΦU to the set U ∪ {Xj}
with ΦU∪Xj (Xj) = c and ΦU∪Xj (X) = ΦU (X) for X ∈
U .

Next, we will introduce the potential of a variable with

respect to a sequence S(i), which for fixed σ will be

the minimum weight of the variable attained during the

processing of the sequence. We will show (and this is the

main technical result) that if the assignment that is defined

by S(i) and σ is satisfying, then the average potential of the

variables is more than εnk. Later we will use that the weight

of a variable is at least its potential and that the potential

is monotonically decreasing. The second property will be

essential to obtain the improved sample size of Õ(1/ε).

Definition 12 (Potential of a variable Xj). The potential
pot(S(i), σ,Xj) of a variable Xj with respect to a sequence
of variables S(i) and a sequence of values σ is defined as

pot(S(i), σ,Xj) = min
0≤h≤i

weight(U (h)
σ ,Φ

U
(h)
σ

, Xj),

The average potential with respect to a sequence of vari-
ables S(i) and a sequence of values σ is defined as
avgpot(S(i), σ) =

∑n
j=1 pot(S(i), σ,Xj).

The above definition depends implicitly on the func-

tion SELECT, since SELECT influences U
(h)
σ and Φ

U
(h)
σ

.

Since our SELECT procedure will depend on the po-

tential, we have to make sure that no circularity is

introduced. By Observation 7 this will not be the

case, if SELECT(U
(i−1)
σ ,Φ

U
(i−1)
σ

, i, S(i)) depends only on

pot(S(i−1), σ,Xj).
The core idea behind the notion of the potential of a

variable is that it allows us to deal with the effect that

assigning variables may increase the weight of other vari-

ables. For example, if an assignment causes a new constraint

of the form (Xj �= c) then this may lead to an increase

of weight(U
(i)
σ ,Φ

U
(i)
σ
, Xj), namely, in the case when the

previous minimum in the definition of the weight was

achieved by c. In contrast to the weight of a variable its

potential is monotonically decreasing as i increases.

The interesting point is now that, if the input is ε-far from

satisfiable and if Φ
U

(r)
σ

is a satisfying assignment, then the

average potential is more than εnk. This is stated in the

following key technical lemma whose proof is postponed to

the next section.

Lemma 13. If a set of constraints is ε-far from satisfiable
then for any sequence of variables S(r) and sequence
of values σ the following holds. If Φ

U
(r)
σ

is a satisfying

assignment for U
(r)
σ then

avgpot(S(r), σ) > εnk.

V. PROOF OF THE MAIN RESULT

We will now prove Theorem 5. To do so, we will define a

procedure SELECT such that algorithm PROOFOFSATISFIA-

BILITYTESTER rejects any input that is ε-far from satisfiable

with probability at least 3/4. By Corollary 9 this is sufficient

to show that the canonical tester is a property tester. We will

start by giving the rough idea of how to define SELECT and

then refine the definition further.

Lemma 13 tells us that for an arbitrary fixed satisfying

assignment to some variables we have average potential of

more than εnk. Thus, in expectation a random variable will

546

have potential at least εnk. Since the maximum potential

of a variable is O(nk), this implies that a random vertex is

likely to have high potential as well. We will define SELECT

in such a way that it adds only variables with high potential.

By the above argument we can conclude that SELECT adds

variables reasonably often and we only need to argue that,

for a fixed sequence σ, at some point i the assignment Φ
U

(i)
σ

will not be a satisfying assignment with sufficiently high

probability and then we can apply the union bound over all

sequences. By the above discussion, we know that there is a

good probability of SELECT adding a variable. Furthermore,

we know that the potential of a variable is a lower bound on

its weight and its weight is defined as the minimum increase

in the weighted number of reduced constraints or ∞ if we

cannot assign a value to this variable without violating a

constraint from E. Thus, for example, if we guarantee that

every added variable has a potential of more than εnk/2, we

get that either more than εnk/2 weighted reduced constraints

are added or we have proved that the current assignment is

not satisfying. However, the maximum weighted number of

constraints is O(nk) and so we cannot have more than εnk/2
new reduced constraints more than O(1/ε) times and so at

some point we will add a variable, which proves that the

current assignment is not satisfying.

Simply defining SELECT to be adding variables of po-

tential Ω(εnk) will not lead to an improvement of existing

results. The reason is that we only know the expected

potential of a variable to be more than εnk. But this

allows for extreme inputs that either have εn variables

with potential nk or n variables with potential εnk or

anything in between. We will therefore subdivide the sample

sequence into �log(1/ε) subsequences of length rsub called

stages. Thus, the sample size of the algorithm will be

r = �log(1/ε)·rsub. Such an approach has been used before

in [3] to obtain a tester with sample complexity Õ(1/ε)
for the case of bipartiteness in graphs. The �-th stage will

be the subsequence 〈s(�−1)·rsub+1, . . . , s�·rsub
〉. During each

stage we will use a different SELECT procedure. We use

SELECT� to refer to the select procedure in stage �. SELECT�

will add si, if

(1) the current assignment Φ
U

(i−1)
σ

is satisfying E[U
(i−1)
σ],

and

(2) pot(S(i−1), σ, si) ≥ nk/2�+1.

An important observation is that for a fixed sequence of

values σ in stage � we can add at most O(2�) variables

until the current assignment is violated. This follows from

the fact that the potential of a variable is a lower bound

for its weight, that the weight is a lower bound for the

weighted number of newly added constraints and that the

overall weighted number of constraints is O(nk).
We show the following lemma.

Lemma 14. Let rsub = 32 · (k · d2k · ln(d) + ln(10 ·
�log(1/ε))) · 8·dk·�log(1/ε)�

ε = O(log log(1/ε) · log(1/ε)/ε).

At the end of stage �, with probability at least 1− 1
10·�log 1/ε� ,

simultanuously for every sequence σ, we have

(a) Φ
U

(�·rsub)
σ

is not satisfying E[U
(�·rsub)
σ], or

(b) there are fewer than ε·2�·n
8·dk·�log(1/ε)� variables Xj with

pot(S(�·rsub), σ,Xj) ≥ nk/2�+1.

Proof: We will prove the result for a fixed σ and in the

end apply the union bound. We will use A(i) to denote the

event that Φ
U

(i)
σ

is not satisfying E[U
(i)
σ] and B(i) to denote

the event that there are fewer than ε ·2� ·n/(8dk�log(1/ε))
variables Xj with pot(S(i), σ,Xj) ≥ nk/2�+1. We consider

the subsequence 〈s(�−1)·rsub+1, . . . , s�·rsub
〉. If for some index

i, (�− 1) · rsub ≤ i ≤ � · rsub event A(i) or B(i) occurs, then

by monotonicity A(� · rsub) or B(� · rsub) occurs at the end

of the stage. Thus, we need to estimate the probability that

both conditions are not satisfied throughout the whole stage.

In order to do so, we first observe that

Pr[SELECT� adds si | A(i−1) and B(i−1) did not occur]

≥ ε · 2�
8 · dk · �log(1/ε) .

Thus, as long as A(i − 1) and B(i − 1) are not satisfied,

there is some good probability that SELECT adds the next

variable. As our next step, we will prove that SELECT cannot

add too many variables.

Claim 15. SELECT� adds at most k · 2�+1 · d2k variables
during stage �.

Proof: The number of (k, d)-CNF clauses is at most

dk · nk. If we weight any clause with k′ < k variables with

a factor of dk · nk−k′ as it is done in the definition of the

weight of a variable, then we know that the weighted number

of (k′, d)-CNF clauses for k′ < k is at most d2k ·nk and their

sum (over all 1 ≤ k′ ≤ k − 1) is at most (k − 1) · d2k · nk.

Furthermore, assigning a value to any variable added by

SELECT� will increase the weighted number of constraints

by at least nk/2�+1 or the assignment Φ
U

(i)
σ

will no longer

be satisfying. Thus, we conclude that at most (k−1) ·2�+1 ·
d2k + 1 ≤ k · 2�+1 · d2k variables are added during stage �.

Corollary 16. The sum of variables added by SELECT1, . . . ,
SELECT� is at most k · 2�+2 · d2k.

Note that the above corollary also allows us to define the

value of m used in PROOFOFSATISFIABILITYTESTER as

m = k · 2�log(1/ε)�+2 · d2k.

Define Zi to be the 0 − 1-random variable, that is 1, if

events A(i− 1 + (�− 1) · rsub) and B(i− 1 + (�− 1) · rsub)
did not occur and SELECT� adds si+(�−1)·rsub

or if event

A(i− 1+ (�− 1) · rsub) or B(i− 1+ (�− 1) · rsub) occured;

Zi = 0, otherwise.

547

By Claim 15, if
∑rsub

i=1 Zi > k · 2�+1 · d2k then condition

(a) or (b) of Lemma 14 is satisfied at the end of stage �. Let

Yi be a 0 − 1−random variable that is 1 with probability
ε·2�

8·dk·�log(1/ε)� . Clearly, for any x we have Pr[
∑rsub

i=1 Yi ≥
x] ≤ Pr[

∑rsub

i=1 Zi ≥ x]. Thus, we know that the probability

that condition (a) or (b) is satisfied is at least Pr[
∑rsub

i=1 Yi >
k · 2�+1 · d2k]. Setting rsub = 32 · (k · d2k · ln(d) + ln(10 ·
�log(1/ε))) · 8·dk·�log(1/ε)�

ε = O(log log(1/ε) · log(1/ε)/ε)
to be the number of variables used in stage � we get

E[
∑rsub

i=1 Yi] = 32 · (k · d2k · ln(d)+ ln(10 · �log(1/ε))) · 2�.
Chernoff’s bound implies

Pr[

rsub∑
i=1

Yi ≤ k · d2k · 2�+1] ≤ Pr[

rsub∑
i=1

Yi ≤ 1

2
E[

r�∑
i=1

Yi]]

≤ exp
(1
8
·E[

r�∑
i=1

Yi]
)

≤ 1

10 · �log 1/ε ·
1

dk·2�+2·d2k

By Corollary 16 the sum of variables added until the end of

stage � is at most k · 2�+2 · d2k. Hence, we need to take the

union bound over dk·2
�+2·d2k

possible (prefixes of) σ and

the lemma follows.

Corollary 9 implies that in order to prove Theorem 5

we need to show that algorithm PROOFOFSATISFIABILI-

TYTESTER with sample size r = �log(1/ε)rsub rejects an

arbitrary input that is ε-far from satisfiable with probability

at least 3/4. Therefore, let us now assume that our input set

E is ε-far from satisfiable. Using the union bound we obtain

that with probability at least 9/10 the statement of Lemma

14 is true for all stages of the algorithm. We will show that

conditioned on the event that the statement of Lemma 14 is

true for all stages of the algorithm, it will reject. Indeed,

assume for the sake of contradiction that the algorithm

accepts. Then there exists a sequence σ such that Φ
U

(r)
σ

is a

satisfying assignment. This implies that at the end of each

stage � , 1 ≤ � ≤ �log(1/ε), the assignment Φ
U

(�·rsub)
σ

was

satisfying and so statement (b) was true at the end of stage �.
By the monotonicity of the potential, we can conclude that

for every value of �, 1 ≤ � ≤ �log(1/ε), the same statement

is still true at the end of the last stage. This implies that after

the last stage, there are fewer than 2 · ε ·n/(8dk�log(1/ε))
variables with a potential of at most dk · nk. Furthermore,

by monotonicity for every �, 2 ≤ � ≤ �log(1/ε), there are

fewer than ε·2�·n/(8dk�log(1/ε)) variables with a potential

between nk/2�−1 and nk/2�+1. For the at most n remaining

we know that their potential is at most nk/2�log(1/ε)�+1.

Thus,

avgpot(S(r), σ) ≤ 1

n
· 2 · ε · n

8dk�log(1/ε) · d
k · nk

+
1

n
·
�log(1/ε)�∑

�=2

nk

2�
· ε · 2� · n

8dk�log (1/ε)

+
1

n
· n · nk

2�log(1/ε)�+1

≤ εnk.

Now Lemma 13 implies that the input is not ε-far from

satisfiable, which is a contradiction. Hence, with probability

at least 9/10 the canonical tester rejects and is therefore a

property tester. The sample complexity of the tester is rsub ·
�log(1/ε) = O(log log(1/ε) · log2(1/ε)/ε). This finishes

the proof of Theorem 5.

VI. PROOF OF LEMMA 13

Proof: The proof is by contradiction. We assume that

our input set of constraints (V,E) is ε-far from satisfiable

but we have a sequence of variables S(r) and a sequence of

values σ such that Φ
U

(r)
σ

is a satisfying assignment for U
(r)
σ

and avgpot(S(r), σ) ≤ εnk. We will show that in this case

we can construct an assignment χ : V → {1, . . . , d} that

violates at most εnk constraints from E. This will contradict

the assumption that the input set is ε-far from satisfiable.

In order to construct χ we will define the time stamp of

a variable Xj to be the smallest number i ∈ {1, . . . , r}
such that weight(U

(i)
σ ,Φ

U
(i)
σ
, Xj) = pot(S(r), σ,Xj), i.e.

the first step i when the weight of the variable Xj is smallest.

Let us now start with the construction of χ by defining

χ(X) = Φ
U

(r)
σ

for all X ∈ U
(r)
σ . In order to construct the

assignment for the remaining variables, we proceed in order

of increasing time stamps. We assign to every variable Xj

with time stamp i the value that minimizes the weighted

number of new constraints with respect to (U
(i)
σ ,Φ

U
(i)
σ
), i.e.

we get χ(Xj) = c, where c ∈ T (U
(i)
σ ,Φ

U
(i)
σ
, Xj) is a value

that minimizes
∑k−1

�=1 nk−�·∣∣{C | C ∈ E[U∪Xj ,ΦU∪Xj ,c]\
E[U,ΦU] and |C| = �}∣∣. Note that the minimum in the

above expression is equal to weight(U
(i)
σ ,Φ

U
(i)
σ
, Xj).

We will now remove a set of at most avgpot(S(r), σ)
many constraints from E and show that χ is a satisfying

assignment for the resulting set, which we call E′. For

each variable Xj with time stamp i and χ(Xj) = c we

remove all constraints in E that lead to reduced clauses in

E[U
(i)
σ ∪Xj ,ΦU

(i)
σ ∪Xj ,c

]\E[U
(i)
σ ,Φ

U
(i)
σ
]. For a fixed reduced

constraint C ∈ E[U
(i)
σ ∪ Xj ,ΦU

(i)
σ ∪Xj ,c

] \ E[U
(i)
σ ,Φ

U
(i)
σ
]

the number of constraints that we have to remove from

E is at most dk · nk−|C|−1 since each constraint from E
has to include Xj and the variables of C and there are

at most dk constraints on the same set of k variables.

Thus, the overall number of constraints that we have to

548

remove is at most
∑k−1

�=1 dk · nk−�−1 · ∣∣{C | C ∈
E[U ∪Xj ,ΦU∪Xj ,c]\E[U,ΦU] and |C| = �}∣∣, which is 1

n ·
weight(U

(i)
σ ,Φ

U
(i)
σ
, Xj). By the choice of the time stamp we

also have 1
n ·weight(U

(i)
σ ,Φ

U
i)
σ
, Xj) =

1
n · pot(S(r), σ,Xj).

Summing up over all variables yields that the number of

constraints removed from E is at most avgpot(S(r), σ),
which is at most εnk by our assumption. Thus, if we can

prove that the assignment χ satisfies all constraints in E′

then we have arrived at the desired contradiction. For this

purpose let us consider an arbitrary i, 1 ≤ i ≤ r. Let us use

V [i] to denote the set of variables with time stamp at most

i. Our first claim is that the set of reduced constraints that

can be derived from assigning values to all variables with

time stamp at most i is a subset of E[U
(i)
σ ,Φ

U
(i)
σ
].

Claim 17. For any i, 1 ≤ i ≤ r, we have E′[V [i], χV |V [i]] ⊆
E[U

(i)
σ ,Φ

U
(i)
σ
].

Proof: Assume the claim is not true and let i be the

minimum value for which the statement of the lemma is

false. Then there is a reduced clause C ∈ E′[V [i], χ|V [i]]

that is not in E[U
(i)
σ ,Φ

U
(i)
σ
]. This means that there must

be a variable Xj with time stamp i involved in creating

C, because E′[V [i − 1], χ|V [i−1]] ⊆ E[U
(i−1)
σ ,Φ

U
(i−1)
σ

] ⊆
E[U

(i)
σ ,Φ

U
(i)
σ
]. However, when Xj is assigned its value c we

remove all constraints from E that lead to reduced clauses

in E[U
(i)
σ ∪Xj ,ΦU

(i)
σ ∪Xj ,c

] \E[U
(i)
σ ,Φ

U
(i)
σ
]. Hence, C was

deleted in this step, which is a contradiction.

Once we have established the above claim, it is easy to

show that χ is a satisfying assignment for E′. Let us consider

an arbitrary constraint C ∈ E′ and let Xj be the last variable

in C that is assigned a value. By the previous claim and the

choice of the time stamp, we know that we can assign Xj

the value χ(Xj) as otherwise the weight of Xj would be

infinite, which contradicts the choice of the time stamp as

the potential is always finite. Furthermore, since Xj is the

last variable of C that is assigned a value, we know that χ
satisfies C.

VII. CONSTRUCTING GOOD SOLUTIONS FOR

SATISFIABLE INSTANCES

In this section we will argue that, given a satisfiable

instance of (k, d)-Function-SAT, it is possible to efficiently

construct an assignment to the variables that violates no

more than εnk constraints. First, we observe that we can

apply the same arguments as in the proof of our main

result to show that for each sequence σ for which Φ
U

(r)
σ

is a satisfying assignment, in each of our stages only

relatively few variables with high potential are left and so

the average potential of the assigned variables defined as in

the proof is at most εnk. This implies that an assignment as

constructed in the proof will violate at most εnk constraints.

Furthermore, we know that such a σ exists since the input

set is satisfiable.

We next describe a simple (and slow) way to compute a

solution that violates at most εnk constraints. For this pur-

pose, we iterate over all subsequences of length m = O(1/ε)
of our sample sequence. For each of them, we check all

dm possible assignments. For each such assignment we then

compute a solution as described in the proof. This requires

us to calculate the time stamp for each variable, which in

turn requires its weight at each point of time. Computing the

weight of a variable requires to iterate over the O(nk−1)
possible new reduced constraints and check in Õ(1/εk)
time whether this constraint is already a reduced constraint

at the current point of time. Computing the value of the

variable can then be done in O(m) time. After the values

of all variables have been determined, we can compute in

O(nk) time the number of violated constraints. We return the

assignment that violates the fewest number of constraints.

As argued above, this assignment will violate at most εnk

constraints. Overall, this procedure requires O(nk · 2 ˜O(1/ε))
time.

It remains to speed up the algorithm. For this purpose,

we will sketch an algorithm that constructs an assignment

which violates at most O(εnk) constraints. Then we can

use a smaller value of ε to get the same guarantee as above.

There are two steps that require more than linear time in the

above procedure. We will show that both can be replaced

by a ’sampling version’ to achieve linear running time.

Let us start with the second one. For a given assignment

we need to compute the number of violated constraints.

Since we aim at an approximation with additive error εnk,

it suffices to sample O(r/ε2) constraints to ensure that

with sufficiently high probability the number of violated

constraints is approximated for all subsequences upto an

additive error of εnk. If we use this approximation instead

of the exact count, we will still end up with an additive

error of O(εnk). Thus, we can reduce the running time of

the second step from O(nk) to O(r/ε2) = O(1/εO(1)). To

reduce the running time of the first step, we observe that

for our purposes, it suffices to approximate the weight of a

vertex with an additive error of upto εnk. Again, such an

error will still allow us to end up with an overall additive

error of O(εnk). To approximate the weight of a vertex,

we can estimate the number of new reduced constraints by

iterating over the k − 1 possible arities and for each arity

� sampling random subsets of � variables and compute the

number of new reduced constraints on them. For each subset

this can be done in O(1/εO(1)) time for constant d and k as

checking which constraints are present on the subset requires

to look at all constraints that have only variables from the

subset and the sample set. Thus, we can also estimate the

weights of the variables in O(1/εO(1)) time per variable.

Thus, for each subsequence we can construct an assignment

in O(n/εO(1)) time, which overall gives a running time of

O(n · 2Õ(1/ε).

549

To further reduce the running time, we observe that we

are only using O(r/ε2) constraints to evaluate the quality

of the current assignment. Thus, it suffices to only com-

pute the value of these variables. This way, for a fixed

subsequence, we can approximate in O(1/εO(1)) time the

quality of the induced assignment upto an additive error

of O(εnk). Thus, we can determine in 2Õ(1/ε) time a

subsequence that produces an assignment which violates

at most O(εnk) constraints. This assignment can then be

computed in O(n/εO(1) + 2Õ(1/ε)) time for constant d and

k.

Theorem 18. Given access to a satisfiable instance of
(k, d)-Function-SAT, one can construct in O(n/εO(1) +

2Õ(1/ε)) time an assignment that with probability at most
3/4 violates at most εnk constraints.

VIII. CONCLUSIONS

In the previous section we showed that one can find

a good solution based on sampling, if the input instance

is satisfiable. Unfortunately, the techniques we use do not

seem to carry over to the case of finding a near optimal

solution in the case that the instance is not satisfiable. The

problem is that it is unclear how to estimate the number of

constraints violated by a solution induced by the sample.

In the satisfiable case, we can always use that there exists

at least one solution that does not violate any constraints.

We nevertheless hope that our technique will be a first step

to improving the time complexity of MAX-(k, d)-Function-

SAT to something similar to the above running time.

In terms of property testing, an obvious question is

to tighten the above bounds. Another interesting question

is to use adaptive sampling to improve the bounds (for

example, in the case of bipartiteness) or prove a lower bound

for adaptive testers. For the case of 3-coloring the author

believes that a lower bound of Ω(1/ε2) on the number of

entries in the adjacency matrix that needs to be queried is

plausible.

IX. ACKNOWLEDGEMENTS

The author thanks Inge Li Goertz and Artur Czumaj for

some preliminary discussion on the problem and the anony-

mous reviewers of STOC’12 and FOCS’12 for carefully

reading the paper and their helpful comments regarding to

the presentation.

REFERENCES

[1] G. Andersson, L. Engebretsen. Property testers for dense
constraint satisfaction programs on finite domains. Random
Structures & Algorithms, 21(1): 14-32, 2002.

[2] N. Alon, W. Fernandez de la Vega, R. Kannan and M.
Karpinski. Random sampling and approximation of MAX-
CSPs. Journal of Computer and System Sciences, 67(2):212-
243, 2003.

[3] N. Alon and M. Krivelevich. Testing k-colorability. SIAM J.
Discrete Math., 15, pp. 211-227, 2002.

[4] N. Alon and A. Shapira. Testing Satisfiability. Journal of
Algorithms, 47, pp. 87-103, 2003.

[5] L. Avigad, O. Goldreich. Testing Graph Blow-Up. APPROX-
RANDOM, pp. 389-399, 2011.

[6] A. Bogdanov, L. Trevisan. Lower Bounds for Testing Bipar-
titeness in Dense Graphs. IEEE Conference on Computational
Complexity, pp. 75-81, 2004.

[7] B. Bollobás, P. Erdös, M. Simonovits and E. Szemerédi.
Extremal graphs without large forbidden subgraphs. Annals
of Discrete Mathematics 3 (1978), 2941.

[8] A. Czumaj and C. Sohler. Testing hypergraph colorability.
Theor. Comput. Sci., 331(1): 37-52, 2005.

[9] A. Czumaj, C. Sohler. Abstract Combinatorial Programs and
Efficient Property Testers. SIAM Journal on Computing, 34(3):
580-615, 2005.

[10] A. Frieze and R. Kannan. Quick Approximation to Matrices
and Applications. Combinatorica, 19(2): 175-220, 1999.

[11] O. Goldreich, S. Goldwasser and D. Ron. Property Testing
and its Connection to Learning and Approximation. J. ACM,
45(4): 653-750, 1998.

[12] O. Goldreich and Dana Ron. Algorithmic Aspects of Property
Testing in the Dense Graphs Model. SIAM Journal on
Computing, 40(2): 376-445, 2011.

[13] O. Goldreich and L. Trevisan. Three Theorems Regarding
Testing Graph Properties. FOCS, pp. 460-469, 2001.

[14] M. Gonen and D. Ron. On the Benefits of Adaptivity in
Property Testing of Dense Graphs. APPROX-RANDOM, pp.
525-539, 2007.

[15] M.Karpinski, W. Schudy. Personal communication with
Marek Karpinski, 2011.

[16] V. Rödl and R. Duke. On graphs with small subgraphs of
large chromatic number. Graphs and Combinatorics 1, pp. 91-
96, 1985.

[17] R. Rubinfeld and A. Shapira. Sublinear Time Algorithms.
SIAM Journal on Discrete Math, to appear.

[18] R. Rubinfeld and M. Sudan, Robust characterization of
polynomials with applications to program testing. SIAM
Journal of Computing, 25: 252–271, 1996.

550

