
Faster Algorithms for Rectangular Matrix Multiplication

François Le Gall

Department of Computer Science
The University of Tokyo

Tokyo, Japan
e-mail: legall@is.s.u-tokyo.ac.jp

Abstract—Let α be the maximal value such that the product
of an n × nα matrix by an nα × n matrix can be computed
with n2+o(1) arithmetic operations. In this paper we show
that α > 0.30298, which improves the previous record α >
0.29462 by Coppersmith (Journal of Complexity, 1997). More
generally, we construct a new algorithm for multiplying an
n×nk matrix by an nk ×n matrix, for any value k �= 1. The
complexity of this algorithm is better than all known algorithms
for rectangular matrix multiplication. In the case of square
matrix multiplication (i.e., for k = 1), we recover exactly the
complexity of the algorithm by Coppersmith and Winograd
(Journal of Symbolic Computation, 1990).

These new upper bounds can be used to improve the
time complexity of several known algorithms that rely on
rectangular matrix multiplication. For example, we directly
obtain a O(n2.5302)-time algorithm for the all-pairs shortest
paths problem over directed graphs with small integer weights,
where n denotes the number of vertices, and also improve the
time complexity of sparse square matrix multiplication.

Keywords-matrix multiplication; rectangular matrices; algo-
rithms;

I. INTRODUCTION

Matrix multiplication is one of the most fundamental

problems in computer science and mathematics. Besides the

fact that several computational problems in linear algebra

can be reduced to the computation of the product of two ma-

trices, the complexity of matrix multiplication also arises as

a bottleneck in a multitude of other computational tasks (e.g.,

graph algorithms). The standard method for multiplying two

n × n matrices uses O(n3) arithmetic operations. Strassen

showed in 1969 that this trivial algorithm is not optimal,

and gave a algorithm that uses only O(n2.808) arithmetic

operations. This has been the beginning of a long story of

improvements that lead to the upper bound O(n2.376) by

Coppersmith and Winograd [9], which has been recently fur-

ther improved to O(n2.3727) by Vassilevska Williams [23].

A slightly weaker improvement has also been found by

Stothers [21]. Note that all the above complexities refer to

the number of arithmetic operations involved, but naturally

the same upper bounds hold for the time complexity as well

when each arithmetic operation can be done in negligible

time (e.g., in poly(log n) time).
Finding the optimal value of the exponent of square matrix

multiplication is naturally one of the most important open

problems in algebraic complexity. It is widely believed that

the product of two n × n matrices can be computed with

O(n2+ε) arithmetic operations for any constant ε > 0. Sev-

eral conjectures, including conjectures about combinatorial

structures [9] and about group theory [6], [5], would, if true,

lead to this result (see also [1] for recent work on these

conjectures). Another way to interpret this open problem is

by considering the multiplication of an n × m matrix by

an m × n matrix. Suppose that the matrices are defined

over a field. For any k > 0, define the exponent of such a

rectangular matrix multiplication as follows:

ω(1, 1, k) = inf{τ ∈ R | C(n, n, �nk�) = O(nτ)},
where C(n, n, �nk�) denotes the minimum number of arith-

metic operations needed to multiply an n× �nk� matrix by

an �nk�×n matrix. Note that, while the value ω(1, 1, k) may

depend on the field under consideration, it is known that it

can depend only on the characteristic of the field [20]. Define

ω = ω(1, 1, 1) and α = sup{k |ω(1, 1, k) = 2}. The value ω
represents the exponent of square matrix multiplication, and

the value α essentially represents the largest value such that

the product of an n × nα matrix by an nα × n matrix

can be computed with O(n2+ε) arithmetic operations for

any constant ε. Since ω = 2 if and only if α = 1, one

possible strategy towards showing that ω = 2 is to give

lower bounds on α. Coppersmith [7] showed in 1982 that

α > 0.172. Then, based on the techniques developed in [9],

Coppersmith [8] improved this lower bound to α > 0.29462.

This is the best lower bound on α known so far.

Except for Coppersmith’s work on the value α, there

have been relatively few algorithms that focus specifically

on rectangular matrix multiplication. Since it is well known

(see, e.g, [16]) that multiplying an n × n matrix by an

n × m matrix, or an m × n matrix by an n × n matrix,

can be done with the same number of arithmetic operations

as multiplying an n × m matrix by an m × n matrix, the

value ω(1, 1, k) represents the exponent of all these three

types of rectangular matrix multiplications. Note that, by

decomposing the product into smaller matrix products, it is

easy to obtain (see, e.g, [16]) the following upper bound:

ω(1, 1, k) =
{

2 if 0 ≤ k ≤ α
2 + (ω − 2)k−α

1−α if α ≤ k ≤ 1.
(1)

Lotti and Romani [16] obtained nontrivial upper bounds on

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.80

514

ω(1, 1, k) based on the seminal result by Coppersmith [7]

and on early works on square matrix multiplication. Huang

and Pan [12] showed how to apply ideas from [9] to the rect-

angular setting and obtained the upper bound ω(1, 1, 2) <
3.333954, but this approach did not lead to any upper bound

better than (1) for k ≤ 1. Ke, Zeng, Han and Pan [15] further

improved Huang and Pan’s result to ω(1, 1, 2) < 3.2699, by

using again the approach from [9], and also reported the

upper bounds ω(1, 1, 0.8) < 2.2356 and ω(1, 1, 0.5356) <
2.0712, which are better than those obtained by (1). Their

approach, nevertheless, did not give any improvement for

the value of α.

The results [8], [12], [15], [21], [23] are all obtained by

extending the approach by Coppersmith and Winograd [9].

Informally, the idea is to start with a basic construction

(some small trilinear form), and then exploit general proper-

ties of matrix multiplication to derive an upper bound on the

exponent ω from this construction. The main contributions

of [9] consist of two parts: the discovery of new basic

constructions and the introduction of strong techniques to

analyze them. In their paper, Coppersmith and Winograd ac-

tually present three algorithms, based on three different basic

constructions. The first basic construction (Section 6 in [9])

is the simplest of the three and leads to the upper bound

ω < 2.40364. The second basic construction (Section 7

in [9]), that we will refer in this paper as Fq (here q ∈ N is a

parameter), leads to the upper bound ω < 2.38719. The third

basic construction (Section 8 in [9]) is Fq ⊗ Fq, the tensor

product of two instances of Fq, and leads to the improved

upper bound ω < 2.375477. The algorithms for rectangular

matrix multiplication [8], [12], [15] already mentioned use

a similar approach. Huang and Pan [12] obtained their

improvement on ω(1, 1, 2) by taking the easiest of the three

constructions in [9] and carefully modifying the analysis to

evaluate the complexity of rectangular matrix multiplication.

Ke, Zeng, Han and Pan [15] obtained their improvements

similarly, but by using the second basic construction from [9]

(the construction Fq) instead, which lead to better upper

bounds. In order to obtain the lower bound α > 0.29462,

Coppersmith [8] relied on a more complex approach: the

basic construction considered is still Fq, but several instances

for distinct values of q are combined together in a subtle way

in order to keep the complexity of the resulting algorithm

small enough (i.e., not larger than n2+o(1)).

Besides the fact that a better understanding of ω(1, 1, k)
gives insights into the nature of matrix multiplication and

ultimately may help showing that ω = 2, fast algorithms for

multiplying an n × nk matrix by an nk × n with k �= 1
have also a multitude of applications. Typical examples not

directly related to linear algebra include the construction

of fast algorithms for the all-pairs shortest paths problem

[2], [18], [25], [28], [29], the dynamic computation of the

transitive closure [11], [19], finding ancestors [10], detecting

directed cycles [26]. Rectangular matrix multiplication has

also been used in computational complexity [17], [24], and

to speed-up sparse square matrix multiplication [3], [14],

[27] or tasks in computational geometry [13], [14]. Obtain-

ing better upper bounds on ω(1, 1, k) would thus reduce the

asymptotic time complexity of algorithms in a wide range

of areas. We nevertheless stress that such improvements are

only of theoretical interest, since the huge constants involved

in the complexity of fast matrix multiplication usually make

these algorithms impractical.

A. Statement of our results

In this paper we construct new algorithms for rectangular

matrix multiplication, by taking the tensor power Fq ⊗ Fq

as basic construction and analyzing this construction in

the framework of rectangular matrix multiplication. We use

these ideas to prove that ω(1, 1, k) = 2 for any k ≤ 0.30298,

as stated in the following theorem.

Theorem 1. For any value k ≤ 0.30298, the product of an
n × nk matrix by an nk × n matrix can be computed with
O(n2+ε) arithmetic operations for any constant ε > 0.

More generally, we present an algorithm for multiplying

an n × nk matrix by an nk × n matrix, for any value k.

We show that the complexity of this algorithm can be

expressed as a (nonlinear) optimization problem, and use this

formulation to derive upper bounds on ω(1, 1, k). Table I

shows the bounds we obtain for several values of k. The

bounds obtained for 0 ≤ k ≤ 1 are represented in Figure 1

as well.

k
upper bound
on ω(1, 1, k)

0.30298 2
0.40 2.012175
0.50 2.046681

0.5302 2.060396
0.55 2.070063
0.60 2.096571
0.70 2.156959
0.80 2.224790
0.90 2.298048
1.00 2.375477

k
upper bound
on ω(1, 1, k)

1.25 2.581815
1.50 2.800116
1.75 3.025906
2.00 3.256689
2.50 3.727808
3.00 4.207372
3.50 4.693151
4.00 5.180715
4.50 5.672001
5.00 6.166736

Table I
OUR UPPER BOUNDS ON THE EXPONENT OF THE MULTIPLICATION OF

AN n × nk MATRIX BY AN nk × n MATRIX.

The results of this paper can be seen as a generaliza-

tion of Coppersmith-Winograd’s approach to the rectangular

setting. In the case of square matrix multiplication (i.e.,

for k = 1), we recover naturally the same upper bound

ω(1, 1, 1) < 2.375477 as the one obtained in [9]. Let

us mention that we can, in a rather straightforward way,

combine our results with the upper bound ω < 2.3727
by Vassilevska Williams [23] to obtain slightly improved

bounds for k ≈ 1. The idea is, very similarly to how Equa-

tion (1) was obtained, to exploit the convexity of the function

ω(1, 1, k). Concretely, for any fixed value 0 ≤ k0 < 1, the

515

1.9

2.0

2.1

2.2

2.3

2.375477

0 0.30298 0.5 1

k

Bounds from Eq. (1)
This paper

Figure 1. Our upper bounds (in plain line) on ω(1, 1, k), for 0 ≤ k ≤ 1.
The dashed line represents the upper bounds on ω(1, 1, k) obtained by
using Equation (1) with the values α > 0.30298 and ω < 2.375477.

inequality

ω(1, 1, k) ≤ ω(1, 1, k0) + (ω − ω(1, 1, k0))
k − k0

1 − k0

holds for any k such that k0 ≤ k ≤ 1. This enables us to

combine an upper bound on ω(1, 1, k0), for instance one of

the values in Table I, with the improved upper bound ω <
2.3727 by Vassilevska Williams. Since the improvement is

small and concerns only the case k ≈ 1, we will not discuss

it further.

For k > 0.29462 and k �= 1, the complexity of our algo-

rithms is better than all known algorithms for rectangular

matrix multiplication, including the algorithms [12], [15]

mentioned above. Moreover, for 0.30298 < k < 1, our new

bounds are significantly better than what can be obtained

solely from the bound α > 0.30298 and ω < 2.375477
through Equation (1), as illustrated in Figure 1. This suggests

that non-negligible improvements can be obtained for all

applications of rectangular matrix multiplications that rely

on this simple linear interpolation, as we discuss below.

B. Applications

In this subsection we describe quantitatively the im-

provements that our new upper bounds imply for some

applications: sparse square matrix multiplication and the all-

pairs shortest paths problem.

Sparse square matrix multiplication: Yuster and

Zwick [27] have shown how fast algorithms for rectangular

matrix multiplication can be used to construct fast algorithms

for computing the product of two sparse square matrices

(this result has been generalized to the product of sparse

rectangular matrices in [14], and the case where the output

matrix is also sparse has been studied in [3]). More precisely,

let M and M ′ be two n×n matrices such that each matrix

has at most m non-zero entries, where 0 ≤ m ≤ n2. Yuster

1.9

2.0

2.1

2.2

2.3

2.376

0.9 1 1.147 1.688 2

log m

Yuster-Zwick
This paper

Figure 2. Upper bounds on the exponent for the multiplication two n×n
matrices with at most m non-zero entries. The horizontal axis represents
logn(m). The dashed line represents the results by Yuster and Zwick [27]
and shows that the term nω(1,1,λm) dominates the complexity when 1 ≤
logn(m) ≤ (1 + ω)/2. The plain line represents our improvements.

and Zwick [27] showed that the product of M and M ′ can

be computed in time

O
(
min(nm,nω(1,1,λm)+o(1), nω+o(1))

)
,

where λm is the solution of the equation λm+ω(1, 1, λm) =
2 logn(m). Using the upper bounds on ω(1, 1, k) of Equa-

tion (1) with the values α < 0.294 and ω < 2.376, this gives

the complexity depicted in Figure 2.

These upper bounds can be of course directly improved

by using the new upper bound on ω by Vassilevska

Williams [23] and the new lower bound on α given in

the present work, but the improvement is small. A more

significant improvement can be obtained by using directly

the upper bounds on ω(1, 1, k) presented in Figure 1, which

gives the new upper bounds on the complexity of sparse

matrix multiplication depicted in Figure 2.

The all-pairs shortest paths problem: Zwick [29] has

shown how to use rectangular matrix multiplication to com-

pute the all-pairs shortest paths in weighted direct graphs

where the weights are bounded integers. The time complex-

ity obtained is O(n2+μ+ε), for any constant ε > 0, where μ
is the solution of the equation ω(1, 1, μ) = 1+2μ. Using the

upper bounds on ω(1, 1, k) of Equation (1) with α > 0.294
and ω < 2.376, this gives μ < 0.575 and thus complexity

O(n2.575). Actually, this complexity can be further reduced

to O(n2.5356) using the bounds on ω(1, 1, k) given in [15].

Our results (see Table I) show that ω(1, 1, 0.5302) <
2.0604, which gives the upper bound μ < 0.5302. We thus

obtain the following result.

Theorem 2. There exists an algorithm that computes
the shortest paths between all pairs of vertices in a
weighted directed graph with bounded integer weights in

516

time O(n2.5302), where n is the number of vertices in the
graph.

II. PRELIMINARIES

In this section we present known results about algebraic

complexity theory that we will use in this paper. We refer

to [4] for an extensive treatment of this topic.

Assume that F is an arbitrary field. Let U = F
u, V = F

v

and W = F
w be three vector spaces over F, where u, v and

w are three positive integers. A tensor t of format (u, v, w),
also called a trilinear form of format (u, v, w), is an element

of U ⊗ V ⊗ W = F
u×v×w, where ⊗ denotes the tensor

product. If we fix bases {xi}, {yj} and {zk} of U , V and W ,

respectively, then we can express t as

t =
∑
ijk

tijk xi ⊗ yj ⊗ zk

for coefficients tijk in F. The tensor t can then be repre-

sented by the 3-dimensional array [tijk]. We will often write

xi ⊗ yj ⊗ zj simply as xiyjzk.

The tensor corresponding to the matrix multiplication of

an m×n matrix by an n× p matrix is the tensor of format

(m×n, n×p,m×p) with coefficients tijk = 1 if i = (r, s),
j = (s, t) and k = (r, t) for some integers (r, s, t) ∈ [m] ×
[n]×[p], and tijk = 0 otherwise. This tensor will be denoted

by 〈m,n, p〉. Another example is the tensor
∑n

�=1 x�y�z� of

format (n, n, n). This tensor is denoted 〈n〉 and corresponds

to n independent scalar products.

An important notion is the concept of degeneration of

tensors. We refer to [4] for the formal definition. Intuitively,

the fact that a tensor t′ is a degeneration of a tensor t,
denoted t′ � t, means that an algorithm computing t can

be converted into an “approximate algorithm” computing

t′ with essentially the same complexity. The notion of

degeneration can be used to define the notion of border rank:

the border rank of a tensor t, denoted by R(t), is the minimal

r ∈ N such that t � 〈r〉.
Let t ∈ U ⊗ V ⊗ W and t′ ∈ U ′ ⊗ V ′ ⊗ W ′ be two

tensors. We can naturally define the direct sum t⊕ t′, which

is a tensor in (U ⊕ U ′) ⊗ (V ⊕ V ′) ⊗ (W ⊕ W ′), and the

tensor product t⊗ t′, which is a tensor in (U ⊗U ′)⊗ (V ⊗
V ′)⊗ (W ⊗W ′). For any integer c ≥ 1, we will denote the

tensor t ⊕ · · · ⊕ t (with c occurrences of t) by c · t and the

tensor t ⊗ · · · ⊗ t (with c occurrences of t) by t⊗c.

Schönhage’s asymptotic sum inequality [20] will be one

of the main tools used to prove our bounds. Its original

statement is for estimating the exponent of square matrix

multiplication, but it can be easily generalized to estimate

the exponent of rectangular matrix multiplication as well.

We will use the following form, which has been also used

implicitly in [12], [15]. A proof can be found in [16].

Theorem 3 (Schönhage’s asymptotic sum inequality). Let
k, m and c be three positive integers. Let t be a tensor such
that c · 〈m,m,mk〉 � t. Then c · mω(1,1,k) ≤ R(t).

Theorem 3 states that, if the form t can be degenerated

into a direct sum of c forms, each being isomorphic to

〈m, m,mk〉, then the inequality c · mw(1,1,k) ≤ R(t) holds.

Let t ∈ U ⊗ V ⊗ W be a tensor. Suppose that U , V and

W decompose as direct sums of subspaces as follows:

U =
⊕
i∈SU

Ui, V =
⊕

j∈SV

Vj , W =
⊕

k∈SW

Wk.

Denote by D this decomposition. We say that t is a C -tensor

with respect to D if t can be written as

t =
∑

(i,j,k)∈SU×SV ×SW

tijk

where each tijk is a tensor in Ui ⊗ Vj ⊗ Wk. The support

of t is defined as

suppD(t) = {(i, j, k) ∈ SU × SV × SW | tijk �= 0},
and the nonzero tijk’s are called the components of t. We

will usually omit the reference to D when there is no

ambiguity or when the decomposition does not matter.

As a simple example, consider the complete decomposi-

tions of the spaces U = F
m×n, V = F

n×p and W = F
m×p

(i.e., their decomposition as direct sums of one-dimensional

subspaces, each subspace being spanned by one element of

their basis). With respect to this decomposition, the tensor

of matrix multiplication 〈m,n, p〉 is a C -tensor with support

suppc(〈m,n, p〉)={((r, s),(s, t),(r, t))|(r, s, t)∈ [m]×[n]×[p]}
where each component is trivial (i.e., isomorphic to

〈1, 1, 1〉). In this paper the notation suppc(〈m,n, p〉) will

always refer to the support of 〈m, n, p〉 with respect to this

complete decomposition.

We now introduce the concept of combinatorial degener-

ation. A subset Δ of SU × SV × SW is called diagonal if

the three projections Δ → SU , Δ → SV and Δ → SW

are injective. Let Φ be a subset of SU × SV × SW . A set

Ψ ⊆ Φ is a combinatorial degeneration of Φ if there exists

three functions a : SU → Z, b : SV → Z and c : SW → Z

such that

• for all (i, j, k) ∈ Ψ, a(i) + b(j) + c(k) = 0;

• for all (i, j, k) ∈ Φ\Ψ, a(i) + b(j) + c(k) > 0.

The most useful application of combinatorial degeneration

will be the following result, which essentially states that a

sum, over indices in a diagonal combinatorial degeneration

of suppD(t), of the components tijk is direct.

Proposition 1 (Proposition 15.30 in [4]). Let t be C -tensor
with support suppD(t) and components tijk. Let Δ ⊆
suppD(t) be a combinatorial degeneration of suppD(t) and
assume that Δ is diagonal. Then

⊕
(i,j,k)∈Δ tijk � t.

When the support of t is isomorphic to suppc(〈e, h, �〉) for

some positive integers e, h and �, a powerful tool to construct

large diagonal combinatorial degenerations is given by the

517

following result by Strassen (Theorem 6.6 in [22]), restated

in our terminology.

Proposition 2 ([22]). Let e1, e2 and e3 be three posi-
tive integers such that e1 ≤ e2 ≤ e3. For any permu-
tation σ of {1, 2, 3}, there exists a diagonal set Δ ⊆
suppc(〈eσ(1), eσ(2), eσ(3)〉) with |Δ| ≥ �3e1e2/4� that is a
combinatorial degeneration of suppc(〈eσ(1), eσ(2), eσ(3)〉).

III. COPPERSMITH-WINOGRAD’S CONSTRUCTION

In this section we describe the construction by Copper-

smith and Winograd [9], which we will use as the basis of

our algorithm, and several of its properties.

Section 7 of [9] describes a trilinear form Fq, where q ∈ N

is a parameter, that is used to obtain the upper bound ω <
2.38719. Section 8 of [9] shows how the tensor product of Fq

by itself, which has border rank R(Fq ⊗Fq) ≤ (q+2)2, can

be used to obtain a sum of fifteen trilinear forms:∑
0≤i,j,k≤4
i+j+k=4

Tijk � Fq ⊗ Fq,

where

T004 = x0
0,0y

0
0,0z

4
q+1,q+1

T013 =
q∑

i=1

x0
0,0y

1
i,0z

3
i,q+1 +

q∑
k=1

x0
0,0y

1
0,kz3

q+1,k

T022 = x0
0,0y

2
q+1,0z

2
0,q+1 + x0

0,0y
2
0,q+1z

2
q+1,0 +

q∑
i,k=1

x0
0,0y

2
i,kz2

i,k

T112 =
q∑

i=1

x1
i,0y

1
i,0z

2
0,q+1 +

q∑
k=1

x1
0,ky1

0,kz2
q+1,0 +

q∑
i,k=1

x1
i,0y

1
0,kz2

i,k +
q∑

i,k=1

x1
0,ky1

i,0z
2
i,k

and the other eleven terms are obtained by permuting the

indexes of the x-variables, the y-variables and z-variables

in the above expressions (e.g., T040 = x0
0,0y

4
q+1,q+1z

0
0,0 and

T400 = x4
q+1,q+1y

0
0,0z

0
0,0).

Let us describe in more details the notations used here.

The number of x-variables is (q + 2)2. They are indexed as

xi,k, for i, k ∈ {0, 1, . . . , q +1}. The superscript is assigned

in the following way: the variable x0,0 has superscript 0,

the variables in {xi,0, x0,k}1≤i,j≤q have superscript 1, the

variables in {xq+1,0, xi,k, x0,q+1}1≤i,j≤q have superscript 2,

the variables in {xq+1,k, xi,q+1}1≤i,j≤q have superscript 3
and the variable xq+1,q+1 has superscript 4. Note that

the superscript is completely determined by the subscript.

Similarly, the number of y-variables is (q + 2)2, and the

number of z-variables is (q + 2)2 as well. The y-variables

and the z-variables are assigned subscripts and superscripts

exactly as for the x-variables. Observe that any term xyz

that appears in Tijk is such that x has superscript i, y has

superscript j and z has superscript k.

We will later need to analyze all the forms Tijk. It

happens, as observed in [9], that most of these forms (all

the forms except T112, T121 and T211) can be analyzed

in a straightforward way, since they are isomorphic to the

following matrix products:

T004
∼= T040

∼= T400
∼= 〈1, 1, 1〉

T013
∼= T031

∼= 〈1, 1, 2q〉
T103

∼= T301
∼= 〈2q, 1, 1〉

T130
∼= T310

∼= 〈1, 2q, 1〉
T022

∼= 〈1, 1, q2 + 2〉
T202

∼= 〈q2 + 2, 1, 1〉
T220

∼= 〈1, q2 + 2, 1〉.
This can be seen from the definition of the trilinear

form (or the tensor) corresponding to matrix multiplication.

For example, the form T013 is isomorphic to the tensor∑2q
�=1 x0y�z� = 〈1, 1, 2q〉, which represents the product of

a 1 × 1 matrix (a scalar) by a 1 × 2q matrix (a row).

IV. ALGORITHM FOR RECTANGULAR MATRIX

MULTIPLICATION

In this section we present our algorithm, which consists

in the two algorithmic steps described in Subsections IV-B

and IV-C. We first start by explaining in Subsections IV-A

the construction we will use.

A. Our construction

Let a004, a400, a013, a103, a301, a022, a202, a112, a211 be

nine arbitrary positive rational numbers such that

2a004+a400 + 2a013 + 2a103+
2a301 + a022 + 2a202 + 2a112 + a211 = 1

(2)

and

a013a202a112 = a103a022a211. (3)

It will be convenient to define six additional numbers

a040, a031, a130, a310, a220 and a121 as a040 = a004,

a031 = a013, a130 = a103, a310 = a301, a220 =
a202 and a121 = a112. Let us define rational numbers

A0, A1, A2, A3, A4, B0, B1, B2, B3, B4 as follows.

Ai =
∑

0≤j,k≤4
i+j+k=4

aijk for i = 0, 1, 2, 3, 4

Bj =
∑

0≤i,k≤4
i+j+k=4

aijk for j = 0, 1, 2, 3, 4

Let N be a large enough positive integer such each Naijk

is an integer. We raise the construction Fq ⊗ Fq described

518

in Section III to the N -th power, which gives

(∑
0≤i,j,k≤4
i+j+k=4

Tijk

)⊗N

� (Fq ⊗ Fq)⊗N .

The left term can be rewritten as
∑

IJK
TIJK , where the

sum is over all triples of sequences IJK with I, J, K ∈
{0, 1, 2, 3, 4}N such that I� + J� + K� = 4 for all � ∈
{1, . . . , N}. Here we use the notation TIJK = TI1J1K1 ⊗
· · · ⊗ TIN JN KN

. Note that there are 15N terms TIJK in

the above sum. In the tensor product the number of x-

variables is (q + 2)2N . The number of y-variables and z-

variables is also (q + 2)2N . Remember that in the original

construction, each x-variable was indexed by a superscript

in {0, 1, 2, 3, 4}. Each x-variable in the tensor product is

thus indexed by a sequence of N such superscripts, i.e., by

an element I ∈ {0, 1, 2, 3, 4}N . The same is true for the

y-variables and the z-variables. Note that the x-variables

appearing in TIJK have superscript I , the y-variables ap-

pearing in TIJK have superscript J , and the z-variables

appearing in TIJK have superscript K.

The following definition will be useful in our analysis.

Definition 1. Let a004, a040, a400, a013, a031, a103, a130,
a301, a310, a022, a202, a220, a112, a121, a211 be fifteen
nonnegative rational numbers. We say that a triple IJK
is of type [aijk] if

| {� ∈ {1, . . . , N} | I� = i, J� = j and K� = k} | = aijkN

for all 15 combinations of positive i, j, k with i+ j +k = 4.

With a slight abuse of notation, we will say that a form

TIJK is of type [aijk] if the triple IJK is of type [aijk].

B. First step

We set to zero all x-variables except those satisfying the

following condition: their superscript I has exactly A0N
coordinates with value 0, A1N coordinates with value 1,

A2N coordinates with value 2, A3N coordinates with

value 3 and A4N coordinates with value 4. We will say

that such a sequence I is of type A. There are

TX =
(

N

A0N, . . . , A4N

)

sequences I of type A. After the zeroing operation, all forms

TIJK such that I is not of type A disappear (i.e., become

zero).

We process the y-variables and the z-variables slightly dif-

ferently. We set to zero all y-variables except those satisfying

the following condition: their superscript J has exactly B0N
coordinates with value 0, B1N coordinates with value 1,

B2N coordinates with value 2, B3N coordinates with value

3 and B4N coordinates with value 4. We will say that such

a sequence is of type B. There are

TY =
(

N

B0N, . . . , B4N

)

sequences J of type B. Similarly, we set to zero all z-

variables except those such that their superscript K is of

type B (there are TY such sequences).

After these three zeroing operations, the forms TIJK

remaining are precisely those such that I is of type A, J
is of type B, and K is of type B. Equivalently, the forms

remaining are precisely the forms TIJK that are of type

[aijk] with fifteen numbers aijk (for all fifteen combinations

of positive i, j, k such that i + j + k = 4) satisfying the

following four conditions:

aijkN ∈ {0, 1, . . . , N} for all i, j, k; (4)

Ai =
∑

j,k : i+j+k=4

aijk for i = 0, 1, 2, 3, 4; (5)

Bj =
∑

i,k : i+j+k=4

aijk for j = 0, 1, 2, 3, 4; (6)

Bk =
∑

i,j : i+j+k=4

aijk for k = 0, 1, 2, 3, 4. (7)

Let I be a fixed sequence of type A. The number of non-

zero forms TIJK with this sequence I as its first index is

thus precisely

NX =
∑
[aijk]

4∏
i=0

(
AiN

{aijkN}j,k : i+j+k=4

)
,

where the sum is over all the choices of fifteen parameters

aijk’s satisfying conditions (4)–(7). Hereafter we are using

the following notation: for any positive integer m and any set

of integers S = {m1, . . . , ms} such that m1+· · ·+ms = m,

we write
(
m
S

)
=

(
m

m1,m2,...,ms

)
.

For a fixed sequence J of type B, the number of non-zero

forms TIJK with this sequence J as its second index is

NY =
∑
[aijk]

4∏
j=0

(
BjN

{aijkN}i,k : i+j+k=4

)
,

where the sum is again over all the choices of fifteen

parameters aijk’s satisfying conditions (5)–(7). Similarly, for

a fixed sequence K of type B, the number of non-zero forms

TIJK with this sequence K as its third index is

NZ =
∑
[aijk]

4∏
k=0

(
BkN

{aijkN}i,j : i+j+k=4

)
.

The total number of remaining triples is TXNX = TY NY =
TY NZ . Note that this implies that NY = NZ .

We will also be interested in the number of remaining

forms TIJK of type [aijk]. For a fixed sequence I of type

519

A, the number of non-zero forms TIJK of type [aijk] with

this sequence I as its first index is

N ∗
X =

4∏
i=0

(
AiN

{aijkN}j,k : i+j+k=4

)
.

For a fixed sequence J of type B, the number of non-zero

forms TIJK of type [aijk] with this sequence J as its second

index is

N ∗
Y =

4∏
j=0

(
BjN

{aijkN}i,k : i+j+k=4

)
.

We have TXN ∗
X = TY N ∗

Y .

We know that N ∗
X ≤ NX and N ∗

Y ≤ NY , by defini-

tion. It can be shown, from the condition a013a202a112 =
a103a022a211 we imposed on the aijk’s, that NX and

NY (= NZ) can actually be approximated by N ∗
X and N ∗

Y .

Proposition 3. NX = O(N8N ∗
X) and NY = O(N8N ∗

Y).

C. Second step

The first step showed how to convert the trilinear form

(Fq ⊗ Fq)⊗N into a sum of TXNX triples. Among these

triples exactly TXN ∗
X triples are of type [aijk], which means

that they are isomorphic to
⊗

i,j,k:i+j+k=4 T
⊗aijkN
ijk .

The sum obtained is nevertheless not direct: the triples

share variables. A generalization of the pruning argument

in [9] (see also [21], [23]) to our asymmetric setting shows

that this sum can be converted, for any positive constant ε,

into a direct sum of

Ω
(

TXN ∗
X

(NX + NY + NZ)1+ε

)

triples, all of type [aijk], by zeroing variables.

From Stirling’s approximation, we have

TX = Θ

(
1

N2

(
1

AA0
0 AA1

1 AA2
2 AA3

3 AA4
4

)N
)

.

Suppose that the inequality

AA0
0 AA1

1 AA2
2 AA3

3 AA4
4 ≥ BB0

0 BB1
1 BB2

2 BB3
3 BB4

4 (8)

holds. In this case TX = O(TY), and then the equality

TXN ∗
X = TY N ∗

Y implies that N ∗
Y = O(N ∗

X), which,

combined with Proposition 3, gives

TXN ∗
X

(NX + NY + NZ)1+ε
= Ω

(
TXN ∗

X

(N8N ∗
X)1+ε

)
.

Finally, by using the trivial upper bound N ∗
X ≤ 15N , we

obtain the following theorem.

Theorem 4. Let q be any positive integer and a004, a400,
a013, a103, a301, a022, a202, a112 and a211 be any nine
positive rational numbers satisfying Conditions (2), (3) and
(8). Then, for any constant ε > 0, the trilinear form

(Fq ⊗ Fq)⊗N can be converted (i.e., degenerated) into a
direct sum of

Ω

(
1

N10+8ε15Nε

[
1

AA0
0 AA1

1 AA2
2 AA3

3 AA4
4

]N
)

forms, each form being isomorphic to
⊗

0≤i,j,k≤4
i+j+k=4

T
⊗aijkN
ijk .

V. UPPER BOUNDS ON THE EXPONENT OF

RECTANGULAR MATRIX MULTIPLICATION

Theorem 4 showed how the trilinear form (Fq ⊗ Fq)⊗N

can be converted into a direct sum of many forms TIJK

such that

TIJK
∼=

⊗
i,j,k:i+j+k=4

T
⊗aijkN
ijk .

In order to apply Schönhage’s asymptotic sum inequality

(Theorem 3), we need to analyze the smaller forms Tijk. In

Subsection V-A we analyze the forms T112, T121 and T211.

Then, in Subsection V-B, we put all our results together and

prove our main result.

A. The forms T112, T121 and T211

We first focus on the form T211. The following proposition

states that tensor powers of T211 can be used to construct

a direct sum of several trilinear forms, each one being

a C -tensor in which the support and all the components

are isomorphic to a rectangular matrix product. Its proof,

omitted here, follows the ideas of the proof of the lemma at

page 270 in [9].

Proposition 4. Let b be any constant such that 0.916027 <
b ≤ 1. Then there exists a constant c ≥ 1 depending only
on b such that, for any ε > 0 and any large enough integer
m, the form T⊗2m

211 can be converted into a direct sum of

Ω

(
1

mc2εm
·
[

2
(2b)b(1 − b)1−b

]2m
)

trilinear forms, each form being a C -tensor in which:
• each component is isomorphic to

〈q2bm, q2bm, q2(1−b)m〉;
• the support is isomorphic to suppc(〈1, 1, H〉), where

H = Ω
(

1√
m

· [(2b)b(1 − b)(1−b)
]2m

)
.

The forms T112 and T121 can be analyzed in the

same way as T211 by permuting the roles of the x-

variables, the y-variables and the z-variables. Similarly

to the statement of Proposition 4, the form T⊗2m
112 gives

a direct sum of C -tensors with support isomorphic to

〈1, H, 1〉, each component in the tensors being isomor-

phic to 〈q2bm, q2(1−b)m, q2bm〉. The form T⊗2m
121 gives

a direct sum of C -tensors with support isomorphic to

suppc(〈H, 1, 1〉), each component being isomorphic to

〈q2(1−b)m, q2bm, q2bm〉.

520

Suppose that different constants are used to treat each

of the three forms: the forms T112 and T121 are processed

with some constant b, while T211 is processed with another

constant b̃. For any fixed values a112, a211 and any ε > 0,

the form T⊗a112N
112 ⊗ T⊗a112N

121 ⊗ T⊗a211N
211 can then be used

to construct a direct sum of

Ω

⎛
⎜⎝ 2(2a112+a211)N

N3c′Nε ·[(2b)b(1−b)1−b]2a112N·
[
(2b̃)b̃(1−b̃)1−b̃

]a211N

⎞
⎟⎠

C -tensors, for some value c′ ≥ 1 depending only on b
and b̃. Each of these C -tensors has a support isomorphic

to suppc(〈H112, H112, H211〉), where

H112 = Ω
(

1√
N

·
[
(2b)b(1 − b)(1−b)

]a112N
)

H211 = Ω
(

1√
N

·
[
(2b̃)b̃(1 − b̃)(1−b̃)

]a211N
)

.

In all these C -tensors, each component is isomorphic to the

rectangular matrix multiplication

〈q(a112+a211b̃)N , q(a112+a211b̃)N , q(2a112b+a211(1−b̃))N 〉. (9)

We can then use Propositions 1 and 2 to convert each C -

tensor into a direct sum of at least 3
4H112×min(H112, H211)

trilinear forms, each isomorphic to (9). We thus obtain the

following result.

Proposition 5. Let a112 and a211 be any two positive
constants. Let b and b̃ be any two constants such that
0.916027 < b, b̃ ≤ 1. Define

H = max
([

(2b)b(1 − b)1−b
]a112

,
[
(2b̃)b̃(1 − b̃)1−b̃

]a211
)

.

Then there exists a constant c′ ≥ 1 such that, for any ε > 0,
the trilinear form T⊗a112N

112 ⊗ T⊗a112N
121 ⊗ T⊗a211N

211 can be
converted into a direct sum of

Ω

(
1

N4c′Nε
·
[
22a112+a211

H
]N

)

forms, each form being isomorphic to (9).

B. Main theorem

Let us define the following three quantities.

Q = (2q)a103+a301 × (q2 + 2)a202 × qa112+a211b̃

R = (2q)2a013 × (q2 + 2)a022 × q2a112b+(1−b̃)a211

M =
22a112+a211

AA0
0 AA1

1 AA2
2 AA3

3 AA4
4

× 1
H

Our main theorem gives an upper bound on ω(1, 1, k) that

depends on these quantities.

Theorem 5. Let q be any positive integer and b, b̃ be such
that 0.916027 < b, b̃ ≤ 1. Let a004, a400, a013, a103, a301,

a022, a202, a112 and a211 be any nine positive rational
numbers satisfying Conditions (2), (3) and (8). Then

MQw(1,1, log R
log Q) ≤ (q + 2)2.

Proof: Let ε > 0 be an arbitrary positive value. Let

N be a large integer and consider the trilinear form (Fq ⊗
Fq)⊗N . Theorem 4 shows that this form can be used to

obtain a direct sum of

r1 = Ω

(
1

N10+8ε15Nε

[
1

AA0
0 AA1

1 AA2
2 AA3

3 AA4
4

]N
)

forms, each isomorphic to
⊗

i,j,k: i+j+k=4 T
⊗aijkN
ijk .

All the terms Tijk in this form, except T112, T121 and

T211, correspond to matrix multiplications and have been

analyzed in Section III. By Proposition 5 the part T⊗a112N
112 ⊗

T⊗a112N
121 ⊗ T⊗a211N

211 can be used to obtain a direct sum of

r2 = Ω

(
1

N4c′Nε
·
[
22a112+a211

H
]N

)

matrix multiplications

〈q(a112+a211b̃)N , q(a112+a211b̃)N , q(2a112b+(1−b̃)a211)N 〉.

This means that the trilinear form (Fq ⊗ Fq)⊗N can be

converted into a direct sum of r1r2 matrix multiplications

〈QN , QN , RN 〉. In other words:

r1r2 · 〈QN , QN , RN 〉 � (Fq ⊗ Fq)⊗N .

Since R (Fq ⊗ Fq) ≤ (q + 2)2, as mentioned in Sec-

tion III, we know that R
(
(Fq ⊗ Fq)⊗N

) ≤ (q + 2)2N . By

Schönhage’s asymptotic sum inequality (Theorem 3) we then

conclude that

r1r2 × QNω(1,1, log R
log Q) ≤ (q + 2)2N .

Taking the N -th root, we obtain:

1
(15c′)εN (14+8ε)/N

×MQω(1,1, log R
log Q) ≤ (q + 2)2.

By letting N grow to infinity, and then letting ε decrease to

zero, we conclude that MQω(1,1, log R
log Q) ≤ (q + 2)2.

VI. OPTIMIZATION

In this section we use Theorem 5 to derive numerical

upper bounds on the exponent of rectangular matrix multi-

plication, and prove Theorem 1.

521

q 5 6
b 0.984599222 0.94866036

b̃ 0.919886704 0.99996514
a400 0.004942000 0.00000090
a103 0.010965995 0.01553556
a301 0.055710210 0.00079349
a022 0.037622078 0.22704392
a202 0.138698196 0.05836108
a112 0.145715589 0.20388121
a211 0.245013049 0.13394891

log R/ log Q 0.530200005... 2.00000004...
(2 log(q + 2) − logM)/ log Q 2.060395... 3.256688...

Table II
TWO SOLUTIONS FOR OUR OPTIMIZATION PROBLEM. THE FIRST TEN

ROWS GIVE (EXACT) VALUES OF THE TEN PARAMETERS. THE

NUMERICAL VALUES OF THE LAST TWO ROWS SHOW THAT

ω(1, 1, 0.5302) < 2.060396, AND ω(1, 1, 2) < 3.256689.

A. Rectangular matrix multiplication

We first explain how to use Theorem 5 to derive an upper

bound on ω(1, 1, k) for an arbitrary value k, and show how

to obtain the results stated in Table I and Figure 1.

We use the following strategy. We take a positive in-

teger q, seven positive rational numbers a400, a103, a301,

a022, a202, a112 and a211, and two values b, b̃ such that

0.916027 < b, b̃ ≤ 1. We then fix

a013 =
a103a022a211

a202a112

and a004 = 1−(a400+a022+a211)−2(a013+a103+a301+a202+a112)
2 .

The conditions that have to be satisfied are 0 < a004, a013 ≤
1 and

AA0
0 AA1

1 AA2
2 AA3

3 AA4
4 ≥ BB0

0 BB1
1 BB2

2 BB3
3 BB4

4 .

If these conditions are satisfied, by Theorem 5 this gives the

upper bound

ω

(
1, 1,

log R

log Q

)
≤ 2 log(q + 2) − logM

log Q
.

The problem of finding an upper bound on ω(1, 1, k)
is thus reduced to solving a nonlinear optimization prob-

lem. The upper bounds presented in Table I are obtained

precisely by solving this optimization problem. For in-

stance, we show exact values of the parameters proving that

ω(1, 1, 0.5302) < 2.060396 and ω(1, 1, 2) < 3.256689 in

Table II.

B. The value α

We now describe how to use Theorem 5 to obtain a lower

bound on the value α. The analysis is more delicate than in

the previous subsection, since we need to exhibit parameters

such that MQ2 = (q + 2)2, with an equality rather than an

inequality, and is done by finding analytically the optimal

values of all but a few parameters.

Let q be an integer such that q ≥ 5. For convenience, we

will write κ = 1/(q+2)2. Let a112 and a211 be any rational

numbers such that 0 < a112 < qκ and 0 < a211 < (q2+2)κ.

We set the parameters b, b̃, a004, a103, a202 and a301 as

follows: b = 1, b̃ = q2/(q2+2), a400 = κ, a103 = qκ−a112,

a202 =
(
(q2 + 2)κ − a211

)
/2 and a301 = qκ.

Putting these values in the formula for Q, we obtain:

Q = (2q)qκ+a103×(
q2+ 2

) (q2+2)κ−a211
2 ×qa112+q2a211/(q2+2)

= (2q)2qκ×(q2 + 2)
(q2+2)κ

2 × 2−a112×
(

qq2/(q2+2)√
q2 + 2

)a211

.

Observe that A1 = A3 = 2qκ, A2 = (q2 +2)κ, A4 = κ and

A0 = 1 − (A1 + A2 + A3 + A4) = κ. Then we obtain the

following equality.

1
AA0

0 AA1
1 AA2

2 AA3
3 AA4

4

=
(q + 2)2

(2q)4qκ(q2 + 2)(q2+2)κ

The following proposition shows that, when a112 is small

enough, the condition MQ2 = (q + 2)2 is satisfied.

Proposition 6. Suppose that

a112 ≤
(

1 +
2q2

q2 + 2
log2(q) − log2(q

2 + 2)
)

a211. (10)

Then MQ2 = (q + 2)2.

Proof: Our choice for b and b̃ gives[
(2b)b(1 − b)1−b

]a112 = 2a112[
(2b̃)b̃(1 − b̃)1−b̃

]a211

=
[

2
q2 + 2

· q
2q2

q2+2

]a211

.

Inequality (10) then implies that
[
(2b)b(1 − b)1−b

]a112 ≤[
(2b̃)b̃(1 − b̃)1−b̃

]a211

. In consequence,

M =
(q + 2)2

(2q)4qκ(q2 + 2)(q2+2)κ
× 4a112 ×

[
q2 + 2

q2q2/(q2+2)

]a211

,

which gives MQ2 = (q + 2)2.

We now explain how to determine the three remaining pa-

rameters a004, a013 and a022. Remember that the parameters

should satisfy the equalities

a013 =
a103a211

a202a112
a022

and 2a004 + a400 + 2a013 + 2a103 + 2a301 + a022 + 2a202 +
2a112+a211 = 1. From our choice of parameters, the second

equality can be rewritten as 2a004 + 2a013 + a022 = κ.

Since the parameter a004 should be positive, we obtain the

condition(
4(qκ − a112)a211

((q2 + 2)κ − a211)a112
+ 1

)
a022 < κ. (11)

If a022, a112 and a211 satisfy this inequality, then the

parameter a004 is fixed:

a004 =
(

κ −
(

4(qκ − a112)a211

((q2 + 2)κ − a211)a112
+ 1

)
a022

)
/2.

522

All the values are thus determined by the choice of q,

a022, a112 and a211. We then want to solve the following

optimization problem.

Maximize log R
log Q subject to

• 0 ≤ a022 ≤ 1;

• 0 < a112 ≤ 5κ;

• 0 ≤ a211 ≤ (q2 + 2)κ;

• q is an integer such that q ≥ 5;

• Inequalities (10) and (11) hold;

• (2q)4qκ(q2+2)(q2+2)κ

(q+2)2 ≥ BB0
0 BB1

1 BB2
2 BB3

3 BB4
4 .

By taking q = 5, a022 = 0.0174853, a112 = 0.0945442
and a211 = 0.1773724, we obtain the value

α ≥ log R

log Q
> 0.30298.

ACKNOWLEDGMENT

The author is grateful to Virginia Vassilevska Williams

and Ryan Williams for helpful correspondence about An-

drew Stothers’ work, and to Virginia Vassilevska Williams

for suggesting that the next step is to use higher tensor pow-

ers of the basic construction to improve rectangular matrix

multiplication. He also acknowledges support from the JSPS

and the MEXT, under the grant-in-aids Nos. 22800006 and

24700005.

REFERENCES

[1] N. Alon, A. Shpilka, and C. Umans, “On sunflowers and
matrix multiplication,” in Proceedings of the 27th Conference
on Computational Complexity, 2012, pp. 214 – 223.

[2] N. Alon and R. Yuster, “Fast algorithms for maximum subset
matching and all-pairs shortest paths in graphs with a (not
so) small vertex cover,” in Proceedings of the 15th Annual
European Symposium on Algorithms, 2007, pp. 175–186.

[3] R. R. Amossen and R. Pagh, “Faster join-projects and sparse
matrix multiplications,” in Proceedings of the 12th Interna-
tional Conference on Database Theory, 2009, pp. 121–126.

[4] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic
complexity theory. Springer, 1997.

[5] H. Cohn, R. D. Kleinberg, B. Szegedy, and C. Umans,
“Group-theoretic algorithms for matrix multiplication,” in
Proceedings of the 46th Annual IEEE Symposium on Foun-
dations of Computer Science, 2005, pp. 379–388.

[6] H. Cohn and C. Umans, “A group-theoretic approach to fast
matrix multiplication,” in Proceedings of the 44th Symposium
on Foundations of Computer Science, 2003, pp. 438–449.

[7] D. Coppersmith, “Rapid multiplication of rectangular matri-
ces,” SIAM Journal on Computing, vol. 11, no. 3, pp. 467–
471, 1982.

[8] ——, “Rectangular matrix multiplication revisited,” Journal
of Complexity, vol. 13, no. 1, pp. 42–49, 1997.

[9] D. Coppersmith and S. Winograd, “Matrix multiplication via
arithmetic progressions,” Journal of Symbolic Computation,
vol. 9, no. 3, pp. 251–280, 1990.

[10] A. Czumaj, M. Kowaluk, and A. Lingas, “Faster algorithms
for finding lowest common ancestors in directed acyclic
graphs,” Theoretical Computer Science, vol. 380, no. 1-2, pp.
37–46, 2007.

[11] C. Demetrescu and G. F. Italiano, “Fully dynamic transitive
closure: Breaking through the o(n2) barrier,” in Proceedings
of the 41st Annual Symposium on Foundations of Computer
Science, 2000, pp. 381–389.

[12] X. Huang and V. Y. Pan, “Fast rectangular matrix multiplica-
tion and applications,” Journal of Complexity, vol. 14, no. 2,
pp. 257–299, 1998.

[13] H. Kaplan, N. Rubin, M. Sharir, and E. Verbin, “Counting
colors in boxes,” in Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2007, pp. 785–794.

[14] H. Kaplan, M. Sharir, and E. Verbin, “Colored intersection
searching via sparse rectangular matrix multiplication,” in
Proceedings of the 22nd ACM Symposium on Computational
Geometry, 2006, pp. 52–60.

[15] S. Ke, B. Zeng, W. Han, and V. Y. Pan, “Fast rectangular
matrix multiplication and some applications,” Science in
China Series A: Mathematics, vol. 51, no. 3, pp. 389–406,
2008.

[16] G. Lotti and F. Romani, “On the asymptotic complexity
of rectangular matrix multiplication,” Theoretical Computer
Science, vol. 23, pp. 171–185, 1983.

[17] M. Patrascu and R. Williams, “On the possibility of faster
SAT algorithms,” in Proceedings of the 21st Annual ACM-
SIAM Symposium on Discrete Algorithms, 2010, pp. 1065–
1075.

[18] L. Roditty and A. Shapira, “All-pairs shortest paths with a
sublinear additive error,” ACM Transactions on Algorithms,
vol. 7, no. 4, p. 45, 2011.

[19] P. Sankowski and M. Mucha, “Fast dynamic transitive closure
with lookahead,” Algorithmica, vol. 56, no. 2, pp. 180–197,
2010.

[20] A. Schönhage, “Partial and total matrix multiplication,” SIAM
Journal on Computing, vol. 10, no. 3, pp. 434–455, 1981.

[21] A. Stothers, “On the complexity of matrix multiplication,”
Ph.D. dissertation, University of Edinburgh, 2010.

[22] V. Strassen, “Relative bilinear complexity and matrix multi-
plication,” Journal für die reine und angewandte Mathematik,
vol. 375-376, pp. 406–443, 1987.

[23] V. Vassilevska Williams, “Multiplying matrices faster than
Coppersmith-Winograd,” in Proceedings of the 44th ACM
Symposium on Theory of Computing, 2012, pp. 887–898.

[24] R. Williams, “Non-uniform ACC circuit lower bounds,” in
Proceedings of the 26th Annual IEEE Conference on Com-
putational Complexity, 2011, pp. 115–125.

[25] R. Yuster, “Efficient algorithms on sets of permutations,
dominance, and real-weighted APSP,” in Proceedings of the
20th Annual ACM-SIAM Symposium on Discrete Algorithms,
2009, pp. 950–957.

[26] R. Yuster and U. Zwick, “Detecting short directed cycles
using rectangular matrix multiplication and dynamic pro-
gramming,” in Proceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2004, pp. 254–260.

[27] ——, “Fast sparse matrix multiplication,” ACM Transactions
on Algorithms, vol. 1, no. 1, pp. 2–13, 2005.

[28] U. Zwick, “All pairs lightest shortest paths,” in Proceedings
of the 31st Annual ACM Symposium on Theory of Computing,
1999, pp. 61–69.

[29] ——, “All pairs shortest paths using bridging sets and rect-
angular matrix multiplication,” Journal of the ACM, vol. 49,
no. 3, pp. 289–317, 2002.

523

