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Abstract—The notion of Kolmogorov-Martin-Löf Ran-
dom sequences is extended from computable to enumer-
able distributions. This allows definitions of various other
properties, such as mutual information in infinite se-
quences. Enumerable distributions (as well as distributions
faced in some finite multi-party settings) are semimeasures;
handling those requires care.

I. INTRODUCTION.

This is just an extended abstract conforming
to IEEE policies. I suggest reading [L 12] first.
[Solomonoff 64], [Kolmogorov 65] noted that many
characteristics of finite objects, such as their com-
plexity (the shortest description length) can be de-
fined invariantly: their dependence on the program-
ming language is limited to an additive constant.
This led to the development of very robust concepts
of randomness, information, etc. intrinsic to objects
themselves, not to the mechanism that supposedly
generated them.

These concepts are easy to define for for integers;
the case of emerging objects, such as prefixes x
of other (possibly infinite) sequences α is more
subtle. While x can be encoded as integers, the
code carries more information than x themselves.
The information in x is a part of information in α,
i.e., is nondecreasing in extensions. The code of x
has an extra information about the (arbitrary) cut-off
point, not intrinsic to the α, and thus distortive.

Per Martin-Löf extended the concept of random-
ness and its deficiency (rarity) to prefixes of infinite
sequences, assuming their probability distribution is
computable. Yet, many important distributions are
only lower-enumerable (r.e.). For instance, universal
probability M is the largest within a constant factor
r.e. distribution. While all sequences are random
with respect to it, it has derivative distributions with
more informative properties. In particular, Mutual
Information in two sequences is their dependence,

i.e., rarity with respect to the distribution generating
them independently with universal probability each.

The purpose of this article is to extend the concept
of sequence rarity to r.e. distributions. The definition
proposed respects the randomness conservation laws
and is the strongest (i.e., largest) possible among
such definitions. Among applications of this concept
is the definition of mutual information in infinite
sequences and their prefixes.

Enumerable distributions are of necessity
semimeasures: infimums of sets of measures. They
are essential for handling algorithms that have
no time limit and so can diverge. However the
benefits of semimeasures are not limited to this
use. They make a good description of widespread
situations where the specific probability distribution
is unknown (e.g., due to interaction with a party
that cannot be modeled).

II. CONVENTIONS AND BACKGROUND.

Let R, IQ, IN, B = {0, 1}, S = B∗, Ω = B IN

be, respectively, the sets of reals, rationals, integers,
bits, finite, and infinite binary sequences; x[n] is the
n-bit prefix and ‖x‖ is the bit-length of x∈S. A real
function f and its values are enumerable or r.e. (−f
is co-r.e.) if its subgraph {(x, q) : f(x) > q ∈ IQ}
is. X+ means X ∩ {x ≥ 0}. Elementary (f∈E)
are functions f : Ω → IQ depending on a finite
number of digits; 1∈E is their unity: 1(ω) = 1. E is
the set of all lower semicontinuous functions Ω →
R. When unambiguous, I identify objects in clear
correspondence: e.g., prefixes with their codes or
their sets of extensions, sets with their characteristic
functions, etc. Majorant is an r.e. function largest,
up to a constant factor, among r.e. functions in its
class.

A. Integers: Complexity, Randomness, Rarity.
Let us define Kolmogorov complexity K(x) as

�− log m(x)� where m : IN → R is the uni-
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versal measure, i.e., a majorant r.e. function with∑
x m(x) ≤ 1. It was introduced in [ZL 70], and

noted in [L 73], [L 74], [Gacs 74] to be a modifi-
cation (restriction to self-delimiting codes) of the
least length of binary programs for x defined in
[Kolmogorov 65]. While technically different, m re-
lies on intuition similar to that of [Solomonoff 64].
The proof of the existence of the largest func-
tion was a straightforward modification of proofs
in [Solomonoff 64], [Kolmogorov 65] which have
been a keystone of the informational complexity
theory.

For x∈IN, y∈IN or y∈Ω, similarly, m(·|·) is the
largest r.e. real function with

∑
x m(x|y) ≤ 1;

K(x|y)
df
=�− log m(x|y)� (and is the least length of

self-delimiting programs transforming y into x).

[Kolmogorov 65] considers rarity
d(x)

df
=‖x‖−K(x) of uniformly distributed x ∈ Bn.

Our modified K allows extending this to other
measures μ on IN. A μ-test is f : IN → R with mean
μ(f) ≤ 1 (and, thus, small values f(x) on randomly
chosen x). For computable μ, a majorant r.e. test
is m(x)/μ(x). This suggests defining d(x|μ) as
| log μ(x)| −K(x) = 
log(m(x)/μ(x))�±O(1).

B. Integers: Information.

In particular, x = (a, b) distributed with μ =
m ⊗ m, is a pair of two independent, but oth-
erwise completely generic, finite objects. Then,

I(a : b)
df
=d((a, b)|m ⊗ m) = K(a)+K(b)−K(a, b)

measures their dependence or mutual information.
It was shown (see [ZL 70]) by Kolmogorov and
Levin to be close (within ±O(log K(a, b))) to the
expression K(a)−K(a|b) of [Kolmogorov 65]. Un-
like this earlier expression (see [Gacs 74]), our I
is symmetric and monotone: I(a : b) ≤ I((a, a′) :
b)+O(1) (which will allow extending I to Ω); it
equals K(a)−K(a|(b, K(b)))±O(1) and satisfies the
following Independence Conservation Inequalities
[L 74], [L 84]: For any computable transformation
A and measure μ, and some family ta,b of μ-tests

I(A(a) : b) ≤ I(a : b) + O(1),

I((a, w) : b) ≤ I(a : b) + log ta,b(w) + O(1).

(The O(1) error terms reflect the constant com-
plexities of A, μ.) So, independence of a from b
is preserved in random processes, in deterministic

computations, their combinations, etc. These in-
equalities are not obvious (and false for the original
1965 expression I(a : b) = K(a)−K(a/b) ) even
with A, say, simply cutting off half of a. An unex-
pected aspect of I is that x contains all information
about k = K(x), I(x : k) = K(k)±O(1), despite
K(k|x) being ∼‖k‖ or ∼ log ‖x‖, in the worst case
[Gacs 74]. One can view this as an “Occam Razor”
effect: with no initial information about it, x is as
hard to obtain as its simplest (k-bit) description.

All the above works as well for the Iz variation
of I allowing all algorithms access to oracle z.

C. Reals: Measures and Rarity.

A measure on Ω is a function μ(x) =
μ(x0)+μ(x1), for x∈S. Its mean μ(f) is a func-
tional on E , linear: μ(cf+g) = cμ(f)+μ(g)
and normal: μ(1) ≤ 1, μ(E+)⊂R

+. It ex-
tends to other functions, as usual. μ-tests are
functions f ∈ E , μ(f) ≤ 1; computable μ
have universal (i.e., majorant r.e.) Martin-Löf tests
Tμ(α) =

∑
i m(α[i])/μ(α[i]). Random are α of

rarity d(α|μ)
df
=
log(1+Tμ(α))� <∞.

Continuous transformations A : Ω→Ω induce
normal linear operators A∗ : f �→g over E , where
g(ω) = f(A(ω)). So obtained, A∗ are deterministic:
A(min{f, g}) = min{A(f), A(g)}. Operators that
are not, correspond to probabilistic transformations
(their inclusion is the benefit of the dual repre-
sentation), and g(ω) is then the expected value
of f(A(ω)). Such A also induce A∗∗ transforming
input distributions μ to output distributions ϕ =
A∗∗(μ) : ϕ(f) = μ(A∗(f)).

To avoid congestion, I often omit the ∗, iden-
tifying A with A∗, A∗∗, and ω∈Ω in their inputs
with measures μ : f �→ f(ω). Same for partial
transformations below and their concave duals.

D. Partial Operators, Semimeasures, Complexity of
Prefixes.

Algorithms are not always total: focusing output
to a single sequence may go slowly and fail.

Definition 1: 1) Partial continuous transfor-
mations (PCT) are compact subsets A ⊂
Ω×Ω with A(α) = {β : (α, β)∈A} �= ∅. If
A(α) is singleton {ω}, I identify it with ω∈Ω.

2) Dual of PCT A is the operator A∗ mapping
f∈E to g∈E , where g(α) = minβ∈A(α) f(β).
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PCT turn input measures ϕ into semimeasures
that map f∈E on outputs of A to their mean:

Definition 2: 1) A semimeasure μ is a func-
tional that is normal: μ(−1) ≥ −1, μ(E+) ⊂
R

+, and concave: μ(cf+g) ≥ cμ(f)+μ(g),
c ∈ IQ+ (e.g., μ(x) ≥ μ(x0)+μ(x1),
for x∈S). μ extends beyond E as is usual
for internal measures. μ is deterministic if
μ(min{f, g}) = min{μ(f), μ(g)}, and binary
if μ(f3) = (μ(f))3, μ(1) = 1.

2) Concave normal operators A : E+→E+
trans-

form input points ω and input distributions
(measures or semimeasures) ϕ into their out-
put distributions μ = A(ϕ), where μ(f) =
ϕ(A(f)). Operators A are deterministic or
binary if semimeasures A(ω) are.

Proposition 1: Operators A∗ dual of PCT are
concave, normal, deterministic, and binary. Each
such A∗ is a dual of a PCT.

Proposition 2: There exists a universal i.e., ma-
jorant (on E+) r.e., semimeasure M.

[ZL 70] used a this M to define complexity
KM(x) of prefixes x of α∈Ω as �− log M(x)�.

III. RARITY

Coarse Graining. We use λ(x) = 2−‖x‖ as
a typical continuous computable measure, though
any of them could be used instead. Some consid-
erations require reducing semimeasures to smaller
linear functionals, i.e., measures. Thus, restricting
inputs ω of a PCT A to those with a singleton
output A(ω)∈Ω, results in a maximal measure μ1 ≤
μ = A(λ). However much information is lost this
way, e.g., some computable A have no recursive
in 1/μ(x) bound on 1/μ1(x), x∈S. To preserve
information about finite prefixes of ω∈Ω, we will
require linearity of μ1 only on a subspace of E .
Thus, restricting inputs just to those that result in
at least n-bit output produces a distribution μ1 that
is linear only on a subspace of all functions f(α)
in E that depend only on α[n]. Such subspaces Ê
must be lattices (i.e., closed under min{f, g}) for
the greatest μ1 to exist.

E-measures are semimeasures linear on the lat-
tice vector subspace Ê generated by E ⊂ E . From
[Choquet, Meyer 63] one can derive:

Lemma 1: Each semimeasure μ, for each E, has
the largest (on Ê+) E-measure μE ≤ μ.

For convenience we will consider only Ê includ-
ing constants and represent them as {f(A(ω))} for

some total continuous linear transformation A and
all f∈ E . An example of E is the space of all
functions in E dependent only on the n-bit prefix
of ω∈Ω (with A(ω) = ω[n]000 . . .).

Now, I will extend the concept of rarity T(·|μ),
d = 
log(1+T)� from computable measures μ to
r.e. semimeasures. The idea is for d(α|μ) to be
bounded by d(ω|λ) if α = A(ω), μ ≥ A(λ). Coarse

graining on a lattice Ê, rougher than the whole E ,
allows to define rarity not only for α∈Ω but also for
its prefixes. For semimeasures, rarity of extensions
do not determine rarity of a prefix.

T(·|μ) for a measure μ is a single r.e. function
Ω → R

+ with ≤ 1 mean. It is obtained by averaging
an r.e. family of such functions. This fails if μ is a
semimeasure: its mean of sum can exceed the sum
of means. So, T(·|μ) will be an expression ∨·F with
F⊂E .

Definition 3: ∨EF for an E⊂E and a closed
down F⊂E+ (i.e., 0 ≤ f ≤ g∈F ⇒ f∈F ), denotes
sup(F ∩ E). tAE for an operator A is ∨EF where
F = {f : A(f) ≤ T(·|λ)}. Regular semimeasures
are μ = A(λ) for a deterministic normal concave
r.e. A.

Not every r.e. μ is regular but each has a regular
r.e. μ1 ≤ μ such that μ(x) = μ1(x) for x∈S.

Proposition 3: Each r.e. μ, among all determin-
istic normal concave r.e. A such that A(λ) ≤ μ, has

a universal one A = Uμ i.e., such that t
Uμ

E = O(tAE)
for each such A. μ ≤ 2Uμ(λ) for regular μ.

Definition 4: TE(ϕ|μ) for semimeasures ϕ, μ, is

the mean: ϕE(t
Uμ

E ) for Uμ defined above. Indexes
E are dropped if E = E ; μ′ = Uμ(λ); d =

log(1+T)�.

From the results of [Gacs 86] one can derive:
Lemma 2: d(·|M) = O(1) for the universal reg-

ular semimeasure M.
Let f1 for f : Ω2 → R be β �→ f(α, β). Let

ν = μ⊗ϕ be a semimeasure on Ω2 such that ν(f) =
μ(ν(f1)), A(E) be {f : A(f)∈E⊂E}, E⊗E contain
functions h(α, β) = f(α)g(β), g∈E, f∈E .

Theorem 1: For each deterministic r.e. A, all ϕ,
lattice subspaces E⊂E , r.e. μ, the test T satisfies the
following Conservation Inequalities:

1) dA(E)(A(ϕ)|A(μ)) ≤ dE(ϕ|μ) + O(1).
2) d

E⊗E (ϕ⊗ λ|μ⊗ λ) ≤ dE(ϕ|μ) + O(1).
While μ(∨EF ) can exceed 1, T shares the fol-

lowing property with Martin-Löf tests:
Corollary 1: dE(φ′|φ′) = 0 for any E, r.e. φ

(thus dE(φ|φ) ≤ 1 if φ is regular).

512



These tests are the strongest (largest) extensions
of Martin-Löf tests for computable μ. We formalize
this for the case of ω∈Ω. Covering other ϕ is
straightforward but more cumbersome.

Proposition 4: d(ω|μ) is the largest up to +O(1)
semicontinuous on ω nonincreasing on μ extension
of Martin-Löf tests.

Now, like for the integer case, mutual information
I(α : β) can be defined as the deficiency of inde-
pendence, i.e., rarity for the distribution where α, β
are assumed each universally distributed (a vacuous
assumption, see e.g., Lemma 2) but independent of
each other:

I(α : β)
df
=d((α, β)|M⊗M).

Its conservation inequalities are just special cases
of Theorem 1.
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