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Abstract—We show that almost all known lower bound
methods for communication complexity are also lower
bounds for the information complexity. In particular, we
define a relaxed version of the partition bound of Jain and
Klauck [1] and prove that it lower bounds the information
complexity of any function. Our relaxed partition bound
subsumes all norm based methods (e.g. the γ2 method)
and rectangle-based methods (e.g. the rectangle/corruption
bound, the smooth rectangle bound, and the discrepancy
bound), except the partition bound.

Our result uses a new connection between rectangles
and zero-communication protocols where the players can
either output a value or abort. We prove the following
compression lemma: given a protocol for a function f
with information complexity I , one can construct a zero-
communication protocol that has non-abort probability
at least 2−O(I) and that computes f correctly with high
probability conditioned on not aborting. Then, we show
how such a zero-communication protocol relates to the
relaxed partition bound.

We use our main theorem to resolve three of the open
questions raised by Braverman [2]. First, we show that the
information complexity of the Vector in Subspace Problem
[3] is Ω(n1/3), which, in turn, implies that there exists an
exponential separation between quantum communication
complexity and classical information complexity. More-
over, we provide an Ω(n) lower bound on the information
complexity of the Gap Hamming Distance Problem.

Keywords-communication complexity, information com-
plexity, information theory

I. INTRODUCTION

Information complexity is a way of measuring the

amount of information Alice and Bob must reveal

to each other in order to solve a distributed prob-

lem. The importance of this notion has been made

apparent in recent years through a flurry of results

that relate the information complexity of a function

and its communication complexity. One of the main

applications of information complexity is to prove direct

sum theorems in communication complexity, namely to

show that computing k copies of a function costs k
times the communication of computing a single copy.

Chakrabarti, Shi, Wirth and Yao [4] used information

complexity to prove a direct sum theorem for simulta-

neous messages protocols (their notion is now usually

called the external information complexity, whereas in

this paper we work exclusively with what is often

called the internal information complexity). Bar-Yossef

et al. [5], used the information cost in order to prove

a linear lower bound on the two-way randomized com-

munication complexity of Disjointness. More recently,

information-theoretic techniques enabled the proof of

the first non-trivial direct sum result for general two-way

randomized communication complexity: the randomized

communication complexity of k copies of a function

f is at least
√
k times the randomized communication

complexity of f [6]. Then, Braverman and Rao [7],

showed a tight relation between the amortized distri-

butional communication complexity of a function and

its internal information cost. Braverman [2], defined

interactive information complexity, a notion which is

independent of the prior distribution of the inputs and

proved that it is equal to the amortized communication

complexity of the function. Braverman and Weinstein

[8] showed that the information complexity is lower

bounded by discrepancy.

The main question pertaining to information com-

plexity is its relation to communication complexity. On

the one hand, the information complexity provides a

lower bound on the communication complexity of the

function, since there cannot be more information leaked

than the length of the messages exchanged. However, it

is still open, whether the information complexity of a

function can be much smaller than its communication

complexity or whether the two notions are basically

equivalent. In order to make progress towards this

question, it is imperative to provide strong lower bounds
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for information complexity, and more specifically to see

whether the lower bound methods for communication

complexity can be compared to the model of informa-

tion complexity.

Lower bound methods in communication complexity

can be seen to fall into three main categories: the norm

based methods, such as the γ2 method of Linial and

Shraibman [9] (see Lee and Shraibman’s survey for an

overview [10]); the rectangle based methods, such as

discrepancy and the rectangle bound; and, of course,

the information theoretic methods, among which, in-

formation complexity. Recently, Jain and Klauck [1]

introduced the smooth rectangle bound, as well as the

stronger partition bound, and showed that they subsume

both γ2 and the rectangle bound [1].

The first lower bound on information complexity was

proved by Braverman [2], who showed that it is lower

bounded by the logarithm of the communication com-

plexity. Recently, Braverman and Weinstein showed that

the discrepancy method lower bounds the information

complexity [8]. Their result follows from a compression

lemma for protocols: a protocol for a function f that

leaks I bits of information implies the existence of

a protocol with communication complexity O(I) and

advantage on computing f (over a random guess) of

2−O(I).

A. Our results

In this paper, we show that all known lower bound

methods for communication complexity, with the no-

table exception of the partition bound, generalize to in-

formation complexity. More precisely, we introduce the

relaxed partition bound (in Definition III.2) denoted by

p̄rtμε (f), which depends on the function to be computed

f , the input distribution μ, and the error parameter ε, and

such that the distributional communication complexity

Dμ
ε (f) ≥ log(p̄rtμε (f)) for any f . We prove that the

information complexity of a function f is bounded

below by the relaxed partition bound:

Theorem I.1. There is a positive constant C such that
for all functions f : I → Z , all ε, δ ∈ (0, 1

2 ], and all
distributions μ, it holds that:

ICμ(f, ε) ≥ δ2

C ·
(
log p̄rtμε+3δ(f)− log |Z|)− δ

Since we show in Lemma III.3 that the relaxed

partition bound subsumes the norm based methods (e.g.

the γ2 method) and the rectangle-based methods (e.g.

the rectangle/corruption bound, the smooth rectangle

bound, and the discrepancy bound), all of these bounds

are also lower bounds on the information complexity.

Moreover, together with the direct sum theorem for

information complexity, our main result implies a direct

sum theorem on communication complexity for many

notable functions (see Corollary I.4).

Technique: The key idea of our result is a new con-

nection between communication rectangles and zero-

communication protocols, where the players can either

output a value or abort but without communicating.

A priori, it is surprising that protocols with no com-

munication can actually provide some insight on the

communication or information complexity of a function.

However, this model, which has been extensively used

in quantum information for the study of non-local games

and Bell inequalities, turns out to be a very powerful

tool for the study of classical communication and in-

formation complexity. The communication complexity

of simulating distributions is known to be related to

the probability of not aborting in zero-communication

protocols that can abort [11, 12, 13, 14]. More recently

connections have been shown for specific lower bound

methods. It has been shown that zero-communication

protocols with error give rise to the factorization norm

method [15], and the connection between the partition

bound and zero-communication protocols with abort

was studied in [16].

In a deterministic zero-communication protocol with

abort, each of the two players looks at their input and

decides either to abort the protocol or to output some

value z. The output of the protocol is z if both players

agree on z, or it aborts otherwise. It is easy to see

that for any deterministic zero-communication protocol

with abort, the set of inputs where both players choose

to output z forms a rectangle, and so the protocol is

characterized by a set of rectangles each labeled by an

output. In a randomized protocol, we have instead a

distribution over labeled rectangles.

This connection between rectangles and zero-

communication protocols with abort allows us to obtain

our lower bound for information complexity from a

new compression lemma for protocols (Lemma III.4): a

protocol for a function f that leaks I bits of information

implies the existence of a zero-communication protocol

that has non-abort probability at least 2−O(I) and that

computes f correctly with high probability when not

aborting. Our main theorem follows from this new

compression.

The technical tools we use are drawn from Braverman

[2] and in particular Braverman and Weinstein [8]. We

describe the difference between our compression and

that of [8]. There, they take a protocol for computing a

function f that has information cost I and compress it

to a protocol with communication O(I) and advantage
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of computing f of 2−O(I) (i.e. the error increases

considerably). Then, they apply the discrepancy method,

which can handle such small advantage.

In our compression, we suppress the communication

entirely, and, moreover, we only introduce an arbitrarily

small error since the compressed protocol aborts when

it does not believe it can correctly compute the output.

This compression enables us to provide much sharper

lower bounds on the information complexity and in

particular, the lower bound in terms of the relaxed

partition bound.

Applications: Our lower bound implies that for

most functions for which there exists a lower bound

on their communication complexity, the same bound

extends to their information complexity. Specifically, we

can apply our lower bound in order to resolve three of

the open questions in [2].

First, we show that there exists a function f , such

that the quantum communication complexity of f is

exponentially smaller than the information complexity

of f (Open Problem 3 in [2]).

Theorem I.2. There exists a function f , s.t. for all ε ∈
(0, 1

2 ), Q(f, ε) = O(log(IC(f, ε))).

In order to prove the above separation, we show

that the proof of the lower bound on the randomized

communication complexity of the Vector in Subspace

Problem (ṼSP) [3] provides, in fact, a lower bound on

the relaxed partition bound. By our lower bound, this

implies that IC(ṼSPθ,n, 1/3) = n1/3 (Open Problem 7

in [2]). Since the quantum communication complexity

of ṼSPθ,n is O(log n), we have the above theorem.

Moreover, this implies an exponential separation be-

tween classical and quantum information complexity.

We refrain from defining quantum information cost

in this paper (see [17] for a definition), but since

the quantum information cost is always smaller than

the quantum communication complexity, the separation

follows trivially from the above theorem.

In addition, we resolve the question of the informa-

tion complexity of the Gap Hamming Distance Problem

(GHD) (Open Problem 6 in [2]), since the lower bounds

on the randomized communication complexity of this

problem go through the rectangle/corruption bound [18]

or smooth rectangle bound [19, 20].

Theorem I.3. IC(GHDn, 1/3) = Ω(n).

Regarding direct sum theorems, it was shown [2]

that the information complexity satisfies a direct sum

theorem, namely ICμk(fk, ε) ≥ k · ICμ(f, ε). If in

addition it holds that Dμ
ε′(f) = O(ICμ(f, ε)), then we

can immediately deduce that Dμk

ε (f) ≥ ICμk(fk, ε) ≥
k · ICμ(f, ε) ≥ Ω(k ·Dμ

ε′(f)), i.e. the direct sum theorem

holds for f . Therefore our main result also gives the

following corollary:

Corollary I.4. For any ε, μ and any f : I →
Z , if Dμ

ε (f) = O(log p̄rtμε (f)), then for all
δ > 0 and integers k, it holds that Dμk

ε (f) ≥
Ω
(
k · δ2(Dμ

ε+3δ(f)− log |Z|)− kδ)
)
.

For example, since Dμ
ε (GHD) ≤ n holds trivially,

this corollary along with the fact that log p̄rtμε (GHD) =
Ω(n) ([18, 19, 20], see Section V-B) immediately im-

plies a direct sum theorem for GHD.

Finally, regarding the central open question of

whether or not it is possible to compress communication

down to the information complexity for any function,

we note that our result says that if one hopes to prove

a negative result and separate information complexity

from communication complexity, then one must use a

lower bound technique that is stronger than the relaxed

partition bound. To the best of our knowledge, the

only such technique in the literature is the (standard)

partition bound. We note, however, that to the best of

our knowledge there are no known problems whose

communication complexity can be lower-bounded by

the partition bound but not by the relaxed partition

bound.

Many proofs are omitted from this extended abstract,

and can be found in the full version of the paper.

B. Related work

Definitions of information complexity with some

variations extend back to the work on privacy in in-

teractive protocols [21], and related definitions in the

privacy literature appear [22, 23, 24]. Information com-

plexity as a tool in communication complexity was first

used to prove direct sum theorems in the simultaneous

message model [4], and subsequently to prove direct

sum theorems and to study amortized communication

complexity as stated in the first paragraph of this

paper [5, 6, 7, 2, 8]. There are many other works

using information complexity to prove lower bounds

for specific functions or to prove direct sum theorems

in restricted models of communication complexity, for

example [25, 26, 27, 28].

In independent and concurrent work, Chakrabarti et

al. proved that information complexity is lower bounded

by the smooth rectangle bound under product distribu-

tions [29]. While our result implies the result of [29]

as a special case, we note that their proof uses entirely

different techniques and may be of independent interest.
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II. PRELIMINARIES

A. Notation and information theory facts

Let μ be a probability distribution over a (finite)

universe U . We will often treat μ as a function μ : 2U →
[0, 1]. For T, S ⊆ U , we let μ(T | S) = Pru←μ[u ∈
T | S]. For singletons u ∈ U , we write interchangeably

μu = μ(u) = μ({u}). Random variables are written in

uppercase and fixed values in lowercase. We sometimes

abuse notation and write a random variable in place of

the distribution of that random variable.

For two distributions μ, ν, we let |μ−ν| denote their

statistical distance, i.e. |μ − ν| = maxT⊆U (μ(T ) −
ν(T )). We let D(μ ‖ ν) = EU∼μ[log

μ(U)
ν(U) ] be the

relative entropy (i.e. KL-divergence). For two random

variables X,Y , the mutual information is defined as

I(X : Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X),
where H(·) is the Shannon entropy.

A rectangle of X ×Y is a product set A×B where

A ⊆ X and B ⊆ Y . We let R denote a rectangle in

X ×Y . We let (x, y) ∈ X ×Y denote a fixed input, and

(X,Y ) be random inputs sampled according to some

distribution (specified from context and usually denoted

by μ).

B. Information complexity

We study 2-player communication protocols for cal-

culating a function f : I → Z , where I ⊆ X × Y . Let

π be a randomized protocol (allowing both public and

private coins, unless otherwise specified). We denote the

randomness used by the protocol π by rπ . Let π(x, y)
denote its output, i.e. the value in Z the two parties

wish to compute.

The transcript of a protocol includes all messages

exchanged, the output of the protocol (in fact we just

need that both players can compute the output of the

protocol from the transcript), as well as any public

coins (but no private coins). The complexity of π is

the maximum (over all random coins) of the number of

bits exchanged.

Let μ be a distribution over X × Y . De-

fine errf (π;x, y) = Prrπ [f(x, y) 	= π(x, y)] if

(x, y) ∈ I and 0 otherwise and errf (π;μ) =
E(X,Y )∼μerrf (π;X,Y ) = Prrπ,(X,Y )∼μ[(X,Y ) ∈ I ∧
f(X,Y ) 	= π(X,Y )].

Definition II.1. Fix f, μ, ε. Let (X,Y,Π) be the tuple

distributed according to (X,Y ) sampled from μ and

then Π being the transcript of the protocol π applied to

X,Y . Then define:

1) ICμ(π) = I(X; Π | Y ) + I(Y ; Π | X)
2) ICμ(f, ε) = infπ:errf (π;μ)≤ε ICμ(π)

3) ICD(f, ε) = maxμ ICμ(f, ε)

Braverman [2] also defined the non-distributional

information cost IC, and all of our results extend to it

trivially by the inequality ICD ≤ IC. (We do not require

the reverse inequality IC ≤ O(ICD), whose proof is

non-trivial and was given in [2]).

III. ZERO-COMMUNICATION PROTOCOLS AND THE

RELAXED PARTITION BOUND

A. The zero-communication model and rectangles

Let us consider a (possibly partial) function f . We say

that (x, y) is a valid input if (x, y) ∈ I, that is, (x, y)
satisfies the promise. In the zero-communication model

with abort, the players either output a value z ∈ Z (they

accept the run) or output ⊥ (they abort).

Definition III.1. The zero-communication model with

abort is defined as follows:

• Inputs. Alice and Bob receive inputs x and y
respectively.

• Output. Alice outputs a ∈ Z ∪ {⊥} and Bob

outputs b ∈ Z∪{⊥}. If both Alice and Bob output

the same z ∈ Z , then the output is z. Otherwise,

the output is ⊥.

We will study (public-coin) randomized zero-
communication protocols for computing functions in

this model.

B. Relaxed partition bound

The relaxed partition bound with error ε and input

distribution μ, denoted by p̄rtμε (f), is defined as follows.

Definition III.2. The distributional relaxed partition

bound p̄rtμε (f) is the value of the following linear

program. (The value of z ranges over Z and R over

all rectangles, including the empty rectangle.)

p̄rtμε (f) = min
η,pR,z≥0

1

η
subject to:∑

(x,y)∈I
μx,y

∑
R:(x,y)∈R

pR,f(x,y)

+
∑

(x,y)/∈I
μx,y

∑
z,R:(x,y)∈R

pR,z ≥ (1− ε)η (1)

∀(x, y) ∈ X × Y,
∑

z,R:(x,y)∈R
pR,z ≤ η (2)

∑
R,z

pR,z = 1. (3)

The relaxed partition bound is defined as p̄rtε(f) =
maxμ p̄rt

μ
ε (f).
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We can identify feasible solutions to the program in

Definition III.2 as a particular type of randomized zero-

communication protocol: Alice and Bob sample (R, z)
according to the distribution given by the pR,z , and each

individually sees if their inputs are in R and if so they

output z, otherwise they abort. The parameter η is the

efficiency of the protocol [16], that is, the probability

that the protocol does not abort, and ideally we want it

to be as large as possible.
There is also a natural way to convert any zero-

communication protocol π into a distribution over

(R, z): sample z uniformly from Z , sample random

coins rπ for π, and let R = A × B be such that A
is the set of inputs on which Alice outputs z in the

protocol π using random coins rπ , and similarly for B.

(The sampling of a random z incurs a loss of |Z| in

the efficiency, which is why our bounds have a loss

depending on |Z|. See Section III-D for details.)
Relation to other bounds: The relaxed partition

bound is, as its name implies, a relaxation of the

partition bound prtε(f) [1]. It can also be shown that

the relaxed partition bound is stronger than the smooth

rectangle bound sreczε (f).

Lemma III.3. For all f, ε and z ∈ Z , we have
sreczε (f) ≤ p̄rtε(f) ≤ prtε(f).

Since Jain and Klauck have shown in [1] that the

smooth rectangle bound is stronger than the rectan-

gle/corruption bound, the γ2 method and the discrep-

ancy method, this implies that the relaxed partition

bound subsumes all these bounds as well. Therefore,

our result implies that all these bounds are also lower

bounds for information complexity.
We briefly explain the difference between the relaxed

partition bound and the partition bound. The partition

bound includes two types of constraints. The first is

a correctness constraint: on every input, the output of

the protocol should be correct with probability at least

(1 − ε)η. The second is a completeness constraint:

on every input, the efficiency of the protocol (i.e. the

probability it does not abort) should be exactly η. In the

relaxed partition bound, we keep the same correctness

constraint. Since in certain applications the function is

partial (such as the Vector in Subspace Problem [3]),

one also has to handle the inputs where the function is

not defined. We make this explicit in our correctness

constraint. On the other hand, we relax the complete-

ness constraint so that the efficiency may lie anywhere

between (1 − ε)η and η. This relaxation seems to be

crucial for our proof of the lower bound on information

complexity, since we are unable to achieve efficiency

exactly η.

C. Compression lemma

Lemma III.4 (Main compression lemma). There exists
a universal constant C such that for all distributions μ,
communication protocols π and δ ∈ (0, 1), there exists
a zero-communication protocol π′ and a real number
λ ≥ 2−C(ICμ(π)/δ

2+1/δ) such that

|(X,Y, π(X,Y ))−
(X,Y, π′(X,Y )|π′(X,Y ) 	= ⊥)| ≤ δ (4)

(in statistical distance) and

∀(x, y) Pr
rπ′

[π′(x, y) 	= ⊥] ≤ (1 + δ)λ (5)

Pr
rπ′ ,(X,Y )∼μ

[π′(X,Y ) 	= ⊥] ≥ (1− δ)λ. (6)

Our compression π′ extends the strategy outlined by

[8]. At a high level, the protocol π′ does the following:

• Sample transcripts. Alice and Bob use their

shared randomness to repeat T independent ex-

ecutions of an experiment to sample transcripts

(Protocol IV.1). Alice and Bob each decide whether

the experiment is accepted (they may differ in their

opinions).

• Find common transcript. Let A be the set of

accepted experiments for Alice, and B the set of

accepted experiments for Bob. They try to guess

an element of A∩B. If they find one, they output

according to the transcript from this experiment.

We prove our compression lemma in Section IV.

D. Information cost is lower bounded by the relaxed
partition bound

We show how our compression lemma implies the

main theorem.

Proof of Theorem I.1: Let π be a randomized

communication protocol achieving ICμ(f, ε) and let R
be the following relation that naturally arises from the

function f

R = {(x, y, f(x, y)) : (x, y) ∈ I}
∪ {(x, y, z) : (x, y) /∈ I, z ∈ Z}.

Let us now consider the zero-communication protocol

π′ from Lemma III.4. As mentioned in Section III-B,

there is a natural way to identify π′ with a distribution

over labeled rectangles (R, z): sample z uniformly from

Z , sample rπ and let R = A×B where A is the set of

inputs on which Alice outputs z, and similarly for B.

The sampling of z incurs a loss of |Z| in the efficiency.

We make this formal: for any fixed randomness r
occurring with probability pr, we define the rectangle
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R(z, r) as the set of (x, y) such that the protocol outputs

z, and we let pR,z =
∑

r:R=R(z,r) pr/|Z|.
We check the normalization constraint∑
R,z

pR,z =
1

|Z|
∑
R,z

∑
r:R=R(z,r)

pr

=
1

|Z|
∑
r

pr
∑

R,z:R=R(z,r)

1 =
∑
r

pr = 1.

To see that Equation 2 is satisfied, we have by

definition of pR,z that for any (x, y):∑
z,R:(x,y)∈R

pR,z =
1

|Z| Prrπ′
[π′(x, y) 	= ⊥] ≤ (1 + δ)λ

|Z| .

Finally, to see that Equation 1 is satisfied, we have∑
(x,y)∈I

μx,y

∑
R:(x,y)∈R

pR,f(x,y)

+
∑

(x,y)/∈I
μx,y

∑
z,R:(x,y)∈R

pR,z

=
1

|Z| Pr
rπ′ ,(X,Y )∼μ

[(X,Y, π′(X,Y )) ∈ R]

=
1

|Z| Pr
rπ′ ,(X,Y )∼μ

[π′(X,Y ) 	= ⊥]
· Pr
rπ′ ,(X,Y )∼μ

[(X,Y, π′(X,Y )) ∈ R | π′(X,Y ) 	= ⊥]

≥ 1

|Z| (1− δ)λ

·
(

Pr
rπ′ ,(X,Y )∼μ

[(X,Y, π(X,Y )) ∈ R]− δ

)

≥ 1

|Z| (1− δ)λ (1− ε− δ)

≥ 1
|Z| λ (1− ε− 2δ) ≥ λ(1+δ)

|Z| (1− ε− 3δ)

where for the last line we used the fact that π has error

ε, and so Prrπ,(X,Y )∼μ[(X,Y, π(X,Y )) ∈ R] ≥ 1− ε.
This satisfies the constraints in the linear program (Def-

inition III.2) for p̄rtμε+3δ(f) with objective value η =

(1 + δ)λ/|Z| ≥ 2−C(ICμ(π)/δ
2+1/δ)/|Z|.

By the definitions of the information complexity and

the relaxed partition bound, we have immediately

Corollary III.5. There exists a universal constant C
such that for all functions f : I → Z , all ε, δ ∈
(0, 1/2), we have ICD(f, ε) ≥ δ2

C [log p̄rtε+3δ(f) −
log |Z|]− δ.

IV. THE ZERO-COMMUNICATION PROTOCOL

The zero-communication protocol consists of two

stages. First, Alice and Bob use their shared randomness

to come up with candidate transcripts, based on the a

priori information they have on the distribution of the

transcripts given by the information cost of the protocol.

To do this, they run some sampling experiments and

decide which ones to accept. Second, they use their

shared randomness in order to choose an experiment

that they have both accepted. If anything fails in the

course of the protocol, they abort by outputting ⊥.

A. Single sampling experiment

The single sampling experiment is described in Proto-

col IV.1 and appeared first in [8] (variants also appeared

in [2] and [7]). Roughly, Protocol IV.1 takes a distri-

bution τ and two distributions νA, νB over a universe

U such that νA, νB are not too far from τ and tries to

sample an element of U that is close to being distributed

according to τ .

Let us informally describe the goal of this sampling

experiment in our context. Alice knowing x and Bob

y want to sample transcripts according to Πx,y which

is the distribution over the transcripts of the protocol

π applied to (x, y). When inputs x, y are fixed, the

probability of a transcript u occurring is the product

of the probabilities of each bit in the transcript. The

product of the probabilities for Alice’s bits is some

function pA(u) which depends on x and the product of

the probabilities for Bob’s bits is some function pB(u)
which depends on y and Πx,y(u) = pA(u)pB(u). Alice

can also estimate pB(u) by taking the average over y
of Πy(u). Call this estimate qA(u); similarly for Bob’s

estimate qB(u). Set νA = pAqA and νB = qBpB.

The challenge is that Alice and Bob know only

(pA, qA) and (pB, qB) respectively and do not know τ (in

our setting, τ = Πx,y). They use a variant of rejection

sampling, in which Alice will overestimate qA by a

factor 2Δ; likewise for Bob. Let us define the set of

Δ-bad elements with respect to τ, ν as follows:

BΔ(τ, ν) = {u ∈ U | 2Δν(u) < τ(u)}.
Intuitively, u is bad if τ gives much more weight to

it than ν. Observe that if τ = pApB, νA = pAqA, then

u /∈ BΔ(τ, νA) implies that 2ΔqA(u) ≥ pB(u).
To prove our compression lemma, we use the follow-

ing claim about the single sampling experiment.

Claim IV.2. Let B = BΔ(τ, νA) ∪BΔ(τ, νB). Let γ =
τ(B). Then the following holds about Protocol IV.1:

1) The probability that Alice accepts equals 1
|U|2Δ

and the same for Bob.
2) The probability that the experiment is accepted is

at most 1
|U|22Δ and at least 1−γ

|U|22Δ .
3) Let τ ′ denote the distribution of the output of

the experiment, conditioned on it being accepted.
Then |τ − τ ′| ≤ γ.
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Fix a finite universe U . Let pA, qA, pB, qB : U → [0, 1]
such that τ = pApB, νA = pAqA, νB = pBqB are all
probability distributions.
Alice’s input: pA, qA. Bob’s input: pB, qB. Common input:
parameter Δ > 0.

1) Using public coins, sample u← U , and
α, β ← [0, 2Δ].

2) Alice accepts the run if α ≤ pA(u) and
β ≤ 2ΔqA(u).

3) Bob accepts the run if α ≤ 2ΔqB(u) and
β ≤ pB(u).

4) If both Alice and Bob accept, then we say that
the experiment is accepted and the output is u.
Otherwise, the output is ⊥.

Protocol IV.1. Single sampling experiment

Intuitively, this claim says that Alice accepts each sin-

gle experiment with probability 1
|U|2Δ , and also implies

that conditioned on Alice accepting the i’th experiment,

it is relatively likely that Bob accepts it. Therefore,

by repeating this experiment enough times, there is

reasonable probability of Alice and Bob both accepting

the same execution of the experiment. Conditioned on

the experiment accepting, the output of the experiment

is distributed close to the original distribution τ . In the

next section, we show how to use a hash function to

select a common accepting execution of the experiment

out of many executions.

B. Description and analysis of the zero-communication
protocol

Let μ be any distribution on inputs and π be any

protocol with information complexity I = ICμ(π). Let

(X,Y,Π) be the joint random variables where X,Y
are distributed according to μ and Π is the distribution

of the transcript of the protocol π applied to X,Y
(by slight abuse of notation we use the letter Π for

both the transcript and its distribution). Let Πx,y be Π
conditioned on X = x, Y = y, Πx be Π conditioned

X = x, and Πy likewise.

Let U be the space of all possible transcripts. We

assume that each transcript contains the output of the

protocol. As shown in [2] and described above, Alice

can construct functions pA, qA : U → [0, 1] and Bob can

construct functions pB, qB : U → [0, 1], such that for all

u ∈ U , Πx,y(u) = pA(u)pB(u), Πx(u) = pA(u)qA(u),
and Πy(u) = pB(u)qB(u).

The zero-communication protocol π′ is described in

Protocol IV.3. This protocol is an extension of the one in

[8], where here Alice uses public coins to guess the hash

Alice’s input: x. Bob’s input: y. Common inputs: δ >
0, I > 0.
Set parameters: Δ = 4

δ
·( 8·I

δ
+1) and T = |U|2Δ ln(8/δ)

and k = Δ+ log( 64
δ
ln(8/δ)2).

1) Alice constructs functions pA, qA : U → [0, 1]
and Bob constructs functions pB, qB : U → [0, 1],
such that for all transcripts u ∈ U , Πx,y(u) =
pA(u)pB(u), Πx(u) = pA(u)qA(u), and Πy(u) =
pB(u)qB(u).

2) (Run experiments.) Using public coins, Alice and
Bob run Protocol IV.1 T independent times with
inputs pA, qA, pB, qB and Δ.

3) Let A = {i ∈ [T ] : Alice accepts experiment i}
and similarly B for Bob. If either set is empty, that
party outputs the abort symbol ⊥.

4) (Find intersection.) Using public coins, Alice and
Bob choose a random function h : [T ]→ {0, 1}k
and a random string r ∈ {0, 1}k.

a) Alice finds the smallest i ∈ A. If h(i) �=
r then Alice outputs ⊥. Otherwise, Alice
outputs in accordance with the transcript of
experiment i.

b) Bob finds the smallest j ∈ B such that
h(j) = r. If no such j exists, he outputs ⊥.
Otherwise, Bob outputs in accordance with
the transcript of experiment j.

Protocol IV.3. Zero-communication protocol π′

derived from π

function value instead of calculating and transmitting it

to Bob and both players are allowed to abort when they

do not believe they can output the correct value.

In order to analyze our protocol, we first define some

events and give bounds on their probabilities.

Definition IV.4. We define the following events over

the probability space of sampling (X,Y ) according to μ
and running π′ on (X,Y ) to produce a transcript Π:

1) Large divergence. BD occurs if (X,Y ) = (x, y)

such that D(Πx,y ‖ Πx) >
8ICμ(π)

δ or D(Πx,y ‖
Πy) >

8ICμ(π)
δ . We will also let BD denote the

set of such (x, y).
2) Collision. BC occurs if there exist distinct i, j ∈
A ∪ B such that h(i) = h(j) = r.

3) Protocol outputs something. H occurs if

π′(X,Y ) 	= ⊥.

The proof of the main compression lemma

(Lemma III.4) uses the following claim.

Claim IV.5. The probability of the above events are
bounded as follows:

1) The inputs rarely have large divergence:
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Pr(X,Y )∼μ[BD] ≤ δ/4.
2) For all (x, y), the hash function rarely has a

collision: Prrπ′ [BC ] ≤ δ
16 · 2−(k+Δ).

3) For all (x, y) /∈ BD, the probability of outputting
something is not too small: Prrπ′ [H] ≥ (1 −
11δ
16 )2−(k+Δ).

4) For all (x, y) the probability of outputting some-
thing is not too large: Prrπ′ [H] ≤ (1 +
δ
16 )2

−(k+Δ).
5) For all protocols π, input distributions μ and δ >

0, the protocol π′ in Protocol IV.3 satisfies: For
all (x, y) /∈ BD, let Π′x,y,H be the distribution of
π′(x, y) conditioned on H (namely, on π′(x, y) 	=
⊥). Then |Πx,y −Π′x,y,H | ≤ 3δ/4.

C. Proof of the Compression Lemma

Proof of Lemma III.4: Set λ = 2−(k+Δ). It holds

that λ ≥ 2−C(ICμ(π)/δ
2+1/δ) for C = 64. Let R be any

subset of the support of (X,Y, π(X,Y )). Then

Pr
rπ,(X,Y )∼μ

[(X,Y, π(X,Y )) ∈ R]

≤ Pr
(X,Y )∼μ

[BD] + Pr
(X,Y )∼μ

[¬BD]

· Pr
rπ,(X,Y )∼μ

[(X,Y, π(X,Y )) ∈ R | ¬BD].

Applying Item 5 of Claim IV.5 and the fact that R
is simply an event, it follows that for all (x, y) /∈ BD

Pr
rπ
[(x, y, π(x, y)) ∈ R]

≤ Pr
rπ′

[(x, y, π′(x, y)) ∈ R | π′(x, y) 	= ⊥] + 3δ
4 .

Since Pr[BD] ≤ δ/4 (Item 1 of Claim IV.5),

Pr
rπ,(X,Y )∼μ

[(X,Y, π(X,Y )) ∈ R]

≤ Pr
rπ′ ,(X,Y )∼μ

[(X,Y, π′(X,Y )) ∈ R | π′(x, y) 	= ⊥]
+ δ.

This proves one direction of Equation 4. For the other

direction, we have that

Pr[(X,Y, π′(X,Y )) ∈ R | π′(X,Y ) 	= ⊥] (7)

≤ Pr[BD] + Pr[¬BD]

· Pr[(X,Y, π′(X,Y ))) ∈ R | ¬BD, π′(X,Y ) 	= ⊥]
≤ δ

4 + Pr[¬BD]

· (Pr[(X,Y, π(X,Y )) ∈ R | ¬BD] + 3δ
4

)
(8)

≤ Pr[(X,Y, π(X,Y )) ∈ R ∧ ¬BD] + δ

≤ Pr[(X,Y, π(X,Y )) ∈ R] + δ

where in Equation 8 we applied Item 5 of Claim IV.5.

This proves Equation 4 of Lemma III.4.

Equation 5 follows immediately from Item 4 of

Claim IV.5.

Finally, for Equation 6, we may write:

Pr
rπ′ ,(X,Y )∼μ

[π′(X,Y ) 	= ⊥]
≥ Pr

(X,Y )∼μ
[¬BD] Pr

rπ′ ,(X,Y )∼μ
[π′(X,Y ) 	= ⊥|¬BD]

≥ (1− δ
4 )( Pr

rπ′ ,(X,Y )∼μ
[H | ¬BD])

≥ (1− δ
4 )(1− 11δ

16 )λ

> (1− δ)λ

where we used Item 3 of Claim IV.5.

V. APPLICATIONS

We can prove lower bounds on the information

complexity of specific problems, by checking that their

communication lower bounds were obtained by one of

the methods subsumed by the relaxed partition bound,

including the factorization norm, smooth rectangle, rect-

angle, or discrepancy. However, a bit of care is required

to ascertain this. For example, while a paper may say

it uses the “rectangle bound”, we must still verify that

the value of the linear program for p̄rt (or one of the

subsumed programs such as srec or rec) is at least

the claimed bound, since different authors may use the

term “rectangle bound” to mean different things. In

particular what they call “rectangle bound” may not

satisfy the constraints of the rectangle/smooth rectangle

linear programs given by Jain and Klauck [1]. After we

have verified that p̄rt is appropriately bounded, then we

can apply our main theorem (Theorem I.1). We do this

for the problems below.

A. Exponential separation of quantum communication
and classical information complexity

We prove that the quantum communication complex-

ity of the Vector in Subspace Problem is exponentially

smaller than its classical information complexity (The-

orem I.2). In the Vector in Subspace Problem VSP0,n,

Alice is given an n/2 dimensional subspace of an n
dimensional space over R, and Bob is given a vector.

This is a partial function, and the promise is that either

Bob’s vector lies in the subspace, in which case the

function evaluates to 1, or it lies in the orthogonal

subspace, in which case the function evaluates to 0.

Note that the input set of VSP0,n is continuous, but

it can be discretized by rounding, which leads to the

problem ṼSPθ,n (see [3] for details).

Klartag and Regev [3] show that the Vector in

Subspace Problem can be solved with an O(log n)
quantum protocol, but the randomized communication
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complexity of this problem is Ω(n1/3). Their lower

bound uses a modified version of the rectangle bound,

which can be shown to be still weaker than our relaxed

partition bound.

Lemma V.1. There exist universal constants C and γ
such that for any ε,

p̄rtε(ṼSPθ,n) ≥ 1

C
(0.8− 2.8ε) exp(γn1/3).

This allows us to conclude that the information com-

plexity of this function is at least Ω(n1/3). This solves

Braverman’s Open Problem 3 (Are there problems for

which Q(f, ε) = O(polylog(IC(f, ε)))?) and Open

Problem 7 (is it true that IC(ṼSPθ,n, 1/3) = nΩ(1)?)

Moreover, our result implies an exponential separa-

tion between classical and quantum information com-

plexity. We refrain from defining quantum information

cost and complexity in this paper (see [17] for a def-

inition), but since the quantum information complexity

is always smaller than the quantum communication

complexity, the separation follows trivially from The-

orem I.2.

B. Information complexity of the Gap Hamming Dis-
tance Problem

We prove that the information complexity of Gap

Hamming Distance is Ω(n) (Theorem I.3; Open Prob-

lem 6 in [2]). In the Gap Hamming Distance Problem

(GHDn), Alice and Bob each receive a string of length

n and they need to determine whether their Hamming

distance is at least n/2 +
√
n or less than n/2 − √n.

We prove that the information complexity of Gap Ham-

ming Distance is Ω(n) (Theorem I.3; Open Problem 6

in [2]). The communication complexity of Gap Ham-

ming Distance was shown to be Ω(n) by Chakrabarti

and Regev [19]. The proof was subsequently simplified

by Vidick [20] and Sherstov [18]. The first two proofs

use the smooth rectangle bound, while Sherstov uses

the rectangle/corruption bound.

The corruption bound used by Sherstov is a slight

refinement of the rectangle bound as defined by Jain

and Klauck [1], since it can handle distributions that

put small weight on the set of inputs that map to some

function value z. It can be shown that this bound is

weaker than our relaxed partition bound, which implies

Theorem I.3.

Lemma V.2. There exist universal constants C and δ
such that for any small enough ε, p̄rtε(GHD) ≥ C2δn.

VI. CONCLUSIONS AND OPEN PROBLEMS

We have shown that the information complexity is

lower bounded by a relaxed version of the partition

bound. This subsumes all known algebraic and rectangle

based methods, except the partition bound. It remains

to see if the partition bound also provides a lower

bound on the information complexity. Alternatively, if

we would like to separate the communication and infor-

mation complexities, then possible candidates could be

functions whose partition bound is strictly larger than

their relaxed partition bound.

Moreover, we have seen how the relaxed partition

bound naturally relates to zero-communication pro-

tocols with abort. Actually, we can relate all other

lower bound methods to different variants of zero-

communication protocols [15, 16]. This provides new

insight on the inherent differences between these bounds

and may lead to new lower bound methods, coming

from different versions of zero-communication proto-

cols. Moreover, since these protocols have been ex-

tensively studied in the field of quantum information,

it is intriguing to see what other powerful tools can

be transferred to the model of classical communication

complexity.
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