
Formulas Resilient to Short-Circuit Errors

Yael Tauman Kalai
Microsoft Research
yael@microsoft.com

Allison Lewko
Microsoft Research

allew@microsoft.com

Anup Rao†

University of Washington
anuprao@cs.washington.edu

Abstract—We show how to efficiently convert any boolean
formula F into a boolean formula E that is resilient to short-
circuit errors (as introduced by Kleitman et al. [KLM94]). A
gate has a short-circuit error when the value it computes is
replaced by the value of one of its inputs.

We guarantee that E computes the same function as F , as
long as at most (1/10− ε) of the gates on each path from the
output to an input have been corrupted in E. The corruptions
may be chosen adversarially, and may depend on the formula E
and even on the input. We obtain our result by extending
the Karchmer-Wigderson connection between formulas and
communication protocols to the setting of adversarial error.
This enables us to obtain error-resilient formulas from error-
resilient communication protocols.

I. INTRODUCTION

In this work, we consider the problem of constructing
boolean circuits that are resilient to errors. We seek to
(efficiently) convert any circuit C into an error resilient
version E that computes the same function as C even if some
of E’s gates have errors. This is a fundamental question that
has received much attention over the years, starting with the
seminal work of Von Neumann in 1956 [vN56].

In this work, we consider short-circuit errors, which were
first studied by Kleitman, Leighton, and Ma [KLM94]. A
gate g has a short-circuit error if the value it computes
is replaced by the value of some input to g. We consider
the setting where these errors are adversarial and are even
allowed to depend on the input to the circuit. This is
equivalent to an error model where each gate can be replaced
by an arbitrary function g, such that g(0, 0) = 0 and
g(1, 1) = 1. For example, in this error model one may switch
any ∧ gate with an ∨ gate, and vice versa. Such errors can
always be simulated by replacing the output of the gate with
the value of one of its inputs in an adversarial way.

Kleitman et. al. show that for any error bound e, one can
convert a circuit C of size |C| into a circuit E of size |E|
that is resilient to e short-circuit errors, such that |E| ≤ O(e·
|C| + elog2 3). Their construction involves computing O(e)
copies of C in parallel (so that most of these copies must
have 0 errors), and then taking a majority of the outputs in a
clever way. Thus, they reduce to the problem of computing
the majority in a way that is robust to errors. Kleitman et. al.
also give a negative result, showing that to compute the ∧

†Supported by the National Science Foundation under agreement CCF-
1016565.

function and withstand e short-circuits, one needs a circuit

of size at least Ω
(

e log e
log log e

)
. This suggests that one cannot

tolerate a constant error rate in this model.

Our main result is the following theorem:

Theorem 1. For every ε > 0, there is a polynomial time
computable function that converts any boolean formula F
of size s into a boolean formula E of size poly(s), such that
E computes the same function as F as long as at most a(

1
10 − ε

)
fraction of the gates on every input to output path

in E experience short-circuit errors.

We emphasize that Theorem 1 constructs formulas that
can be resilient to errors almost everywhere, as long as
there are less than 1/10 errors on each path from the root
to a leaf. Moreover, the location of these errors may depend
on the inputs that are fed into the formula. In the case
of random (short-circuit) errors, Theorem 1 gives formulas
that are resilient to a constant fraction of random errors
with probability of failure that is polynomially small in the
size of the formula. Indeed, our final error resilient formula
will be of depth O(log s), and if the probability of any
gate failing is a small enough constant, the probability that
any input-output path experiences too many errors can be
made to be polynomially small in s. In contrast, Kleitman
et. al. [KLM94] construct circuits that are resilient to random
errors that occur with rate O(1/s). Note that in the short-
circuit error model, it is impossible to be resilient against the
corruption of an entire path from the root to a leaf, since
otherwise the adversary can force the output to equal the
value of the corresponding leaf. In this sense, Theorem 1 is
optimal, up to the constant 1/10.

The short-circuit error model is different from the standard
von Neumann error model, which assumes that the value
of each wire in the circuit is flipped independently with
some small probability p. These two error models are
incomparable. The short-circuit model is weaker in the sense
that if all the wires to a gate have the same value, then the
gate will produce the same value, even if it is faulty. On the
other hand, our model is stronger since it tolerates worst-
case faults, whereas the von Neumann model cannot tolerate
even a single worst-case fault. This is because the output
wire could be faulty, which means that the circuit will be
faulty.

Moreover, when the errors occur with probability p �

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.69

490

1/10, our work gives formulas that fail with probability at
most 1/sΩ(1), in contrast to results in von Neumann’s model,
which give formulas that fail with probability at least p. It is
impossible to build fault-tolerant circuits with many outputs
in the von Neumann model (making it of dubious value in
practice), since for circuits which output m bits, the output
of a faulty circuit is correct only with probability (1− p)m.
On the other hand, our work gives formulas that are correct
with high probability even if there are many outputs. In fact,
to the best of our knowledge, none of the previous works
could tolerate faults on a set of gates that disconnects the
output from the inputs, and our results give a way to tolerate
significantly more than this.

In summary, like the von Neumann model, the short-
circuit model is restrictive. However, the short-circuit model
allows for adversarial faults, and is correct even if the output
is large. We refer the reader to [KLM94] for a more elaborate
comparison between the two models.

As one might suspect, our error resilient formulas must
somehow distribute the computation of the original formula
in a global way, rather than relying on local steps to recover
from corruptions (in contrast to prior work), and indeed, our
techniques result in formulas that do exactly this. As we
elaborate below, the key conceptual idea is to reduce the
problem of correcting errors in computation to the (easier)
problem of correcting errors in communication. We build
on the Karchmer-Wigderson [KW88] connection between
formulas and communication protocols, and show that this
connection can be extended to the setting of adversarial
error.

A. Our Results
Our main results are the following.

Theorem 2. There is a polynomial time computable function
mapping any balanced formula F of depth d, with gates of
fan-in 2, into a formula E of depth 4d + 10e with gates
of fan-in 2, such that E computes F (x) even if up to e of
the ∧ gates and e of the ∨ gates on every path from input
to output in E experience short-circuit errors.

Note that by setting e = 4d
ε , the resulting error resilient

formula E is of depth at most 4d(10ε + 1), and corrupting
up to

e

4d(10ε + 1)
≥ 1

10 + ε
≥ 1

10
− ε

fraction of the gates on any input to output path does
not affect the output. Since every formula can be balanced
(Lemma 4), one can balance an input formula and then apply
Theorem 2 to obtain Theorem 1.

The above constant 1/10, which bounds the fraction of
errors on every path, can be improved to 1/6 if we allow
the error-resilient formula E to have gates with fan-in 3.

Theorem 3. There is a polynomial time computable function
mapping any balanced formula F of depth d, with gates of
fan-in 2, into a formula E of depth 2d + 6e with gates of

fan-in 3, such that E computes F (x) even if up to e of the ∧
gates and e of the ∨ gates on every path from input to output
in E experience short-circuit errors.

Similarly to the above, by setting e = 2d
ε , the resulting

error resilient formula E is of depth at most 2d(6ε +1), and
corrupting up to

e

2d(6ε + 1)
≥ 1

6 + ε
≥ 1

6
− ε

fraction of the gates on any input to output path does not
affect the output.

B. Techniques

It is instructive to start with some toy cases. First observe
that it is no loss of generality to assume that F only has ∧
and ∨ gates, since by DeMorgan’s rule we can always
assume that all negations are at the variables, and then we
may replace each input literal by a new variable. An error
resilient version of the resulting monotone formula easily
gives an error resilient version of the original formula by
substituting the literals back in.

Suppose we wish to compute the formula x ∧ y, where
x, y are bits. Let E be a balanced depth e tree of ∧ gates,
where we assign the input gates of E to x or y as follows.
Each input gate of E corresponds to an address string
z ∈ {L,R}e, which defines the path from the output gate
to the input gate. If the majority of this string is L, set
the corresponding input to x, else set it to y (breaking ties
arbitrarily). We claim that this circuit can tolerate up to
e/2 − 1 corruptions on each root to leaf path. We briefly
sketch the argument. Let E′ be any circuit obtained from
E by doing ≤ e/2 − 1 corruptions. The interesting case
is when x = 0, y = 1. Consider the input to output path
that always picks the child corresponding to L in E′, unless
the corresponding gate has a short-circuit, in which case it
follows the input corresponding to the error. Since this path
has at most e/2 − 1 corruptions, it must end at an input
labeled x, and then one can argue inductively that every
gate on this path must evaluate to 0, which proves that the
output gate must also evaluate to 0.

This idea can be easily generalized to handle the ∧ of 2d

variables, each identified by a unique d-bit string. We use
an error correcting code of a constant sized alphabet [k] that
encodes d-bit strings into n = O(d) length strings over [k]
such that two valid encodings disagree in at least (1 − ε)
fraction of the coordinates. We build a depth n tree of ∧
gates of fan-in k, and label every input gate that corresponds
to a string at distance at most (1/2− ε/2) from a codeword
z by the variable xz that corresponds to that codeword. All
other input gates are labeled arbitrarily. As above, we can
argue that even if (1/2 − ε/2) fraction of all the gates on
any root to leaf path are short-circuited, the circuit will still
compute the correct value.

If the formula contains both ∧ and ∨ gates, we need
a more general approach. We appeal to a connection, first

491

observed by Karchmer and Wigderson [KW88], between for-
mulas computing a boolean function f and communication
protocols that solve a game related to f . In the game, Alice
is given x ∈ f−1(0) and Omar is given y ∈ f−1(1). The two
parties communicate using a protocol to compute an index
i such that xi �= yi. It can be shown that the minimum
communication required in the game is exactly equal to the
minimum depth of a formula computing f . In this work,
we generalize this connection to show that error resilient
protocols that solve the game can be used to obtain error
resilient formulas that compute the function (see Section IV).

The problem of designing error resilient interactive com-
munication protocols (as opposed to messages) was first
studied by Schulman [Sch93], with extensions by [BR11],
[Bra12], [GMS11]. However, in the current paper, we do
not require the more complicated ideas of these works,
because it turns out that we can obtain our results using
simpler protocols that are enough for the error model we
consider. Tree code based constructions may be useful to
improve the parameters of our construction slightly (one
might hope for an error tolerance of (1/8 − ε) using the
results of [BR11]), but at the additional cost of making
the construction more involved. In addition, it is not clear
to us that the resulting transformation on formulas will be
computable in polynomial time.

The high level outline of our approach is the following.
Given a formula F :

1) Apply the Karchmer-Wigderson transformation to F
to get a communication protocol for the game (see
Section II for more details).

2) Convert the protocol into an error resilient version,
by proving an error-resilient version of the Karchmer-
Wigderson transformation (see Sections IV and V).

3) Apply the error-resilient Karchmer-Wigderson trans-
formation to the error-resilient protocol to get an error-
resilient formula (see Section VII).

The above approach shows that an error resilient for-
mula E exists. However, it turns out that showing that the
above transformation can be done in polynomial time is
more challenging, and requires overcoming some technical
hurdles. In Section VI we show how to make our transfor-
mation efficient.

C. Related work

Here we shall discuss the more classical related work
on fault tolerant circuits, which require that the output is
correct even in the presence of errors. In the full version,
we additionally discuss the “cryptographic” line of work,
which only requires secrecy (as opposed to correctness); i.e.,
they require that an adversary that tampers with the circuit
does not learn more than he could have learned with only
black-box access to the circuit.

Error Resilient Circuits that Preserve Correctness:
The problem of constructing error resilient circuits dates
back to the work of Von Neumann from 1956 [vN56].

Von Neumann studied a model of random errors, where
each gate (independently) has an (arbitrary) error with small
fixed probability. There have been numerous followup papers
to this seminal work, including [DO77], [Pip85], [Pip88],
[Fed89], [ES99], [HW91], [GG94], [ES], who considered
the same noise model. For example, these results have shown
([vN56], [DO77], [Pip85], [GG94]) that any circuit of size s
can be encoded into a circuit of size O(s log s) that tolerates
a fixed constant noise rate, and that any such encoding must
have size Ω(s log s).

For formulas, Evans and Schulman [ES] showed that
formulas with gates of odd fan-in k, have a tight threshold βk

such that if the error probability of each gate is p < βk

then one can construct an error-resilient formula for any
boolean function, and if p > βk then such a task is impos-
sible.1 For fan-in k = 2, Evans and Pippenger [EP98] and
Unger [Ung08], gave a threshold of β = 3−√7/4 ≈ 8.856%
for formulas. Such a threshold for fan-in 2 circuits (as
opposed to formulas), or for even fan-in greater than 2
remains open.

Since it is widely believed that a major obstacle to
building a quantum computer is dealing with the noise,
the issue of building error-resilient quantum circuits has
also received a lot of attention. See [KRUdW10] and the
references therein. Yet another rich line of work was initiated
by Yao and Yao [YY85] (additional works include [AU90],
[FPRU90], [LMP97] and many others), studying how sorting
networks can be made resilient to random errors. All of the
results mentioned above are for models where the errors are
distributed randomly.

Gál and Szegedy [GS95] consider an adversarial error
model where the circuit is broken up into layers according
to the depth of the gates, and a small constant fraction of
gates at each layer may experience errors. They also relax
the requirement of correctness to allow their circuit to be
incorrect on certain classes of inputs. They show that every
symmetric function has a small circuit that is resilient to
this kind of error, and also show an interesting connection
between their model and probabilistically checkable proofs.

II. PRELIMINARIES

Formulas: Throughout this work, we focus on boolean
formulas computing boolean functions. A formula is a circuit
with ∧,∨,¬ gates whose underlying graph structure is a tree.
Without loss of generality, one may assume that all negations
are applied directly to the inputs. The depth of the formula
is the longest path in it, and the size is the number of wires.
Unless otherwise specified, we assume that all ∧,∨ gates
have fan-in 2.

We have the following well known lemma:

Lemma 4. For every formula of size s, there is another
formula computing the same function of depth O(log s).

1The specific threshold is βk = 1
2
− 2k−2

k
(

k−1
k/2−1/2

) .

492

Communication Protocols: A 2-party communication
protocol P , between two parties Alice and Omar, is defined
as a directed acyclic graph (usually a tree). The vertices are
partitioned into sets PA where Alice speaks and PO where
Omar speaks. Without loss of generality, we assume that the
out-degree of each vertex is either 0 or a constant k.2

Each vertex p ∈ PA (resp. p ∈ PO) with out-degree
greater than 0 is associated with a function hp mapping the
inputs of Alice (resp. Omar) to an out-edge. Every vertex of
out-degree 0 is labeled by an output value for the protocol.
For a vertex p and number i, we write pi to denote the vertex
reached by following the i’th out-edge of p.

The protocol has a designated root denoted by proot. If
Alice is given the input x and Omar is given y, one can
compute the value of each vertex p of the protocol, to obtain
p(x, y) as follows. If p has out-degree 0, the value is simply
the label of p. Otherwise

p(x, y) =

{
php(x)(x, y) if p ∈ PA

php(y)(x, y) if p ∈ PO

The outcome of the protocol is proot(x, y).
Karchmer-Wigderson Games: For any boolean function

f : {0, 1}n → {0, 1}, the Karchmer-Wigderson game for f
is a communication game where Alice gets x ∈ f−1(0),
Omar gets y ∈ f−1(1), and the goal is for them to use a
communication protocol to compute an index i ∈ [n] such
that xi �= yi.

Let us restrict our attention to formulas and protocols
with fan-in 2. Then Karchmer and Wigderson proved the
following theorem.

Theorem 5. The minimum depth of a formula computing
f is equal to the minimum communication of protocols that
solve the Karchmer-Wigderson game for f .

Their proof provides a transformation from a formula to a
communication protocol for the Karchmer-Wigderson game,
and vice versa. We now describe how a protocol is obtained
from a formula. We recall that for any boolean function
f : {0, 1}n → {0, 1}, the Karchmer-Wigderson game for
f is a communication game where Alice gets x ∈ f−1(0),
Omar gets y ∈ f−1(1), and the goal is for them to use a
communication protocol to compute an index i ∈ [n] such
that xi �= yi.

Given a formula F (fan-in 2) computing f , one defines the
protocol as follows. Alice and Omar start at the top of the
formula. At a ∧ gate, Alice will transmit a 1 or 2 to indicate
one of the children of the current gate that evaluates to 0
on her input. If she transmits 1, they move to the left child,
and if she transmits 2, they move to the right child. At an ∨
gate, Omar transmits 1 or 2 to indicate one of the children
that evaluates to 1 on his input. Once Alice and Omar reach
a leaf, they have identified a variable that is 0 in Alice’s

2This corresponds to the alphabet being [k].

input and 1 in Omar’s input, as required. Observe that when
this protocol is expressed as a tree, the vertices correspond
to the gates and leaves of F .

This simple protocol proves:

Lemma 6. For every formula of depth d computing a
boolean function f , there is a binary protocol P solving
the Karchmer-Wigderson game for f with communication
d.

For the proof of correctness for this protocol, and the
reverse transformation from protocols to formulas, see
[KW88].

III. SHORT-CIRCUIT ERRORS

Fix a formula F taking n bits as input. Our goal is to find
a formula that computes F even in the presence of errors.
Without loss of generality, we assume that every ∧ and ∨
gate in the formula has the same constant fan-in k (if not,
one can add dummy inputs to the gate to make this so).
For the sake of concreteness, throughout this work, one can
think of k = 2 or k = 3. We consider errors that replace any
∧ or ∨ gate with an arbitrary function g : {0, 1}k → {0, 1},
as long as g(0k) = 0 and g(1k) = 1. In particular, for every
x = (x1, . . . , xk) there exists i ∈ [k] such that g(x) = xi.
In other words, we consider errors that replace a gate with
some dictatorship.

We denote the root gate of the formula by groot. For any
non-input gate g and i ∈ [k], we denote by gi the gate that
provides the i’th input to g. Let GA (resp. GO) denote the
set of ∧ (resp. ∨) gates in F .

An error pattern is defined to be a pair of strings q =
(a, b), where a is the string that encodes the errors of the ∧
gates, and b is the string that encodes the errors of the ∨
gates. More specifically, a ∈ ([k] ∪ {∗})|GA| is indexed by
the gates of GA, and b ∈ ([k] ∪ {∗})|GO| is indexed by the
gates of GO. Intuitively, if qg = i (which means that either
g ∈ GA and ag = i, or g ∈ GO and bg = i), then the gate
g has been short-circuited, and the output of the gate is set
to be its i’th input.

Given an input z ∈ {0, 1}n, an error pattern q = (a, b),
and a gate g ∈ G, we write g(z, a, b) to denote the value
computed at g using z as the input and (a, b) as the error
pattern. g(z, a, b) is computed as follows. If g is a leaf, then
g(z, a, b) is the value of the literal of g on z. If g is an
internal gate, then define

g(z, a, b) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gi(z, a, b) if qg = i ∈ [k],

g1(z, a, b) ∧ g2(z, a, b) ∧ . . . ∧ gk(z, a, b)

if qg = ∗ and g is an ∧ gate

g1(z, a, b) ∨ g2(z, a, b) ∨ . . . ∨ gk(z, a, b)

if qg = ∗ and g is an ∨ gate

If qg is not ∗, we say that the gate has been short-circuited.
We shall reserve a∗, b∗ to denote strings that encode no
errors.

493

The following observation is useful:

Claim 7. Let g be a gate, z be an input, and (a, b) be any
error pattern. Then g(z, a, b∗) = 0 ⇒ g(z, a, b) = 0, and
g(z, a∗, b) = 1⇒ g(z, a, b) = 1.

Proof: Short-circuiting an ∨ gate can only change its
output value from 1 to 0, which can only change the outcome
of the entire formula from 1 to 0. The case of ∧ gates is
symmetric.

A. Communication Protocols with Errors
One can define a communication protocol with short-

circuit errors similarly to the way we defined a formula
with short-circuit errors. More specifically, recall that a
protocol P between two parties, Alice and Omar, is defined
to be a directed acyclic graph, where the vertices in the
graph are partitioned into two sets PA and PO, depending
on whether it is Alice’s turn to speak or Omar’s turn to
speak.

Given an input x to Alice, an input y to Omar, and an
error pattern q = (a, b), where a ∈ ([k]∪{∗})|PA| is indexed
by the vertices of PA, and b ∈ ([k] ∪ {∗})|PO| is indexed
by the vertices of PO, the outcome of the protocol (with
errors), denoted by proot(x, a, y, b), is computed as follows.
For any vertex p in the graph, if p is a leaf then the outcome
is the label of p. Otherwise,

p(x, a, y, b) =

⎧⎪⎨
⎪⎩
pi(x, a, y, b) if qg = i ∈ [k]

php(x)(x, a, y, b) if qg = ∗ and g ∈ PA

php(y)(x, a, y, b) if qg = ∗ and g ∈ PO

The main difference between our error model, and the
standard error model in communication, is that here a party
knows if a message it sent was “tampered with” by the
adversary. We emphasize, however, that like the standard
error model, the adversary can replace any message sent by
Alice or Omar with an arbitrary symbol in the alphabet,
which in our case is [k]. The difference between the models
allows us, in Section IV, to construct relatively simple
communication protocols that are resilient to error, and to
avoid the use of complicated objects such as tree codes.

IV. KARCHMER WIGDERSON GAMES WITH ERRORS

In this section we prove an error-resilient version of
the Karchmer-Wigderson result. Namely, we prove that
if the KW protocol is resilient to errors (as defined in
Section III-A), then when applying the Karchmer-Wigderson
transformation to the protocol, we obtain a formula that is
resilient to short-circuit errors.

Lemma 8. Let f be a boolean function, and let P be a
protocol with root proot. Let T ⊂ f−1(0) × ([k] ∪ {∗})PA

and U ⊂ f−1(1)×([k]∪{∗})PO be two nonempty sets such
that the protocol rooted at proot solves the game on every
pair of inputs in T×U , and every vertex that is a descendent
of proot can be reached using the inputs T × U . Then there
is a formula with root g that is obtained by replacing every

vertex where Alice speaks with a ∧ gate, every vertex where
Omar speaks with an ∨ gate and every leaf with a literal,
such that for every (x, a) ∈ T, (y, b) ∈ U , g(x, a, b∗) = 0
and g(y, a∗, b) = 1.

Remark 9. We note that Lemma 8, together with Claim 7,
implies that the formula g obtained by Lemma 8 satisfies
that for every (x, a) ∈ T, (y, b) ∈ U , and for any error
strings a′, b′ it holds that g(x, a, b′) = 0 and g(y, a′, b) = 1.

Proof: We prove the lemma by induction on the depth
of the communication protocol. If the depth is 0, then there
must exist an index i such that for every (x, a, y, b) ∈ T×U ,
xi �= yi. Since T × U is a rectangle, this must mean that
either xi = 0, yi = 1 for all such x, y or xi = 1, yi = 0
for all such x, y. Thus, either the literal zi or zi satisfies the
hypothesis in this case. (The error patterns are irrelevant in
this case.)

For the general case, assume without loss of generality
that the root of the protocol p is in PA. Let T1, . . . , Tk

be the partition of the set T according to the message that
Alice sends. Since every vertex is reachable, all of these sets
are non-empty. By induction, the corresponding formulas
g1, . . . , gk satisfy the hypothesis for the sets T1×U, . . . , Tk×
U respectively.

Let (x, a), (y, b) be any elements of T × U . Assume
without loss of generality that (x, a) ∈ T1. Then by
induction g1(x, a, b

∗) = 0. Now ag must be in {1, ∗} (since
(x, a) ∈ T1). If ag = 1, then g(x, a, b∗) = g1(x, a, b

∗). If
ag = ∗, then g(x, a, b∗) = g1(x, a, b

∗) ∧ . . . ∧ gk(x, a, b
∗).

In either case, g(x, a, b∗) = 0. By induction, g1(y, a
∗, b) =

· · · = gk(y, a
∗, b) = 1. Thus g(y, a∗, b) = 1.

V. PROTOCOLS RESILIENT TO SHORT-CIRCUITS

In this section, we show how to transform any commu-
nication protocol into a protocol that is resilient to short-
circuit errors. Let P ′ be a protocol with root proot and
depth 2d using the alphabet [2]. We assume without loss of
generality that Alice and Omar alternate transmissions in P ′.
This is without loss of generality, since any protocol can be
modified so that it alternates transmissions, by increasing
the communication complexity by at most a factor of two.
We rely on this property of alternating transmissions for the
success of the resulting error-resilient protocol.

We define a new protocol S that yields the same result
as P ′ even in the presence of errors.3 We focus on the case
where the alphabet of S is [3]. We will later discuss the case
where the alphabet is [2].

Intuition.: The error resilient protocol S will try to run
P ′, but allows the parties to backtrack when an error is
detected. More precisely, the parties will traverse vertices
of P ′, trying to go along the path they would follow in
the error-free case. This is reminiscent of the techniques of

3We mention that the resulting error-resilient protocol S does not have
the alternating transmissions property.

494

Schulman [Sch93], though things are much simpler for us
because the parties always agree on the current location of
the simulation in P ′. When a party detects that an error
has occurred, he or she will attempt to return to a previous
vertex in P ′. It is convenient to use the three symbol alphabet
{1, 2, R}. A transmission of 1 causes the simulation to
move to the left child of the current vertex in P ′, while
a transmission of 2 moves to the right child. A transmission
of R moves back from the current node to its grandparent.
By only allowing small movements at a time, we bound the
effect of an error on the progress of the simulation.

By limiting the total number of errors, we can ensure
that after a certain number of steps, the parties have made
quantifiable progress towards the goal of simulating P ′. To
make sure that even the final steps of the simulated path in
P ′ are correct, we artificially extend paths in P ′ to have extra
“padding” vertices at the end. After a sufficient number of
steps, we can guarantee that the simulated path matches the
true path in P ′ for the meaningful steps, and only differs
beyond in this padding region where the exact path taken
is unimportant. We define the action of the protocol on the
padding vertices similarly to that on the vertices of P ′: if
a party detects an error in the current simulated path, he
or she will transmit R to move back. Otherwise, a party
always transmits 1 at a padding vertex. This simply sets the
convention that the “error-free” way to traverse the padding
vertices is to always go forward to the left child.

A. The protocol

We start by defining a protocol P simulating P ′, that has
6e padding steps at the end, and that preserves the alternating
transmissions property of P ′.

Obtaining Protocol P from Protocol P ′:
1) Replace every leaf v of P ′ with a path of vertices

v1, . . . , v6e. All edges from vi point to vi+1, and v6e

is a leaf labeled by the same value as v was labeled
with, in such a way that these vertices continue to
alternate transmissions. For each 1 ≤ i < 6e and for
every possible input (x, y) set hvi(x) = 1 if Alice
owns vi, and set hvi(y) = 1 if Omar owns it. The
protocol now has depth D = 2d+ 6e.

2) Ensure that the graph of the protocol is a tree possibly
by duplicating vertices.

Observe that P simulates P ′. Let proot be the root of P .

We obtain our final protocol by simulating P and adding
in the ability to backtrack. Intuitively, in S, the parties simu-
late the transmissions of P , unless their input is inconsistent
with the vertex in P . We say that an input x (resp. y) is
consistent with a vertex w in the protocol tree if x (resp. y)
is consistent with each step that leads to w from the root.

Protocol S:
Vertices. For every t ∈ {0, 1, . . . , D} and every vertex

w ∈ P at distance at most t from proot, define the
vertex sw,t of S. The root of the new protocol is
sproot,0.

Edges. The leaves of the protocol are all vertices
sw,t with t = D. Every other vertex sw,t has 3
out-edges, corresponding to the symbols {1, 2, R},
called sw,t

1 , sw,t
2 , sw,t

R . If w has out-edges to w1, w2,

the first two children are sw,t
1 = sw1,t+1 and

sw,t
2 = sw2,t+1. The vertex sw,t

R is the one that
corresponds to backtracking in the original proto-
col. Let v be the grandparent of w, or v = w if w
has no grandparent. Then set sw,t

R = sv,t+1.
Transmission Functions. Next we define the functions

associated with each vertex. If w is owned by
Alice on input x, the transmission function hsw,t

is defined as follows

hsw,t(x) =

{
hw(x) if x is consistent with w,

R else.

We define the functions for vertices owned by
Omar in the same way.

Output Values. Given a leaf sw,D, if w is a descendent
of a leaf in P ′, we label sw,D with the same label
as w. Otherwise, we label sw,D by an arbitrary
value.

B. Analysis

We now prove the following theorem:

Theorem 10. Let proot, sroot denote the roots of the protocols
P,S as defined above. Then for every input (x, y) and every
error string (a, b) containing at most 2e errors per path,
sroot(x, a, y, b) = proot(x, y).

Proof: We claim that S simulates P ′ even if there are
up to 2e total short-circuit errors per path in S. Fix any input
(x, y) to the protocol. Then (x, y) determines a path from
the root of P to a leaf, that we call the correct path. Recall
that the graph of P is a tree. For every vertex w in P , the
path from proot to w must follow the correct path until some
vertex z, and then (possibly) deviate from it. Let Cw be the
depth of z, and Ew be the number of error free transmission
steps it will take for the protocol to return to z. We shall
consider how the function Cw−Ew evolves as the protocol
runs through a path of S. We have the following claims.

Claim 11. Any short-circuit error can decrease the value of
Cw − Ew by at most 2.

Observe that if v is a grandparent of w, then Cv ≥ Cw−2
and Ev ≤ Ew. On the other hand, if v is a child of w,
Cv ≥ Cw, and Ev ≤ Ew + 2.

Claim 12. Any error free step must increase the value of
Cw − Ew by at least 1.

If z = w, an error free transmission will increase Cw by
1 and keep Ew = 0. If not, then an error free step will
decrease Ew by 1 and leave Cw unchanged.

Now suppose the number of errors is at most 2e. Then,
after D = r+6e steps, we must have that the protocol ends

495

at a vertex sw,D such that Cw − Ew ≥ (r + 4e)− 2(2e) =
r ⇒ Cw ≥ r. Indeed, this implies that the vertex z that
corresponds to w on the correct path is at depth at least r.
Thus, the protocol must output the same value as the original
protocol.

VI. PRODUCING THE ERROR RESILIENT FORMULA

EFFICIENTLY

Recall that our transformation starts by balancing the
input formula, then then converting it into a communication
protocol, making the protocol error resilient and finally
converting the protocol back into a formula. Each of the
steps before the final step is easily seen to be polynomial
time computable. The functions labeling the nodes of the ini-
tial communication protocol are computable by polynomial
sized circuits that can be computed from the input formula
in polynomial time. Next, the protocol is converted into an
error resilient version, and this transformation is also easily
seen to be polynomial time computable. The only step that
is hard to make efficiently computable is the final one, when
the error resilient protocol is converted into a formula.

The reason the last step is not trivially in polynomial time
is that the Karchmer-Wigderson transformation (Lemma 8)
only works when every node of the protocol tree is reach-
able. Thus, we need to show how to remove the unreachable
nodes from the protocol tree in polynomial time. This is the
problem that we focus our attention on in this section.

For convenience, we do this for our non-binary protocol
with fan-in 3, though the same argument works for our
binary protocol as well. We assume for the sake of simplicity
that we start with a formula F of depth d represented as a
full binary tree with alternating levels of ∨ nodes and ∧
nodes. We also assume that all leaves of F are labeled with
independent variables.

We define the protocols P , P ′ and S as in Section V-A.
We let V (S) denote the set of vertices of S.

We let e denote the maximal number of errors per path
that will be tolerated for each of Alice and Omar. We let EA
denote the subset of strings in ([k]∪{∗})PA with at most e
non-∗ symbols per path, and EO denote the analogous strings
in ([k] ∪ {∗})PO .

Let Recognize : V (S) → {0, 1} be the function that
takes as input a vertex γ and outputs 1 if and only if there
exist inputs in F−1(0)×EA and F−1(1)×EO which cause
Alice and Omar to reach the vertex γ in S.

Lemma 13. The function Recognize is computable in time
poly(2d).

Before we prove Lemma 13, we fix some notation. For
every pair of inputs (x, y) ∈ F−1(0)×F−1(1), we let Hx,y :
V (S) → V (S) denote the function that takes each vertex
to the next (in an “error-free” manner) assuming the inputs
are x and y. In other words, for each v ∈ V (S), the vertex
Hx,y(v) is the child of v corresponding to hv(x) if v is
owned by Alice and to hv(y) is v is owned by Omar.

Intuition of the proof.: Fix any vertex γ ∈ V (S). The
straightforward way of checking whether Recognize(γ) =
1 is to iterate over all possible inputs (x, y) ∈ F−1(0) ×
F−1(1), and check how many errors are required to reach
the vertex γ with inputs x and y. Unfortunately this takes
time poly(2n), and thus is far from being efficient.

The main observation in the proof is that we do not need
to iterate over all possible inputs. Instead, for each γ, we
consider the sequence of ≤ D+1 vertices (γ0, γ1, . . . , γJ =
γ) on the path from the root γ0 of S to γ. As before, the
straightforward way of testing whether Recognize(γ) = 1 is
to iterate over all functions Hx,y , and compute the number
of i’s for which γi �= Hx,y(γi−1). Each such inequality
corresponds to an error in the communication protocol.

However, the key observation is that we do not actu-
ally have to iterate over all functions Hx,y , but rather it
suffices to consider only the functions Hx,y restricted to
(γ0, γ1, . . . , γJ−1).

Proof: Fix any γ ∈ V (S). Compute Recognize(γ) as
follows.

1) Obtain the sequence of ≤ D + 1 vertices
(γ0, γ1, . . . , γJ = γ), as above.

2) Consider the set of all functions H :
{γ0, γ1, . . . , γJ−1} → V (S),4 such that for every
i ∈ {0, . . . , J − 1}, the vertex H(γi) is a child of γi.
(Note that the number of such functions is at most
kD = poly(2d).)
Before we proceed, let us add a definition: For any
pair of inputs (x, y) ∈ F−1(0)×F−1(1), we say that
H and Hx,y are consistent on {γ0, γ1, . . . , γJ−1} if
H(γi) = Hx,y(γi) for every i ∈ {0, 1, . . . , J − 1}.
For each such function H , do the following.

a) Check if there exists a pair of inputs (x, y) ∈
F−1(0) × F−1(1) such that H and Hx,y are
consistent on {γ0, γ1, . . . , γJ−1}. The fact that
this can be done in polynomial time follows from
the following claim.

Claim 14. For every function H :
{γ0, γ1, . . . , γJ−1} → V (S) there is
a polynomial time algorithm that tests
whether there exists an input pair
(x, y) ∈ F−1(0) × F−1(1) such that H is
consistent with Hx,y on {γ0, γ1, . . . , γJ−1}.

b) If H is consistent with some Hx,y on
{γ0, γ1, . . . , γJ−1}, then compute the number of
errors in γ with respect to H . Namely, compute
the set

E = {i ∈ [J] : H(γi−1) �= γi}.
Let EA = {i ∈ E : Alice owns γi−1} and
let EO = {i ∈ E : Omar owns γi−1}. If
both |EA| ≤ e and |EO| ≤ e, then output
Recognize(γ) = 1.

4Recall that γ0 always denotes the root.

496

3) Otherwise, output Recognize(γ) = 0.

It is rather straightforward to see that Recognize(γ) = 1
if and only if γ is reachable.

Thus it remains to prove Claim 14.
We recall that each vertex γ ∈ V (S) has an associated

vertex ∈ P , which we will denote by wγ .

Proof of Claim 14.: Fix any function H :
{γ0, γ1, . . . , γJ−1} → V (S) that maps each γi to one of
its children. In what follows we present a polynomial time
algorithm for deciding whether there exists an input pair
(x, y) ∈ F−1(0) × F−1(1) such that H is consistent with
Hx,y on the set {γ0, γ1, . . . , γJ−1}.

1) Let H ′ : {γ0, . . . , γJ−1} → [3] be the function such
that H ′(γi) = b where H(γi) is the child of γi
indicated by b. We identify 3 with R.

2) If there exists γi for which the associated vertex wγi
∈

P is of depth ≥ d (i.e. at or below the location of the
original leaves of P ′) and H ′(γi) = 2, then output 0
(meaning that H is not consistent with any pair of
inputs (x, y)).
The reason such H cannot be consistent with any Hx,y

is that according to the protocol, when the protocol
reaches vertices in P below the original leaves of P ′,
then the parties either try to transmit 1 (if the current
location is consistent with their input), or try to go
back (i.e. transmit R).

3) Check that H ′(γi) only depends on wγi : i.e. if some
wγi

= wγj
and H ′(γi) �= H ′(γj), then output 0.

4) Output 1 if the following condition holds for every i ∈
{0, 1, . . . , J − 1}: H ′(γi) = R iff ∃γj ∈ {γ1, . . . , γJ}
s.t. wγj is an ancestor of wγi with the same owner but
H(γj) does not correspond to an ancestor of wγi

.
We refer to this condition as the consistency condition.

5) Otherwise output 0.

It remains to prove that this algorithm is correct. It is easy
to see that if the above algorithm outputs 0 then it must be
the case that H is not consistent with any Hx,y on the set
{γ0, . . . , γJ−1}. We thus focus on the case that the algorithm
outputs 1, and we prove that in this case there exists (x, y) ∈
F−1(0) × F−1(1) such that H is consistent with Hx,y on
the set {γ0, . . . , γJ−1}.

We prove this by induction on the depth d of the formula
F . Note that the consistency condition above can be thought
of as two separate conditions: one for vertices owned by
Alice and one for vertices owned by Omar. We will refer to
these separated conditions as “Alice consistency” and “Omar
consistency.” We note that Hx,y only depends on x for
vertices owned by Alice and only depends on y for vertices
owned by Omar. We formulate our inductive hypothesis as:

Inductive hypothesis for depth d−1.: For H satisfying
conditions 2 and 3 above, and satisfying Alice consistency,
there exists an input x such that for every y, Hx,y is
consistent with H on the vertices in the {γ0, . . . , γJ−1}
owned by Alice. Similarly, for H satisfying conditions 2
and 3 and Omar consistency, there exist an input y such

that for every x, Hx,y is consistent with H on the vertices
in {γ0, . . . , γJ−1} owned by Omar.

Base case.: When d = 0, the formula is simply a leaf,
labeled by some variable. In this case, we choose arbitrary
x and y such that F (x) = 0 and F (y) = 1, and prove that
H is consistent with Hx,y . Note that P ′ is a single vertex,
and P is a tree of depth 6e, with all leaves labeled by the
same value. We consider the behavior of the protocol S with
inputs x, y: for each non-leaf vertex v in S corresponding
to a vertex w ∈ P owned by Alice, Hx,y(v) will be the
first child of v if and only if the path from the root to w in
P includes only the first children of all vertices owned by
Alice. Otherwise, Hx,y(v) will be the third child of v.

We observe that this agrees with any H satisfying Alice
consistency on the vertices among γ0, . . . , γJ−1 owned by
Alice. This follows from the consistency condition on these
vertices and the additional check that H can never specify
the second child for the nodes in P replacing the leafs of
P ′. We rely here on the fact that if H is defined on a vertex
γi, then it is also defined on all of its ancestors. This follows
from the fact that γ0, . . . , γJ−1 corresponds to a path in S ,
and thus cannot visit a vertex of P without traversing a path
in P from the root to this vertex. An analogous argument
applies to H satisfying Omar consistency. Thus our base
case holds.

Induction step.: Now, suppose d ≥ 1 and the top gate
of F is ∧ (the case of ∨ is analogous). The first and second
children of this ∧ gate correspond to formulas F1 and F2

respectively of depth d − 1, with disjoint variables at their
leaves. We will think of an input x for Alice as being
composed of an input x1 for F1 and an input x2 for F2 (note
that these are independent). We similarly consider an input
y for Omar as y1, y2. For an H satisfying Alice consistency,
we seek to define x1, x2 appropriately. We consider H ′(γ0)
(recall γ0 is the root), which must be either 1 or 2. Without
loss of generality, we suppose that H ′(γ0) = 1, and we set
the input variables x2 for Alice all to be 1. This ensures
that F2(x2) = 1, so in the error-free Karchmer-Wigderson
protocol, Alice will go from the root of F to F1. We set the
input variables x1 for Alice using our inductive hypothesis
as follows (we will ensure that F1(x1) = 0).

We let P1,S1 and P2,S2 denote the communication
protocol trees associated with F1 and F2 respectively. We
note that the vertices of P1,P2 can also be viewed as vertices
in P . (Recall that vertices in the error-free Karchmer-
Wigderson protocol correspond to gates and leaves in F , so
the vertices of P1 correspond to F1 plus padding vertices.)
The path γ0, . . . , γJ−1 in S corresponds to a bi-directional
walk in the tree P , sometimes traversing vertices in P1

and sometimes traversing in P2. The time spent traversing
in P1 corresponds to a path in S1. We restrict H to this
path and let H1 denote the resulting function (recall here
that H ′(γi) only depends on wγi , so there is no ambiguity
introduced). It is easy to see that H1 satisfies the necessary
conditions to apply our inductive hypothesis (in particular,

497

Alice consistency is maintained). This gives us an input x1

for Alice on F1, such that if we take x = (x1, x2) we get
that Hx,y agrees with H1 on its domain for vertices owned
by Alice, for any setting of y. This concludes our setting of
inputs x for Alice, and we note that F (x) = 0 is ensured.

We observe that (for any y) Hx,y(γi) = H(γi) = R
for any γi owned by Alice whose associated wγi is in P2.
This holds by the Alice consistency condition for H since
H ′(γ0) = 1 and by the fact that F2 evaluates to 1 for Alice’s
input. Finally, Hx,y(γ0) = H(γ0) = 1 (for all y), so H and
Hx,y agree on the vertices owned by Alice in the domain
γ0, . . . , γJ−1.

For an H satisfying Omar consistency, we consider H1

and H2, the restrictions of H to S1 and S2 as above.
These restrictions inherit all of the required features to
apply our inductive hypothesis, including Omar consistency.
Therefore, there exist y1 and y2 such that for all x1 and
all x2, Hx1,y1 = H on all vertices γi owned by Omar in
S1, and Hx2,y2

= H on all vertices γi owned by Omar in
S2. We note that F1(y1) = F2(y2) = 1. Combining these,
we obtain y = (y1, y2) such that F (y) = 1 and for all x,
Hx,y = H for all vertices owned by Omar in γ0, . . . , γJ−1.

VII. PROOFS OF THEOREMS 2 AND 3

We now combine the results of the previous sections to
prove our main theorems from Section I-A.

Proof of Theorem 3: We start with a balanced formula
F of depth d (fan-in 2). We let F ′ denote a formula of
depth ≤ 2d which is also balanced and alternates ∧ and
∨ gates (this can be obtained easily from F by inserting
extra gates as necessary). We relabel the leaves of F ′ with
independent variables, recording the mapping between these
new variables and the original ones. We then let P ′ denote
the corresponding communication protocol for the (error-
free) Karchmer-Wigderson game for the boolean function
computed by F ′, promised by Lemma 6. We note that this
protocol alternates between vertices owned by Alice and
Omar.

Applying Theorem 10, we can efficiently obtain the error-
resilient protocol S of depth ≤ 2d + 6e using alphabet [3]
that simulates P ′ correctly when there are at most 2e total
errors on each path. In particular, S is correct whenever each
path contains at most e errors for Alice and at most e errors
for Omar. Using Lemma 13, we can efficiently compute
which vertices of S are reachable from a pair of inputs
(x, a) and (y, b), such that F ′(x) = 0, F ′(y) = 1, and
a and b are error strings containing at most e short-circuit
errors per path each. We remove the unreachable vertices
from S and call the resulting protocol S ′. Applying Lemma
8, we obtain an error-resilient formula E′ of depth ≤ 2d+6e
and fan-in 3. Here, we have set T = (F ′)−1(0) × EA and
U = (F ′)−1(1) × E0 (recall EA denotes the set of error
strings a encoding at most e errors per path and EO is defined
analogously).

We note that the variables labeling the leaves of E′ can be
computed efficiently. To see this, recall that the vertices of
our S ′ correspond to vertices in P , and the leaves of S ′ will
correspond to vertices in P that have replaced leaves in P ′.
The leaves of the error-free Karchmer-Wigderson protocol
P ′ correspond to the leaves of the formula F ′, and hence
we can use the labels of the leaves in F ′ to efficiently label
the leaves of E′. Finally, we replace the variables labeling
the leaves of E′ with the corresponding original variables
for F . This gives us our final error-resilient formula E.

Proof of Theorem 2: This is exactly like the proof of
Theorem 3, replacing the alphabet [3] protocol S with the
binary protocol S[2] defined below (making the appropriate
minor adjustments to the proof of Lemma 13).

The idea is to replace each vertex s with children s1, s2, s3
in S by a binary tree in S[2] consisting of a root with two
children and two grandchildren descending from the right
child. We will call these vertices w,w1, v = w2, v1, v2 (w
denotes the root, with children w1 and w2 = v, and v1, v2
denote the children of v). The root vertex w corresponds to
s, and the vertex w1 corresponds to sR. The vertices v1, v2
correspond to the children s1, s2. If s is owned by Alice,
then both w, v are owned by Alice (and vice versa). The
idea is that the transmission of R is encoded by the string
1, and the transmission of 1, 2 are encoded by 21, 22. We
truncate the resulting protocol at depth 2r + 10e.

Theorem 15. Let sroot, proot denote the roots of the protocols
P,S[2] defined above. Then for every input (x, y), and
every error pattern (a, b) with at most 2e errors per path,
sroot(x, a, y, b) = proot(x, y).

Proof: For the analysis, note that every vertex q in the
binary protocol corresponds to the tree of some sw,t in the
non-binary protocol. As before, we let z denote vertex on
the correct path that is closest to w. If w = z and q is an
internal vertex, i.e. q is neither the root or a leaf of the tree
corresponding to sw,t, we set Cq to be 2Cw + 1 (i.e. twice
the depth of z plus one). Otherwise, we set Cq = 2Cw.
As before, we set Eq to be the number of error-free steps
required to get the vertex back to a point where w = z. Now
we consider the quantity Cq − Eq along a path in S[2].
Claim 16. A short-circuit step can decrease Cq −Eq by at
most 4.

If the short circuit is to take a backtracking step, then Eq

can only decrease, and Cq can decrease by at most 4. If
the short-circuit is to take a non-backtracking step, then the
worst case is when q is the root of the tree corresponding to
sw,t, in which case Ew can increase by at most 4, and Cw

cannot decrease. It is easy to check the following claim:

Claim 17. An error free step must increase Cq − Eq by at
least 1.

If Eq = 0, Cq must increase by 1 and Eq will remain
0. Otherwise, Cq will remain at least as large, and Eq will

498

decrease by 1.

Thus, if the number of errors is 2e, we have that after
2r + 10e steps, the protocol reaches a vertex q for which
Cq − Eq ≥ 2r + 8e − 8e = 2r. This implies that Cw ≥ r,
and the protocol must be correct.

VIII. OPEN PROBLEMS

The fraction of errors tolerated per path by our construc-
tion is a constant, bounded by 1

10 for fan-in 2, and by 1
6 for

fan-in 3. We leave it as an open problem to determine the
optimal constant fraction of errors that can be tolerated per
path. Extending our result to circuits is a very interesting
open problem.

REFERENCES

[AU90] Shay Assaf and Eli Upfal. Fault tolerant sorting network.
In FOCS, pages 275–284, 1990.

[BR11] Mark Braverman and Anup Rao. Towards coding for
maximum errors in interactive communication. In STOC,
pages 159–166, 2011.

[Bra12] Mark Braverman. Towards deterministic tree code con-
structions. In ITCS, pages 161–167, 2012.

[DO77] R. L. Dobrushin and S. I. Ortyukov. Upper bound for
the redundancy of self- correcting arrangements of unreliable
functional elements. 13:203–218, 1977.

[EP98] William S. Evans and Nicholas Pippenger. On the max-
imum tolerable noise for reliable computation by formulas.
IEEE Transactions on Information Theory, 44(3):1299–1305,
1998.

[ES] W. Evans and L. Schulman. On the maximum tolerable noise
of k-input gates for reliable computation by formulas.

[ES99] W. Evans and L. Schulman. Signal propagation and
noisy circuits. In IEEE Trans. Inform. Theory, 45(7), page
23672373, 1999.

[Fed89] T. Feder. Reliable computation by networks in the
presence of noise. In IEEE Trans. Inform. Theory, 35(3),
page 569571, 1989.

[FPRU90] Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli
Upfal. Computing with unreliable information (preliminary
version). In STOC, pages 128–137, 1990.

[GG94] Péter Gács and Anna Gál. Lower bounds for the com-
plexity of reliable boolean circuits with noisy gates. IEEE
Transactions on Information Theory, 40(2):579–583, 1994.

[GLM+04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin,
Silvio Micali, and Tal Rabin. Algorithmic tamper-proof
(atp) security: Theoretical foundations for security against
hardware tampering. In TCC, pages 258–277, 2004.

[GMS11] R. Gelles, Ankur Moitra, and Amit Sahai. Efficient
and explicit coding for interactive communication. In FOCS,
pages 159–166, 2011.

[GS95] A. Gal and M. Szegedy. Fault tolerant circuits and
probabilistically checkable proofs. In Proc. of 10th IEEE
Structure in Complexity Theory Conference, pages 65–73,
1995.

[HW91] Bruce E. Hajek and Timothy Weller. On the maximum
tolerable noise for reliable computation by formulas. IEEE
Transactions on Information Theory, 37(2):388–391, 1991.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David
Wagner. Private circuits ii: Keeping secrets in tamperable
circuits. In EUROCRYPT, pages 308–327, 2006.

[KKS11] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit
Sahai. Cryptography with tamperable and leaky memory. In
CRYPTO, pages 373–390, 2011.

[KLM94] Daniel J. Kleitman, Frank Thomson Leighton, and Yuan
Ma. On the design of reliable boolean circuits that contain
partially unreliable gates. In FOCS, pages 332–346, 1994.

[KRUdW10] Julia Kempe, Oded Regev, Falk Unger, and Ronald
de Wolf. Upper bounds on the noise threshold for fault-
tolerant quantum computing. Quantum Information & Com-
putation, 10(5&6):361–376, 2010.

[KW88] Mauricio Karchmer and Avi Wigderson. Monotone
circuits for connectivity require super-logarithmic depth. In
STOC, pages 539–550, 1988.

[LMP97] Frank Thomson Leighton, Yuan Ma, and C. Greg Plax-
ton. Breaking the theta (n log2 n) barrier for sorting with
faults. J. Comput. Syst. Sci., 54(2):265–304, 1997.

[Pip85] Nicholas Pippenger. On networks of noisy gates. In FOCS,
pages 30–38. IEEE, 1985.

[Pip88] N. Pippenger. Reliable computation by formulas in the
presence of noise. In IEEE Trans. Inform. Theory, 34(2),
page 194197, 1988.

[Sch93] Leonard J. Schulman. Deterministic coding for interactive
communication. In STOC, pages 747–756, 1993.

[Ung08] Falk Unger. Noise threshold for universality of two-input
gates. IEEE Transactions on Information Theory, 54(8):3693–
3698, 2008.

[vN56] J. von Neumann. Probabilistic logics and the synthesis
of reliable organisms from unreliable components, volume 3,
pages 43–99. Princeton University Press, 1956.

[YY85] Andrew Chi-Chih Yao and F. Frances Yao. On fault-
tolerant networks for sorting. SIAM J. Comput., 14(1):120–
128, 1985.

499

