
Approximation Limits of Linear Programs
(Beyond Hierarchies)

Gábor Braun

Institut für Informatik,
Universität Leipzig,

PF 100920, 04009 Leipzig, Germany.
gabor.braun@informatik.uni-leipzig.de

Samuel Fiorini

Department of Mathematics,
Université libre de Bruxelles CP 216,

Bd. du Triomphe, 1050 Brussels, Belgium.
sfiorini@ulb.ac.be

Sebastian Pokutta

ISyE,
Georgia Institute of Technology,

Atlanta, GA 30332, USA.
sebastian.pokutta@isye.gatech.edu

David Steurer

Department of Computer Science,
Cornell University,

Ithaca, NY 14853, United States.
dsteurer@cs.princeton.edu

Abstract—We develop a framework for proving
approximation limits of polynomial-size linear pro-
grams from lower bounds on the nonnegative ranks
of suitably defined matrices. This framework yields
unconditional impossibility results that are applicable
to any linear program as opposed to only programs
generated by hierarchies. Using our framework, we
prove that quadratic approximations for CLIQUE
require linear programs of exponential size. (This
lower bound applies to linear programs using a
certain encoding of CLIQUE as a linear optimization
problem.) Moreover, we establish a similar result for
approximations of semidefinite programs by linear
programs.

Our main technical ingredient is a quantitative im-
provement of Razborov’s rectangle corruption lemma
(1992) for the high error regime, which gives strong
lower bounds on the nonnegative rank of certain
perturbations of the unique disjointness matrix.

Keywords-extended formulations; communication
complexity; nonnegative rank; approximation algo-
rithms; polyhedral combinatorics

I. INTRODUCTION

A. Context
Linear programs (LPs) play a central role in the

design of approximation algorithms, see, e.g., [1],

[2]. Therefore, understanding the limitations of LPs

as tools for designing approximation algorithms is

an important question.

The first generation of results studied the lim-

itations of specific LPs by seeking to determine

their integrality gaps. The second generation of

results, pioneered by [3], studied the limitations

of LPs captured by lift-and-project procedures or

hierarchies (e.g., [4], [5]). See the previous work

section below for a more detailed account of the

relevant literature.

In this work, we develop a framework for a

third generation of results that apply to any LP for

a given problem. For example, our lower bounds

address the following question: Are there linear

programming relaxations LPn for CLIQUE of size

poly(n) that achieve O(1)-approximations for all

graphs with at most n vertices. (In this sense, we

prove lower bounds in a model for non-uniform
computation, whereas hierarchy lower bounds ap-

ply to models for uniform computation.)

Although we mainly focus on LPs, our frame-

work readily generalizes to semidefinite programs

(SDPs).

Linear Encodings: We consider combinatorial

optimization problems that can be encoded in a

linear fashion by specifying a set of feasible so-

lutions represented as binary vectors and a set of

admissible (linear) objective functions represented

by their coefficient vectors. An instance of a given
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linear encoding is specified by a dimension d and

an admissible objective function w ∈ R
d . Solving

the instance means finding a feasible solution x ∈
{0,1}d such that wᵀx is minimum (or maximum).

The optimum value of the instance is thus the

minimum (or maximum) value of wᵀx for a feasible

x ∈ {0,1}d .
We require that the linear encoding is faithful,

i.e., there is a bijection between the instances of the

problem and the instances of the linear encoding

such that feasible solutions of the two encodings

can be converted in polynomial time to each other

without deteriorating their objective function val-

ues. For graph problems such as the maximum

clique problem (CLIQUE), such a linear encoding

does not allow the set of feasible solutions to

depend on the input graph, which is encoded solely

in the objective function.

For example, with the natural linear encoding

of the metric traveling salesman problem (met-

ric TSP) the feasible solutions are the incidence

vectors of tours of the complete graph over [n] :
= {1,2, . . . ,n} for some n � 3, and the admissi-

ble objective functions are all nonnegative vectors

w = (wi j) such that wik � wi j +wjk for all i, j
and k in [n]. All vectors are encoded in R

d , where

d =
(n
2

)
.

Coming back to the general case, a linear en-

coding determines two nested convex sets P ⊆ Q
in R

d for each d. The set P is the convex hull of

the feasible solutions of dimension d (thus P is a

0/1-polytope) and for minimization problems Q is

defined by all linear inequalities of the form wᵀx�
ζ where w is an admissible objective function of

dimension d and ζ the minimum value of w. For

maximization problems Q is defined analogously

by the wᵀx� ζ .

(Approximate) Extended Formulations: Re-

turning to our previous example, it is known that

the Held-Karp relaxation K of the metric TSP

has integrality gap at most 3/2 (see [6], [7]). In

geometric terms, this means that P⊆ K ⊆ 2/3 ·Q.

Although K is defined by an exponential number

of inequalities, it is known that it can be reformu-

lated with a polynomial number of constraints by

adding a polynomial number of variables. That is,

the Held-Karp relaxation K has a polynomial-size

extended formulation.

Formally, an extended formulation (EF) of a

polytope K ⊆ R
d is a linear system in variables

(x,y) ∈ R
d+k such that, for every x ∈ R

d , we have

x ∈ K if and only if there exists y ∈ R
k such that

(x,y) is a solution to the system. The size of an EF

is the number of inequalities in the system. Notice

that an an EF can always be brought into slack form
Ex+Fy= g, y� 0 without increasing its size. We

will mainly consider EFs in slack form. (For these,

the size equals the number of extra variables.)

The extension complexity xc(K) of the polytope

K is defined as the minimum size of an EF of

K. Most of the LP relaxations that appear in

the context of approximation algorithms actually

have polynomial extension complexity. This is in

particular the case of the relaxations obtained from

an initial polynomial size relaxation at a bounded

level of any of the common hierarchies.

Let ρ � 1. Then Ex+ Fy = g, y � 0 is a ρ-

approximate EF of a given maximization problem,

w.r.t. a given linear encoding, if the maximum

value of wᵀx on K := {x ∈ R
d | ∃y : Ex+ Fy =

g, y � 0} is at least the optimum value for every

w ∈ R
d and at most ρ times the optimum value

for every admissible w∈R
d . Geometrically, this is

equivalent to P ⊆ K ⊆ ρQ, where P and Q come

from the linear encoding as defined above. For

minimization problems, the definitions are similar

with ρ replaced by ρ−1, i.e., P⊆ K ⊆ ρ−1Q.

Nonnegative Factorizations: A rank-r non-
negative factorization of an m× n matrix M is

a decomposition of M as a product M = TU of

nonnegative matrices T and U of size m× r and

r×n, respectively. The nonnegative rank rank+(M)
of M is the minimum rank r of nonnegative factor-

izations of M. It is quite useful to notice that the

nonnegative rank of M is also the minimum number

of nonnegative rank-1 matrices whose sum is M.

From this, we see immediately that the nonnegative

rank of M is at least the nonnegative rank of any

of its submatrices.

The factorization theorem of [8] (see [9] for the

conference version) states that extension complex-

ity of a polytope K is precisely the nonnegative
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rank of any of its slack matrices. Let L be the

convex hull of {v1, . . . ,vn} ⊆ R
d , which is the set

of solutions to A1x � b1, . . . , Amx � bm at the

same time. The slack matrix of L with respect

to these outer and inner descriptions is the m× n
nonnegative matrix S with entries Si j := bi−Aiv j.

Yannakakis’ theorem states that xc(L) = rank+(S)
for every polytope L and every slack matrix S of

L.
The Link to Communication Complexity:

Yannakakis’s factorization theorem initiated an in-

terplay between the extension complexity of poly-

topes and (classical) communication complexity.1

The relevant concept here is randomized com-

munication protocol with private randomness and

nonnegative outputs computing a (nonnegative)

function M : X ×Y → R+ in expectation. For the

sake of simplicity, we call this a protocol com-
puting M in expectation. [11] show that, consid-

ering M as a matrix, the minimum complexity

of a protocol computing M in expectation equals

log(rank+(M)) + Θ(1). Thus proving bounds on

the nonnegative rank of M amounts to proving

bounds on the required amount of communication

for computing M in expectation.

It is not hard to see that this last quantity

is bounded from below by the nondeterministic

communication complexity of the support of M.

Equivalently, the nonnegative rank of the matrix M
is bounded from below by the minimum number of

1-monochromatic rectangles covering the support

of M. Similarly, whenever the variance is not too

large, a protocol computing M in expectation can

be turned into a randomized protocol computing M
with high probability [11].

(Unique) Disjointness: In the disjointness
problem (DISJ), both Alice and Bob receive a

subset of [n]. They have to determine whether the

two subsets are disjoint. The disjointness problem

is central to communication complexity, see [12]

for a survey.

A related problem that captures the hardness of

the disjointness problem is the unique disjointness
problem (UDISJ), that is, the promise version of

1We also assume some familiarity with communication com-
plexity. See [10].

the disjointness problem where the two subsets

are guaranteed to have at most one element in

common. Denoting the binary encoding of the sets

of Alice and Bob by a,b ∈ {0,1}n, respectively,

this amounts to computing the Boolean function

UDISJ(a,b) := 1−aᵀb on the set of pairs (a,b) ∈
{0,1}n×{0,1}n with aᵀb ∈ {0,1}. Viewing it as

a partial 2n×2n matrix, we call UDISJ the unique
disjointness matrix.

As the communication complexity of UDISJ is

Ω(n), the nonnegative rank of any matrix obtained

from UDISJ by filling arbitrarily the blank entries

(for pairs (a,b) with aᵀb> 1) and perhaps adding

rows and/or columns is still 2Ω(n). Indeed, the

support of the resulting matrix has Ω(n) nonde-

terministic communication complexity because it

contains UDISJ.

B. Previous Work
In a recent paper, [13] proved strong lower

bounds on the size of LPs expressing the traveling

salesman problem (TSP), or more precisely on the

size of EFs of the TSP polytope. Their proof works

by embedding the UDISJ in a slack matrix of the

TSP polytope of the complete graph on Θ(n4)
vertices. This solved a question left open in [8].

We use a similar approach for approximate EFs,

which requires lower bounds on the nonnegative

rank of partial matrices obtained from the UDISJ

matrix by adding an offset to all the entries.
Our results are closely related to previous work

in communication complexity for the (unique) dis-

jointness problem and related problems. Lower

bounds of Ω(n) on the randomized, bounded error

communication complexity of disjointness were

established in [14]. In [15] the distributional com-

plexity of unique disjointness problem was ana-

lyzed, which in particular implies the result of

[14]. The main tool here is Razborov’s rectangle

corruption lemma showing that in every large rect-

angle, the number of 0-entries is proportional to the

number of 1-entries. This ensures that monochro-

matic 1-rectangles have to be small and therefore

a large number is needed to cover all 1-entries;

a lower bound for the nondeterministic communi-

cation complexity. It is precisely this lemma that

was used in [13] to establish lower bounds on
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the extension complexity of the cut polytope, the

stable set polytope, and the TSP polytope. The

most recent proof that the randomized, bounded

error communication complexity of DISJ is Ω(n)
is due to [16] and is based on information theoretic

arguments. Here we derive a strong generalization

dealing with perturbations for approximate EFs.

There has been extensive work on LP and SDP

hierarchies/relaxations and their limitations; we

will be only able to list a few here. In [17],

strong lower bounds (of 2− ε) on the integrality

gap for nε rounds of the Sherali-Adams hierarchy

when applied to (natural relaxations of) VERTEX

COVER, Max CUT, SPARSEST CUT have been

been established via embeddings into �2; see also

[18] for limits and tradeoffs in metric embeddings.

For integrality gaps of linear (and also SDP) re-

laxations for the KNAPSACK problem see [19]. A

nice overview of the differences and commonalities

of the Sherali-Adams, the Lovász-Schrijver and the

Lasserre hierarchies/relaxations can be found in

[20]. Rank lower bounds of n for Lovász-Schrijver

relaxations of CLIQUE have been obtained in

[21]; a similar result for Sherali-Adams hierarchy

can be found in [20]. Also, hierarchies based

on SDPs have been widely studied, in particular

formulations derived from the Lovász-Schrijver N+

hierarchies (see [5]) and the Lasserre hierarchies

(see [22]). For example, in [23] an O(
√
logn)

upper bound on a suitable SDP relaxation of the

SPARSEST CUT problem was obtained. For lower

bounds in terms of rank, see e.g., [24] for the k-
CSP in the Lasserre hierarchy or [25] for VERTEX

COVER in the semidefinite Lovász-Schrijver hier-

archy. Motivated by the Unique Games Conjecture,

several works studied upper and lower bounds

for SDP hierarchy relaxations of Unique Games

(see for example, [26], [27], [28], [29]). In [13]

a characterization of semidefinite EF via one-way

quantum communication complexity is established.

Approximate EFs have been studied before, for

specific problems, e.g., KNAPSACK in [30], or as

a general tool, see [31]. The idea of considering

a pair of polytopes P,Q first appeared in [32] and

similar ideas appeared earlier in [33]. For recent

results on computing the nonnegative rank see [34].

C. Contribution
(i) We develop a new framework for proving lower
bounds on the sizes of approximate EFs. Through

a generalization of Yannakakis’s factorization the-

orem, we characterize the minimum size of a ρ-

approximate EF as the nonnegative rank of any

slack matrix of a pair of nested polyhedra. We

emphasize the fact that the results obtained within

our framework are unconditional. In particular,

they do not rely on P �= NP.
(ii) We extend Razborov’s rectangle corruption

lemma to deal with perturbations of the UDISJ

matrix. As a consequence, we prove that the non-

negative rank of any matrix obtained from the

UDISJ matrix by adding a constant offset to every

entry is still 2Ω(n). Moreover, the nonnegative rank

is still 2Ω(n2ε ) when the offset is at most n1/2−ε .
To our knowledge, these are the first strong lower

bounds on the nonnegative rank of matrices that

contain no zeros. Our extension of Razborov’s

lemma allow us to recover known lower bounds

for DISJ in the high-error regime of [16].

(iii) We obtain a strong hardness result for CLIQUE

w.r.t. a natural linear encoding of CLIQUE. From

the results described above, we prove that the size

of every O(n1/2−ε)-approximate EF for CLIQUE

is 2Ω(n2ε ). We see this as the first step in obtaining

lower bounds on the sizes of approximate EFs

for (faithful linear encodings of) other problems.

Finally, we observe that the same bounds hold

for approximations of SDPs by LPs. This suggests

that SDP-based approximation algorithms can be

significantly stronger than LP-based approximation

algorithms. In particular we cannot expect to con-

vert SDP-based approximation algorithms into LP-

based ones by approximating the PSD-cone via

linear programming.

Finally, we point out that our framework readily

generalizes to SDPs by replacing nonnegative rank

with PSD rank (see [35] or [13] for a definition of

the PSD rank).

D. Outline

We begin in Section II by setting up our frame-

work for studying approximate extended formula-

tions of combinatorial optimization problems. Then
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we extend Razborov’s rectangle corruption lemma

in Section III and use this to prove strong lower

bounds on the nonnegative rank of perturbations of

the UDISJ matrix. Finally, we draw consequences

for CLIQUE and approximations of SDPs by LPs

in Section IV.

II. A FRAMEWORK FOR APPROXIMATION

LIMITS OF LPS

In this section we establish the basics of our

framework for studying approximation limits of

LPs.

A. Linear Encodings and Approximate EFs

A linear encoding of a (combinatorial optimiza-

tion) problem is a pair (L ,O) where L ⊆ {0,1}∗
is the set of feasible solutions to the problem

and O ⊆ R
∗ is the set of admissible objective

functions. An instance of the linear encoding is

a pair (d,w) where d is a positive integer and

w ∈ O ∩R
d . Solving the instance (d,w) means

finding x ∈ L ∩ {0,1}d such that wᵀx is either

maximum or minimum, according to the type of

problem at hand.

For every fixed dimension d, a linear

encoding (L ,O) naturally defines a pair

of nested convex sets P ⊆ Q where

P := conv
({x ∈ {0,1}d | x ∈L }), Q := {x ∈

R
d | ∀w ∈ O ∩R

d : wᵀx � max{wᵀx | x ∈ P}} if

the goal is to maximize and Q := {x ∈ R
d | ∀w ∈

O ∩ R
d : wᵀx � min{wᵀx | x ∈ P}} otherwise.

Intuitively, the vertices of P encode the feasible

solutions of the problem under consideration

and the defining inequalities of Q encode the

admissible linear objective functions. Notice

that P is always a 0/1-polytope but Q might

be unbounded and, in some pathological cases,

nonpolyhedral. Below, we will mostly consider

the case where Q is polyhedral, that is, defined by

a finite number of “interesting” inequalities.

Given a linear encoding (L ,O) of a maximiza-

tion problem, and ρ � 1, a ρ-approximate ex-
tended formulation (EF) is an extended formulation

Ex+Fy = g, y � 0 with (x,y) ∈ R
d+r such that

max{wᵀx |Ex+Fy= g, y� 0}�max{wᵀx | x∈P}
for all w ∈ R

d and max{wᵀx | Ex+Fy = g, y �

0}� ρ max{wᵀx | x∈P} for all w∈O∩Rd . Letting

K := {x ∈ R
d | ∃y ∈ R

r : Ex+ Fy = g, y � 0},
we see that this is equivalent to P ⊆ K ⊆ ρQ.

For a minimization problem, we require min{wᵀx |
Ex+Fy = g, y � 0} � min{wᵀx | x ∈ P} for all

w ∈ R
d and min{wᵀx | Ex+ Fy = g, y � 0} �

ρ−1min{wᵀx | x ∈ P} for all w ∈ O ∩R
d . This is

equivalent to P⊆ K ⊆ ρ−1Q.

We require the following faithfulness condition:
every instance of the problem can be mapped to an

instance of the linear encoding in such a way that

feasible solutions to an instance of the problem

can be converted in polynomial time to feasible

solutions to the corresponding instance of the lin-

ear encoding without deteriorating their objective

function values, and vice-versa. Roughly speaking,

we ask that each instance of the problem can be

encoded as an instance of the linear encoding.

For example, consider the maximum k-SAT
problem (Max k-SAT), where k is constant. We

encode it in dimension d=Θ(nk) with one variable

xC for each nonempty clause C with at most k
literals. Given a truth assignment, we set xC to

1 if C is satisfied and otherwise we set xC to 0.

Letting the number n of variables vary, this defines

a language L ⊆ {0,1}d . We let O := {0,1}d :
the set of weight vectors for finding the maximal

number of satisfied clauses in a given subset. The

pair (L ,O) defines a linear encoding of Max k-
SAT.

Finally, let u1, . . . ,un denote the variables of

a Max k-SAT instance. Then the EF defined by

the inequalities 0� xC � 1 and xC � ∑ui∈C x{ui}+
∑ūi∈C(1− x{ui}) for all clauses C is a polynomial-

size 4/3-approximate EF for Max k-SAT, as fol-

lows from [36].

B. Factoring a Pair of Nested Polyhedra

Let P be a polytope and Q be a polyhedron with

P⊆ Q⊆ R
d . An extended formulation (EF) of the

pair P,Q is a system Ex+Fy = g, y � 0 defining

a polyhedron K := {x ∈ R
d | Ex+Fy = g, y � 0}

such that P ⊆ K ⊆ Q. We denote by xc(P,Q) the

minimum size of an EF of the pair P,Q. Note that

the special case P = Q reduces to the extension

complexity xc(P) = xc(P,P) of P.
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Now, consider an inner description of P and an

outer description of Q, say P := conv(V ) and Q :

= {x ∈ R
d | Ax � b} where V := {v1, . . . ,vn} and

Ax � b has m inequalities denoted by A1x � b1,
. . . , Amx � bm. The slack matrix of the pair P,Q
w.r.t. these inner and outer descriptions is the m×n
matrix SP,Q with SP,Qi j = bi−Aiv j for i ∈ [m] and

j ∈ [n].

Our first result gives an exact characterization

of xc(P,Q) in terms of the nonnegative rank of

the slack matrix of the pair P,Q. It states that the

minimum extension complexity of a polyhedron

sandwiched between P and Q is exactly xc(P,Q).
The result readily generalizes Yannakakis’s fac-

torization theorem [8], which concerns the case

P= Q. It first appeared in [32].

Theorem 1. With the above notations, we have
xc(P,Q) = rank+(SP,Q) for every slack matrix of
the pair P,Q. The minimal value is realized by an
EF where K is a polytope.

Let P,Q be as above and ρ � 1. Then ρQ =
{x ∈ R

d | Ax � ρb} and the slack matrix of the

pair P,ρQ is related to the slack matrix of the pair

P,Q in the following way:

SP,ρQ
i j = ρbi−Aiv j = (ρ−1)bi+bi−Aiv j

= SP,Qi j +(ρ−1)bi.
Theorem 1 directly yields the following result.

Theorem 2. Consider a maximization problem and
linear encoding for this problem. Let P,Q ⊆ R

d

be polyhedral and associated with the linear en-
coding, and let ρ � 1. Consider any slack ma-
trix SP,Q for the pair P,Q and the correspond-
ing slack matrix SP,ρQ for the pair P,ρQ. Then
the minimum size of a ρ-approximate EF of the
problem, w.r.t. the considered linear encoding, is
exactly rank+(SP,ρQ). For a minimization prob-
lem, the minimum size of a ρ-approximate EF is
rank+(SP,ρ

−1Q).

Fixing ρ � 1, Theorem 2 characterizes the min-

imum number of inequalities in any LP providing

a ρ-approximation for the problem under consid-

eration.

C. A Problem with no Polynomial-Size Approxi-
mate EF

We conclude this section with an example show-

ing the necessity to restrict the set of admissible ob-

jective functions rather than allowing every w∈R
∗

(that is P= Q).

Let Kn = (Vn,En) denote the n-vertex complete

graph. For a set X of vertices of Kn, we let δ (X)
denote the set of edges of Kn with one endpoint in

X and the other in its complement X̄ . This set δ (X)
is known as the cut defined by X . For a subset F of

edges of Kn, we let χF ∈R
En denote the character-

istic vector of F , with χF
e = 1 if e ∈ F and χF

e = 0

otherwise. The cut polytope CUT(n) is defined as

the convex hull of the characteristic vectors of all

cuts in the complete graph Kn = (Vn,En). That is,

CUT(n) := conv
(
{χδ (X) ∈ R

En | X ⊆Vn}
)
.

Consider the maximum cut problem (Max CUT)

with arbitrary weights, and its usual linear encod-

ing. With this encoding we have P=Q=CUT(n).
Our next result states that this problem has no ρ-

approximate EF, whatever ρ � 1 is. Intuitively, this

phenomenon stems from the fact that, because 0 is

a vertex of the cut polytope, every approximate EF

necessarily “captures” all facets of the cut polytope

incident to 0. These facets define the cut cone,

which has high “extension complexity”.

Proposition 3. For every ρ � 1, every ρ-
approximate EF of the Max CUT problem with
arbitrary weights has 2Ω(

√
n) size. More pre-

cisely, disregarding the value of ρ � 1, we have
xc(CUT(n),ρ CUT(n)) = 2Ω(

√
n).

III. EXTENDING RAZBOROV’S LEMMA AND

PERTURBING UNIQUE DISJOINTNESS

In the first subsection we generalize Razborov’s

famous rectangle corruption lemma for the disjoint-

ness problem (see [15] or [10, Lemma 4.49] for the

original version). In the following subsection we

apply it to perturb the UDISJ matrix without signif-

icantly decreasing its nonnegative rank, which will

be used in later sections to obtain lower bounds

on approximate extended formulations. The main

improvements to Razborov’s lemma are to ease
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application: optimized estimation and constants, in-

corporating rank-1 matrices, and nonnegative rank.

A. Extending Razborov’s Lemma

For every 0< p< 1 and 1≤ �≤ n/2 we define

the following distribution μ of random subsets a
and b of size � of [n]. We flip a biased coin and with

probability p, we choose (a,b) uniformly among

the pairs of subsets intersecting in exactly one

element; with probability 1− p, we choose (a,b)
uniformly among the pairs of disjoint subsets.

Lemma 4. For every 0 < p < 1, n ≥ 3, 1 ≤ � ≤
(n + 1)/4 let μ be the probability distribution
above. Furthermore, let A = {(a,b) | a∩b= /0}
denote the event that a and b are disjoint, and
B = {(a,b) | |a∩b|= 1} denote the event that a
and b intersect in exactly one element. For every
sequence of nonnegative functions f1,g1, . . . , fr,gr
defined on the subsets of [n], we introduce a ran-
dom variable X := ∑r

i=1 fi(a)gi(b). Then for every
0< ε < 1

E [XIB]� (1− ε)
p

1− p
E [XIA]

− rp‖XIA‖∞ 2−
ε2

4ln2 �+O(log�), (1)

where O(log�) is a function only in � and IA, IB are
the indicators of the events A and B respectively.
Recall that the uniform norm ‖Y‖∞ of a random
variable Y is the supremum of the values of |Y |.

A strengthened version of the original lemma

is recovered by the choice p = 1/4, r = 1, � =
(n+1)/4 and X the characteristic function of the

rectangle R=C×D.

B. Lower Bounds for Perturbations of UDISJ

Now we apply Lemma 4 to show that the non-

negative rank (and hence the complexity of com-

putation in expectation) of any perturbed version

of the unique disjointness matrix remains high.

More precisely, let M ∈ R
2n×2n

+ ; for convenience

we index the rows and columns with elements in

{0,1}n. We say that M is a ρ-extension of UDISJ,
if Mab = ρ− 1 whenever |a∩b| = 1 and Mab = ρ
whenever a∩ b = /0 with a,b ∈ {0,1}n. Note that

for these pairs M has exclusively positive entries

whenever ρ > 1. For ρ = 1 a nonnegative rank of

2Ω(n) was already shown in [13] via nondetermin-

istic communication complexity. We now extend

this result for a wide range of ρ using Lemma 4.

Theorem 5 (Nonnegative rank of UDISJ perturba-

tions). Let M ∈R
2n×2n

+ be a ρ-extension of UDISJ
as above. If
(i) ρ is a fixed constant, then rank+(M) = 2Ω(n).
(ii) ρ = O(nβ ) for some constant β < 1/2 then

rank+(M) = 2Ω(n1−2β ).
Proof: Regarding the 2n× 2n matrix M as a

random variable over 2[n]×2[n], we apply Lemma 4
to X := M. Suppose that M has a rank-r non-
negative factorization. Therefore we can write X
as X(a,b) = ∑r

i=1 fi(a)gi(b) where fi and gi are
nonnegative functions defined over [2n] with i∈ [r].
Note that MIA = ρIA and MIB = (ρ − 1)IB and
so (1) reduces to p(ρ − 1) � (1− ε) p

1−p (1− p) ·
ρ − rp · ρ · 2− ε2

16ln2 n+O(logn) which gives the lower

bound r�
(

1
ρ − ε

)
2

ε2
16ln2 n+O(logn). If ρ is constant,

this last expression is 2Ω(n) provided ε is chosen
sufficiently close to 0. This proves part (i).

If ρ �Cnβ for some positive constant C, then we
can take ε = 1

2Cnβ . Thus
1
ρ − ε � 1

2Cnβ = Ω(n−β ).

This leads to the lower bound r � 2Ω(n1−2β ) as
claimed in part (ii).

IV. POLYHEDRAL INAPPROXIMABILITY OF

CLIQUE AND SDPS

We will now use Theorem 5 and Theorem 2 to

lower bound the sizes of certain approximate EFs.

A. A Hard Pair

Let n be a positive integer. The correlation
polytope COR(n) is defined as the convex hull of

all the n× n rank-1 binary matrices of the form

bbT where b ∈ {0,1}n. In other words, COR(n) =
conv({bbᵀ |b ∈ {0,1}n}). This will be our inner

polytope P. Next, let Q = Q(n) := {x ∈ R
n×n |

〈2diag(a)− aaᵀ,x〉 � 1, a ∈ {0,1}n}, where 〈·, ·〉
denotes the Frobenius inner product. This will be

our outer polyhedron Q.

Then the following is known, see [13]. First,

P⊆ Q. Second, denoting by SP,Q the slack matrix

of the pair P,Q, we have SP,Qab = (1−aᵀb)2. Thus,
for ρ � 1, we have SP,ρQ

ab = (1− aᵀb)2 + ρ − 1.
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Observe that the matrix SP,ρQ is a ρ-extension of

UDISJ and therefore has high nonnegative rank

via Theorem 5; moreover it has positive entries

everywhere for ρ > 1. Together with Theorem 1

this implies that every polytope sandwiched be-

tween P = COR(n) and ρQ has large extension

complexity. We obtain the following theorem.

Theorem 6 (Lower bounds for approximate EFs of

the hard pair). Let ρ � 1, let n be a positive integer
and let P= COR(n), Q=Q(n) be as above. Then
the following hold:
(i) If ρ is a fixed constant, then xc(P,ρQ) =

2Ω(n).
(ii) If ρ =O(nβ ) for some constant β < 1/2, then

xc(P,ρQ) = 2Ω(n1−2β ).

B. Polyhedral Inapproximability of CLIQUE

We define a natural linear encoding for the

maximum clique problem (CLIQUE) as follows.

Let n denote the number of vertices of the input

graph. We define a d = n2 dimensional encoding.

The variables are denoted by xi j for i, j ∈ [n].
Thus x ∈ R

n×n. The interpretation is that a set of

vertices X is encoded by xi j = 1 if i, j ∈ X and

xi j = 0 otherwise. Note that X = {i : xii = 1 can be

recovered from only the diagonal variables. This

defines the set L ⊆ {0,1}∗ of feasible solutions.

Notice that x ∈ {0,1}n×n is feasible if and only

if it is of the form x = bbᵀ for some b ∈ {0,1}n,
the characteristic vector of X . Thus we have P =
COR(n) for the inner polytope.

An objective function w ∈ R
n×n is admissible

if wii ∈ {0,1} for the diagonal coefficients and

wi j = wji ∈ {−1,0} for the off-diagonal coeffi-

cients. This defines the set O ⊆ {−1,0,1}∗ of

admissible objective functions.

Given a graph G such that V (G) ⊆ [n], we let

wii := 1 for i ∈ V (G), wii := 0 for i ∈ [n] \V (G),
wi j = wji := −1 when i j is a non-edge of G, and

wi j = wji := 0 otherwise. We denote the resulting

weight vector by wG. Notice that for a graph G
with V (G) = [n], we have wG = I−A(G) where I
is the n×n identity matrix, A(G) is the adjacency

matrix of the complement of G. A feasible solution

x= bbᵀ ∈ {0,1}n×n maximizes 〈wG,x〉 only if b is

the incidence vector of a clique of G. Indeed, if

b = χX and i j a non-edge in X then removing

i or j from X increases 〈w,x〉. Moreover, the

maximum of 〈wG,x〉 over x ∈ {0,1}n×n feasible

is the clique number ω(G). Therefore, (L ,O)
defines a valid linear encoding of CLIQUE. We

denote the outer convex set of this linear encoding

by Qall. It is actually the polyhedron defined as

Qall = {x ∈ R
n×n | ∀ graphs G s.t. V (G) ⊆ [n] :

〈wG,x〉� ω(G), ∀i �= j ∈ [n] : xi j � 0}.
Because Qall is contained in the polyhedron Q

defined above, every K satisfying P ⊆ K ⊆ ρQall

also satisfies P ⊆ K ⊆ ρQ. Hence, Theorem 6

yields the following result.

Theorem 7 (Polyhedral inapproximability of

CLIQUE). W.r.t. the linear encoding defined
above, CLIQUE has an O(n2)-size n-approximate
EF. Moreover, every n1/2−ε -approximate EF of
CLIQUE has size 2Ω(n2ε ), for all 0< ε < 1/2.

C. Polyhedral Inapproximability of SDPs

Recall that a spectrahedron is the projection to a

subspace of the intersection of the SDP cone and

an affine space. In this section we show that there

exists a spectrahedron with small semidefinite ex-

tension complexity but high approximate extension

complexity. This indicates that in general it is not

possible to approximate SDPs arbitrarily well using

LPs. (In contrast to SOCPs, see [37].) The result

follows from Theorem 6 and [13].

We denote the cone of all r × r symmetric

positive semidefinite matrices (shortly, the PSD

cone) by S
r
+. A semidefinite EF of a convex set

S⊆ R
d is a system Ex+Fy= g, y ∈ S

r
+ such that

x∈ S if and only if ∃y∈R
r(r+1)/2 with Ex+Fy= g,

y ∈ S
r
+. Thus a convex set admits a semidefinite

EF if and only if it is a spectrahedron. The size
of the semidefinite EF Ex+ Fy = g, y ∈ S

r
+ is

simply r. The semidefinite extension complexity of

a spectrahedron S ⊆ R
d is the minimum size of a

semidefinite EF of S. This is denoted by xcSDP(S).

Theorem 8 (Polyhedral inapproximability of

SDPs). Let ρ � 1, and let n be a positive integer.
Then there exists a spectrahedron S ⊆ R

n×n with
xcSDP(S) � n+ 1 such that for every polytope K
with S⊆ K ⊆ ρS the following hold:
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(i) If ρ is a fixed constant, then xc(K) = 2Ω(n).
(ii) If ρ =O(nβ ) for some constant β < 1/2, then

xc(K) = 2Ω(n1−2β ).

V. CONCLUSION

We have introduced a general framework to

study approximation limits of small LP relaxations.

Given a polyhedron Q encoding admissible objec-

tive functions and a polytope P encoding feasible

solutions, we have proved that any LP relaxation

sandwiched between P and a dilate ρQ has exten-

sion complexity at least the nonnegative rank of

the slack matrix of the pair P, ρQ.

This yields a lower bound depending only on

the linear encoding of the problem at hand, and

applies independently of the structure of the actual

relaxation. We obtain unconditional lower bounds

on integrality gaps for small LP relaxations.We

have proved that every polynomial-size LP relax-

ation for (a natural linear encoding of) CLIQUE

has approximately an Ω(
√
n) integrality gap.

Finally, our work sheds more light on the inher-

ent limitations of LPs in the context of approx-

imation algorithms.We provide strong evidence

that certain approximation guarantees can only

be achieved via non-LP-based techniques. We are

convinced that our framework can be used to obtain

strong approximation limits for (LP relaxations of)

other well-known problems such as Max CUT,

Max k-SAT and VERTEX COVER. The following

important questions remain open.

(i) Is it possible to show a constant-factor polyhe-

dral inapproximability for Max CUT with nonneg-

ative weights (and similarly for VERTEX COVER

and many more) for any polynomial-size LP? We

conjecture that it is not possible to approximate

Max CUT with LPs of poly-size within a factor

better than 2.

(ii) So far no strong lower bounding technique for

semidefinite EFs are known. Recent work by [38]

provides hope to obtain such lower bounds. In

fact the authors introduce a combinatorial lower

bounding technique that they apply to relaxations

of Max CUT and TSP. Although the details of

their approach are not yet available, it is plausible

that in the near future we will see lower bounding

techniques on the PSD rank that would be suited

for studying approximation limits of SDPs.
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