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Abstract—Let F be a finite set of graphs. In the F -
DELETION problem, we are given an n-vertex graph
G and an integer k as input, and asked whether
at most k vertices can be deleted from G such that
the resulting graph does not contain a graph from
F as a minor. F -DELETION is a generic problem
and by selecting different sets of forbidden minors
F , one can obtain various fundamental problems
such as VERTEX COVER, FEEDBACK VERTEX SET or
TREEWIDTH η-DELETION.

In this paper we obtain a number of generic
algorithmic results about F -DELETION, when F
contains at least one planar graph. The highlights
of our work are

• A constant factor approximation algorithm for
the optimization version of F -DELETION;

• A linear time and single exponential parameter-
ized algorithm, that is, an algorithm running in
time O(2O(k)n), for the parameterized version
of F -DELETION where all graphs in F are
connected;

• A polynomial kernel for parameterized F -
DELETION.

These algorithms unify, generalize, and improve a
multitude of results in the literature. Our main
results have several direct applications, but also the
methods we develop on the way have applicability
beyond the scope of this paper. Our results – constant
factor approximation, polynomial kernelization and
FPT algorithms – are stringed together by a common
theme of polynomial time preprocessing.

Keywords-approximation; f-deletion; kerneliza-
tion; fpt; algorithms; graphs;

I. INTRODUCTION

Let G be the set of all finite undirected graphs
and let L be the family of all finite subsets of
G . Thus every element F ∈ L is a finite set of
graphs and throughout the paper we assume that
F is explicitly given. In this paper we study the
following p-F -DELETION problem.

p-F -DELETION Parameter: k
Input: A graph G and a non-negative integer k.
Question: Does there exist S ⊆ V (G), |S| ≤ k,
such that G \ S contains no graph from F as a
minor?

The p-F -DELETION problem defines a wide sub-
class of node (or vertex) removal problems studied
from the 1970s. By the classical theorem of Lewis
and Yannakakis [49], deciding if removing at most
k vertices results with a subgraph with property π
is NP-complete for every non-trivial property π.
By a celebrated result of Robertson and Seymour,
every p-F -DELETION problem is non-uniformly
fixed-parameter tractable (FPT). That is, for every
k there is an algorithm solving the problem in
time O(f(k) · n3) [56]. The importance of the
result comes from the fact that it simultaneously
gives FPT algorithms for a variety of important
problems such as VERTEX COVER, FEEDBACK

VERTEX SET, VERTEX PLANARIZATION, etc. It
is conceivable that meta theorems for vertex dele-
tion problems might be formulated by addressing
problems that are expressible in logics such as
first order and monadic second order. However,
since these capture problems that are known to
be intractable, for example INDEPENDENT SET or
DOMINATING SET, we do not expect to have a
theorem that guarantees tractability for vertex dele-
tion problems through this route. Therefore, the
systematic study of the p-F -DELETION problems
is the more promising way forward to obtain meta-
theorems for vertex removal problems on general
undirected graphs.

In this paper we show that when F ∈ L
contains at least one planar graph, it is possible
to obtain a number of generic results advancing
known tractability borders of p-F -DELETION. The
case when F contains a planar graph, while being
considerably more restricted than the general case,
already encompasses a number of the well-studied
instances of p-F -DELETION. For example, when
F = {K2}, a complete graph on two vertices, this
is the VERTEX COVER problem. When F = {C3},
a cycle on three vertices, this is the FEEDBACK

VERTEX SET problem. Another fundamental prob-
lem, which is a special case of p-F -DELETION,
is TREEWIDTH η-DELETION or η-TRANSVERSAL

which is to delete at most k vertices to obtain a
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graph of treewidth at most η. Since any graph of
treewidth η excludes a (η+1)× (η+1) grid as a
minor, we have that the set F of forbidden minors
of treewidth η graphs contains a planar graph.
TREEWIDTH η-DELETION plays important role in
generic efficient polynomial time approximation
schemes based on Bidimensionality Theory [35],
[36]. Among other examples of p-F -DELETION

that can be found in the literature on approximation
and parameterized algorithms, are the cases of
F being {K2,3,K4}, {K4}, {θc}, and {K3, T2},
which correspond to removing vertices to obtain
an outerplanar graph, a series-parallel graph, a
diamond graph, and a graph of pathwidth one,
respectively.

The main algorithmic contributions of our work
is the following set of results for p-F -DELETION

for the case when F contains a planar graph:

• A constant factor approximation algorithm for
an optimization version of p-F -DELETION;

• A linear time and single exponential parame-
terized algorithm for p-F -DELETION when
all graphs in F are connected, that is, an
algorithm running in time O(2O(k)n), where
n is the input size;

• A polynomial kernel for p-F -DELETION.

We use F to denote the subclass of L such that
every F ∈ F contains a planar graph.

Methodology.: All our results – constant fac-
tor approximation, polynomial kernelization and
FPT algorithms for p-F -DELETION – have a
common theme of polynomial time preprocessing.
Preprocessing as a strategy for coping with hard
problems is universally applied in practice and the
notion of kernelization in parameterized complex-
ity provides a mathematical framework for ana-
lyzing the quality of preprocessing strategies. In
parameterized complexity each problem instance
comes with a parameter k and a central notion
in parameterized complexity is fixed parameter
tractability (FPT). This means, for a given instance
(x, k), solvability in time f(k) · p(|x|), where f is
an arbitrary function of k and p is a polynomial
in the input size. The parameterized problem is
said to admit a polynomial kernel if there is a
polynomial time algorithm (the degree of polyno-
mial is independent of k), called a kernelization
algorithm, that reduces the input instance down to
an instance with size bounded by a polynomial
p(k) in k, while preserving the answer.

Thus the goal of kernelization is to apply re-
duction rules such that the size of the reduced
instance can be upper bounded by a function of
the parameter. However, if we want to use prepro-
cessing for approximation or FPT algorithms, it is
not necessary that the size of the reduced instance
has to be upper bounded. What we need is a

Input Preprocessing

α-cover of size 
OPT

Size poly(k)

Poly kernel

c-approximation

Optimal FPT

Figure 1. General view of our approach

preprocessing procedure that allows us to navigate
the solution search space efficiently. Our first con-
tribution is a notion of preprocessing that is geared
towards approximation and FPT algorithms. This
notion relaxes the demands of kernelization and
thus it is possible that a larger set of problems
may admit this simplification procedure, when
compared to kernelization. For approximation and
FPT algorithms, we use the notion of α-cover as
a measure of good preprocessing. For 0 < α ≤ 1,
we say that a vertex subset S ⊆ V (G) is an α-
cover, if the sum of vertex degrees

∑
v∈S d(v)

is at least 2α|E(G)|. For example, every vertex
cover of a graph is also a 1-cover. The defining
property of this preprocessing is that the equivalent
simplified instance of the problem admits some
optimal solution which is also an α-cover. If we
succeed with this goal, then for an edge selected
uniformly at random, with a constant probability
at least one of its endpoints belong to some op-
timal solution. Using this as a basic step, we can
construct approximation and FPT algorithms. But
how to achieve this kind of preprocessing?

To achieve our goals we use the idea of
graph replacement dating back to Fellows and
Langston [30]. Precisely, what we use is the mod-
ern notion of “protrusion reduction” that has been
recently employed in [13], [37] for obtaining meta-
kernelization theorems for problems on sparse
graphs like planar graphs, graphs of bounded genus
[13], graphs excluding a fixed graph as a minor or
induced subgraph [37], [34], or graphs excluding
a fixed graph as a topological minor [48]. In this
method, we find a large protrusion – a graph of
small treewidth and small boundary – and then
the preprocessing rule replaces this protrusion by a
protrusion of constant size. One repeatedly applies
this until no longer possible. Finally, by using
combinatorial arguments one upper bounds the
size of the reduced induced (a graph without large
protrusion). The FPT algorithms use the replace-
ment technique developed in [13], [34], while for
approximation algorithm we need another type of
protrusion reduction. The reason why the normal
protrusion replacement does not work for approx-
imation algorithms is the same as why the NP-
hardness reduction is not always an approximation
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preserving reduction. While the normal protrusion
replacement works fine for preserving exact solu-
tions, we needed a notion of protrusion reduction
that also preserves approximate solutions. To this
end, we develop a new notion of lossless protru-
sion reduction, and show that several problems do
admit lossless protrusion reductions. We exemplify
the usefulness of the new concept by obtaining
constant factor approximation algorithms for F -
DELETION. These FPT and approximation algo-
rithms are obtained by showing that solutions to
the instances of the problem that do not contain
protrusion form an α-cover for some constant α.

Our final result is about kernelization for p-F -
DELETION. While protrusion replacements work
well for constant factor approximation and optimal
FPT algorithms, we do not know how to use this
technique for kernelization algorithms for p-F -
DELETION. The technique was developed and used
successfully for kernelization algorithms on sparse
graphs [13], [37] but there are several limitations
of this techniques which do not allow to use it on
general graphs. Even for a sufficiently simple case
of p-F -DELETION, namely when F is a graph
with two vertices and constant number of parallel
edges, to apply protrusion replacements we have to
do a lot of additional work to reduce large vertex
degrees in a graph [34]. We do not know how to
push these techniques for more complicated fam-
ilies families F and therefore, employ a different
strategy. The new conceptual contribution here is
the notion of a near-protrusion. Loosely speaking,
a near-protrusion is a subgraph which can become
a protrusion in the future, after removing some
vertices of some optimal solution. The usefulness
of near-protrusions is that they allow to find an
irrelevant edge, i.e., an edge which removal does
not change the problem. However, finding an ir-
relevant edge is highly non-trivial, and it requires
the usage of well-quasi-ordering for graphs of
bounded treewdith and bounded boundary as a
subroutine.

As far as we are equipped with new tools and
concepts: α-cover, lossless protrusion reduction
and pseudo-protrusions, we are able to proceed
with algorithms for p-F -DELETION. These algo-
rithms unify and generalize a multitude of results
in the literature. In what follows we survey earlier
results in each direction and discuss our results.

Approximation.: In the optimization version
of p-F -DELETION, we want to compute the min-
imum set S, which removal leaves input graph G
F-minor-free. We denote this optimization prob-
lem by F -DELETION. Characterising graph prop-
erties for which the corresponding vertex deletion
problem can be approximated within a constant
factor is a long standing open problem in approx-

imation algorithms [59]. In spite of long history
of research, we are still far from a complete
understanding. Constant factor approximation al-
gorithms for VERTEX COVER are known since
1970s [51], [4]. Lund and Yannakakis observed
that the vertex deletion problem for any hered-
itary property with a finite number of minimal
forbidden subgraphs can be approximated with a
constant ratio [50]. They also conjectured that for
every nontrivial, hereditary property with an infi-
nite number of minimal forbidden subgraphs, the
vertex deletion problem cannot be approximated
with constant ratio. However, it appeared later that
FEEDBACK VERTEX SET admits a constant factor
approximation [5] and thus the dividing line of
approximability lies somewhere else. On a related
matter, Yannakakis [58] showed that approximat-
ing the number of vertices to delete in order
to obtain connected graph with some property π
within factor n1−ε is NP-hard, see [58] for the
definition of the property π. This result holds for
very wide class of properties, in particular for
properties being acyclic and outerplanar. There
was no much progress on approximability/non-
approximability of vertex deletion problems until
recent work of Fiorini et al. [32] who gave a
constant factor approximation algorithm for p-F -
DELETION for the case when F is a diamond
graph, i.e., a graph with two vertices and three
parallel edges.

Our first contribution is the theorem stating that
every graph property π expressible by a finite set
of forbidden minors containing at least one planar
graph, the vertex deletion problem for property π
admits a constant factor approximation algorithm.
In other words, we prove the following theorem

Theorem 1. For every set F ∈ F , F -DELETION

admits a randomized constant ratio approximation
algorithm.

Let us remark that for all known constant factor
approximation algorithms of vertex deletion to a
hereditary property π, property π is either charac-
terized by an finite number of minimal forbidden
subgraphs or by finite number of forbidden mi-
nors, one of which is planar. Theorem 1 together
with the result of Lund and Yannakakis, not only
encompass all known vertex deletion problems
with constant factor approximation ratio but sig-
nificantly extends known tractability borders for
such types of problems.

Kernelization.: The study of kernelization is a
major research frontier of Parameterized Complex-
ity and many important recent advances in the area
are on kernelization. These include general results
showing that certain classes of parameterized prob-
lems have polynomial kernels [3], [13], [37], [46].
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The recent development of a framework for ruling
out polynomial kernels under certain complexity-
theoretic assumptions [12], [23], [38] has added
a new dimension to the field and strengthened its
connections to classical complexity. For overviews
of kernelization we refer to surveys [11], [40]
and to the corresponding chapters in books on
Parameterized Complexity [33], [52].

One of the fundamental challenges in the area
is the possibility of characterising general classes
of parameterized problems possessing kernels of
polynomial sizes. Polynomial kernels for several
special cases of p-F -DELETION were studied in
the literature. Different kernelization techniques
were invented for VERTEX COVER, eventually
resulting in a 2k-sized vertex kernel [1], [18],
[42]. For the kernelization of FEEDBACK VERTEX

SET, there has been a sequence of dramatic im-
provements starting from an O(k11) vertex kernel
by Buragge et al. [14], improved to O(k3) by
Bodlaender [10], and then finally to O(k2) by
Thomassé [57]. A polynomial kernel for p-F -
DELETION for class F consisting of a graph with
two vertices and several parallel edges is given
in [34]. Philip et al. [53] and Cygan et al. [21]
obtained polynomial kernels for PATHWIDTH 1-
DELETION. Our next theorem generalizes all these
kernelization results.

Theorem 2. For every set F ∈ F , p-F -
DELETION admits a polynomial kernel.

In fact, we prove more general result—the ker-
nelization algorithm of Theorem 3 always out-
puts a minor of the input graph. This has inter-
esting combinatorial consequences. By Robertson
and Seymour theory every non-trivial minor-closed
class of graphs can be characterized by a finite set
of forbidden minors or obstructions. While Graph
Minors Theory insures that many interesting graph
properties have finite obstructions sets, these seem
to be disappointingly huge in many cases. There
are a number of results that bound the size of the
obstructions for specific minor closed families of
graphs. Fellows and Langston [30], [31] suggested
a systematic method of computing the obstructions
sets for many natural properties, see also the recent
work of Adler et al. [2]. Bodendiek and Wagner
gave bounds on sizes of obstructions of genus
at most k [7], later improved by Djidjev and
Reif [26]. Gupta and Impagliazzo studied bounds
on the size of a planar intertwine of two given
planar graphs [41]. Lagergren [47] showed that the
number of edges in every obstruction to a graph
of treewidth k is at most double exponential in
O(k5). Dvořák et al. [28] provide similar bound
on obstructions to graphs of tree-depth at most k.
Dinneen and Xiong have shown that the number of

vertices in connected obstruction for graphs with
vertex cover at most k is at most 2k + 1 [25].
Obstructions for graphs with feedback vertex set of
size at most k is discussed in the work of Dinneen
et al. [24].

For a finite set of graphs F , let GF,k be a class
of graphs such that for every G ∈ GF,k there is
a subset of vertices S of size at most k such that
G \ S has no minor from F . As a corollary of
kernelization algorithm, we obtain the following
combinatorial result.

Theorem 3. For every set F ∈ F , every minimal
obstruction for GF,k is of size polynomial in k.

Fast FPT Algorithms.: The study of param-
eterized problems proceeds in several steps. The
first step is to establish if the problem on hands
is fixed parameter tractable or not. If the problem
is in FPT, then the next steps are to identify if
the problem admits a polynomial kernel and to
find the fastest possible FPT algorithm solving the
problem. The running time of every FPT algorithm
is O(f(k)nc), that is, the product of a super-
polynomial function f(k) depending only on the
parameter k and polynomial nc, where n is the
input size and c is some constant. Both steps,
minimizing super-polynomial function f(k) and
minimizing the exponent c of the polynomial part,
are important parts in the design and analysis of
parameterized algorithms.

The p-F -DELETION problem was introduced
by Fellows and Langston [29], who gave a non-
constructive algorithm running in time O(f(k)·n2)
for some function f(k) [29, Theorem 6]. This
result was improved by Bodlaender [8] to O(f(k)·
n), for f(k) = 22

O(k log k)

. There is a substantial
amount of work on improving the exponential
function f(k) for special cases of p-F -DELETION.
For the VERTEX COVER problem the existence of
single-exponential algorithms is well-known since
almost the beginnings of the field of Parameterized
Complexity, the current best algorithm being by
Chen et al. [19]. Randomized parameterized sin-
gle exponential algorithm for FEEDBACK VERTEX

SET was given by Becker et al. [6] but existence
of deterministic single-exponential algorithms for
FEEDBACK VERTEX SET was open for a while
and it took some time and discovery of iterative
compression [55] to reduce the running time to
2O(k)nO(1) [15], [17], [20], [22], [39], [54]. The
current champion for FEEDBACK VERTEX SET are
the deterministic algorithm of Cao et al. [15] with
running time O(3.83kkn2) and the randomized
of Cygan et al. with running time time 3knO(1)

[20]. Recently, Joret et al. [44] showed that p-F -
DELETION for F = {θc}, where θc is the graph
with two vertices and c parallel edges, can be
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solved in time 2O(k)nO(1) for every fixed c. Philip
et al. [53] studied PATHWIDTH 1-DELETION and
obtained an algorithm with running time O(7kn2)
that was later improved to O(4.65knO(1)) in [21].
Kim et al. [45] gave a single exponential algorithm
for F = {K4}. Unless Exponential Time Hy-
pothesis (ETH) fails [16], [43], single exponential
dependence on the parameter k is asymptotically
the best bound one can obtain for p-F -DELETION,
and thus our next theorem provides asymptotically
optimal bounds on the exponential function of
the parameter and polynomial contribution of the
input.

We call a family F ∈ F connected if every
graph in F is connected.

Theorem 4. For every connected set F ∈ F
containing a planar graph, there is a randomized
algorithm solving p-F -DELETION in time O(ckn)
for some constant c > 1.

We finally give a deterministic algorithm for
p-F -DELETION. Surprisingly, our algorithm does
not use iterative compression but is based on
branching on degree sequences.

Theorem 5. For every connected set F ∈ F
containing a planar graph, p-F -DELETION is
solvable in time O(ckn log2 n) for some constant
c > 1.

II. PRELIMINARIES

We use V (G) to denote the vertex set of a graph
G, and E(G) to denote the edge set. The degree of
a vertex v in G is the number of edges incident on
v, and is denoted by d(v). We use tw(G) to denote
the treewidth of the input graph. The following fact
about excluding planar graphs as minors will be
useful.

Proposition 1. There is a constant c such that
for every planar H and graph G with tw(G) ≥
2c|V (H)|3 , H is a minor of G.

A t-boundaried graph is a graph G and a set
B ⊆ V (G) of size at most t with each vertex
v ∈ B having a label �G(v) ∈ {1, . . . , t}. Each
vertex in B has a unique label. We refer to B as the
boundary of G. For a t-boundaried G the function
δ(G) returns the boundary of G. Two t-boundaried
graphs G1 and G2 can be glued together to form
a graph G = G1⊕G2. The gluing operation takes
the disjoint union of G1 and G2 and identifies
the vertices of δ(G1) and δ(G2) with the same
label. If there are vertices u1, v1 ∈ δ(G1) and
u2, v2 ∈ δ(G2) such that �G1

(u1) = �G2
(u2) and

�G1(v1) = �G2(v2) then G has vertices u formed
by unifying u1 and u2 and v formed by unifying
v1 and v2. The new vertices u and v are adjacent
if u1v1 ∈ E(G1) or u2v2 ∈ E(G2).

Finite Integer Index.: For a parameterized
problem Π and two t-boundaried graphs G1, G2 ∈
G, we say that G1 ≡Π G2 if there exists a constant
c such that for every t-boundaried graph G and for
every integer k, (G1 ⊕ G, k) ∈ Π if and only if
(G2⊕G, k+ c) ∈ Π. For every t, the relation ≡Π

on t-boundaried graphs is an equivalence relation,
and we call ≡Π the canonical equivalence relation
of Π. We say that a problem Π has Finite Integer
Index if for every t, ≡Π has finite index on t-
boundaried graphs. Thus, if Π has finite integer
index then for every t there is a finite set S of
t-boundaried graphs for every t-boundaried graph
G1 there exists G2 ∈ S such that G2 ≡Π G1.
Such a set S is called a set of representatives
for (Π, t). We will repeatedly make use of the
following proposition.

Proposition 2 ([13]). For every connected F ∈
F , F -DELETION has finite integer index.

Protrusions and Protrusion Replacement: For
a graph G and S ⊆ V (G), we define ∂G(S) as the
set of vertices in S that have a neighbor in V (G)\
S. For a set S ⊆ V (G) the neighbourhood of S
is NG(S) = ∂G(V (G) \S). When it is clear from
the context, we omit the subscripts. A r-protrusion
in a graph G is a set X ⊆ V such that |∂(X)| ≤ r
and tw(G[X]) ≤ r. If G is a graph containing a
r-protrusion X and X ′ is a r-boundaried graph,
the act of replacing X by X ′ means replacing G

by G
∂(X)
V (G)\X ⊕X ′.

A protrusion replacer for a parameterized graph
problem Π is a family of algorithms, with one
algorithm for every constant r. The r’th algorithm
has the following specifications. There exists a
constant r′ (which depends on r) such that given
an instance (G, k) and an r-protrusion X in G
of size at least r′, the algorithm runs in time
O(|X|) and outputs an instance (G′, k′) such that
(G′, k′) ∈ Π if and only if (G, k) ∈ Π, k′ ≤ k
and G′ is obtained from G by replacing X by a r-
boundaried graph X ′ with less than r′ vertices.
Observe that since X has at least r′ vertices
and X ′ has less than r′ vertices this implies that
|V (G′)| < |V (G)|. The following proposition is
the driving force of [13] and the starting point for
our algorithms.

Proposition 3 ([13]). Every parameterized prob-
lem with finite integer index has a protrusion
replacer.

Together, Propositions 2 and 3 imply that for
every connected F ∈ F , F -DELETION has a
protrusion replacer.

Least Common Ancestor-Closure of Sets in
Trees.: For a rooted tree T and vertex set M in
V (T ) the least common ancestor-closure (LCA-
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closure) LCA-closure(M) is obtained by the fol-
lowing process. Initially, set M ′ = M . Then, as
long as there are vertices x and y in M ′ whose
least common ancestor w is not in M ′, add w to
M ′. When the process terminates, output M ′ as the
LCA-closure of M . The following folklore lemma
summarizes two basic properties of LCA closures.

Lemma 1. Let T be a tree, M ⊆ V (T ) and
M ′ = LCA-closure(M). Then |M ′| ≤ 2|M |
and for every connected component C of T \M ′,
|N(C)| ≤ 2.

III. ALGORITHMS FOR “CONNECTED”
p-F -DELETION

In this section we give a randomized FPT al-
gorithm for p-F -DELETION when every graph
in F ∈ F is connected, that is, when F is
connected. We will show that for every connected
F the algorithm runs in polynomial time, with
the exponent of the polynomial depending on the
family F . If the input graph has a F-deletion set
of size at most k, the algorithm will detect a F-
deletion set of size at most k with probability at
least 1

ck
. Here the constant c depends on F . The

algorithm has no false positives - we show that if
it reports that a F-deletion set of size at most k
exists then G indeed has such a set.

In the full version of the paper we give an imple-
mentation of the algorithm with expected running
time O(n · OPT ). Then we show how to modify
(speed up) the algorithm so that it not only decides
whether G has a F-deletion set of size at most k,
but also outputs a solution. We show that if G has a
F-deletion set of size at most k, the algorithm will
output a solution of size k with probability at least
1
ck

. We then proceed to show that this algorithm in
fact outputs constant factor approximate solutions
with constant probability, yielding a constant factor
approximation for p-F -DELETION for connected
F in expected O(n ·OPT ) time. The main struc-
ture of the improved algorithm remains the same
as the one described here.

The first building block of our algorithm is a
simple algorithm to reduce the input instance to
an equivalent instance that does not contain any
large protrusions with a small border.

Lemma 2. For every F ∈ F and constants r
and r′ such that p-F -DELETION has a protrusion
replacer that reduces r-protrusions of size r′, there
is an algorithm that takes as input an instance
(G, k) of p-F -DELETION, runs in nO(r′) time and
outputs an equivalent instance (G′, k′) such that
|V (G′)| ≤ V (G), k′ ≤ k and G′ has no r-
protrusion of size at least r′.

Proof: It is sufficient to give a nO(r′) time
algorithm to find a r-protrusion X in G of size

Randomized-FPT-beta((G,k))
Set Gcurrent := G and kcurrent := k.
While (Gcurrent is not F-free) do as follows:

1) If kcurrent ≤ 0 return that G does not
have a k-sized F-deletion set .

2) Apply Lemma 2 on (Gcurrent, kcurrent)
and obtain an equivalent instance
(G′, k′).

3) Pick a vertex u ∈ V (G) at random with

probability
d(u)
2m . Set Gcurrent := G′ \

{u} and kcurrent := k′ − 1

Return that G has a k-sized F-deletion set .

Figure 2. In Algorithm Randomized-FPT-beta, let r
be the constant as guaranteed by Lemma 3 and let r′ be
the smallest integer such that the protusion replacer for
F -DELETION reduces r-protrusions of size r′.

at least r′, if such a protrusion exists. If we had
such an algorithm to find a protrusion we could
keep looking for r-protrusions X in G of size at
least r′, and if one is found replacing them using
the protrusion replacer. Since each replacement de-
creases the number of vertices by one we converge
to an instance (G′, k′) with the desired properties
after at most n iterations.

To find an r-protrusion of size at least r′ ob-
serve that if such a protrusion exists, then there
must be at least one such protrusion X such that
G[X\∂(X)] has at most r′ connected components.
Indeed, if G[X\∂(X)] has more than r′ connected
components then let X ′ be ∂(X) plus the union of
any r′ components of G[X \∂(X)]. Now X ′ is an
r-protrusion of size at least r′ and G[X ′ \ ∂(X ′)]
has at most r′ components. To find a r-protrusion
X of size at least r′ on at most r′ components,
guess ∂(X) and then guess which components of
G \ ∂(X) are in X . The size of the search space

is bounded by nr · nr′ and for each candidate X
we can test whether it is a protrusion in linear
time using Bodlaender’s linear time treewidth al-
gorithm [9].

The second building block of our algorithm is
a lemma whose proof we postpone until the end
of this section. The lemma states that for any
F ∈ F , if G contains no large protrusions with
small border then any feasible solution to p-F -
DELETION is incident to a linear fraction of the
edges of G. Recall that an α-cover in G is a set S
such that

∑
v∈S d(v) ≥ α·∑v∈V (G) d(v) = 2α·m.

Lemma 3. For every F ∈ F there exist constants
r and α such that if a graph G has no r-protrusion
of size at least r′, then every F-deletion set S of
G is a α

r′ -cover of G.

We now combine Lemmata 2 and 3 to give a
randomized algorithm for p-F -DELETION for all
F ∈ F such that each graph in F is connected.
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Lemma 4. Algorithm 2 runs in polynomial time,
if (G, k) is a “no” instance it outputs “no” and
if (G, k) is a “yes” instance it outputs “yes”
with probability at least 1

ck
where c is a constant

depending only on F .

Proof: Since each iteration runs in polyno-
mial time and reduces the number of vertices
in Gcurrent by at least one, Algorithm 2 runs
in polynomial time. Furthermore, Step 2 reduces
the instance to an equivalent instance with k′ ≤
kcurrent and Step 3 only decreases kcurrent when
it puts a vertex into the solution. Hence when the
algorithm outputs “yes” then a k-sized F-deletion
set exists. It remains to show the last part of the
statement.

We say that an iteration of Step 3 is successful if
there exists a F-deletion set S of G′ with |S| ≤ k′

such that the vertex u selected in this step is in
S. If the step is successfull then S \ {u} is a F-
deletion set of G′ of size at most k′ − 1. Thus, if
the input graph G has a k-sized F-deletion set and
all the iterations of Step 3 are successful then the
algorithm maintains the invariant that Gcurrent has
a F-deletion set of size at most kcurrent, and thus
after at most k iterations it terminates and outputs
that (G, k) is a “yes” instance. When Step 3 is
executed the graph G′ has no r-protrusions of size
at least r′. Thus by Lemma 3 every F-deletion set
set of G′ is an α

r′ -cover for a constant α depending
only on F . Hence the probability that u is in a
minimum size F-deletion set of G′ is at least α

r′ .
We conclude that the probability that the first k
executions of Step 3 are successful is at least ( α

r′ )
k

concluding the proof.

Repeating the algorithm presented in Figure 2,
O(ck) times, yields a O(2O(k)nO(1)) time al-
gorithm for p-F -DELETION for all connected
F ∈ F . However we are not entirely done with
the proof of Lemma 4, as it remains to prove
Lemma 3. In order to complete the proof we need
to define protrusion decompositions.

Protrusion Decompositions and Proof of
Lemma 3. We recall the notion of a protrusion
decomposition defined in [13] and show that if a
graph G has a set X such that tw(G \ X) ≤ d,
then it admits a protrusion decomposition for an
appropriate value of the parameters. We then use
this result to prove Lemma 3.

Definition 1. [Protrusion Decomposition][13] A
graph G has an (α, β)-protrusion decomposition
if V (G) has a partition P = {R0, R1, . . . , Rt}
where

• max{t, |R0|} ≤ α,
• each NG[Ri], i ∈ {1, . . . , t} is a β-protrusion

of G, and
• for all i > 1, N [Ri] ⊆ R0.

We call the sets R+
i = NG[Ri], i ∈ {1, . . . , t}

protrusions of P .

We can now show that for every F ∈ F every
graph with an F-deletion set X has an (α, β)-
protrusion decomposition where β is constant and
α = O(|N [X]|).
Lemma 5 (Protrusion Decomposition Lemma).
If a n-vertex graph G has a vertex subset X
such that tw(G \ X) ≤ b, then G admits a
((4|N [X]|)(b+ 1), 2(b+ 1))-protrusion decompo-
sition. Furthermore, if we are given the set X then
this protrusion decomposition can be computed in
linear time. Here b is a constant.

We are now in a position to prove Lemma 3.

Proof of Lemma 3.: We need to prove that
for every F ∈ F there exist constants r and α
such that if a graph G has no r-protrusion of size
at least r′, then every minimal F-deletion set S
of G is a α

r′ -cover of G. By Proposition 1 there
exists a constant η depending only on F such
that tw(G \ S) ≤ η. By Lemma 5, G has a
((4|N [S]|)(η + 1), 2(η + 1))-protrusion decompo-
sition R0 . . . Rt. Set r = 2(η + 1) and suppose G
has no r-protrusions of size at least r′. Then t ≤
(4|N [S]|)(η+1), |R0| ≤ (4|N [S]|)(η+1) and so
|V (G)| = |R0|+

∑
i |Ri| ≤ (4|N [S]|)(η+1)(r′+

1) ≤ (8|N [S]|)(η+1)r′. Since tw(G\S) ≤ η+1
it follows that G \ S is (η + 1)-degenerate and
so

∑
v∈V (G)\S d(v) ≤ (8|N [S]|)(η + 1)2r′. Set

α = 1
18(η+1)2 and observe that

∑

v∈V (G)

d(v) ≤
∑

v∈S

d(v) +
∑

v∈V (G)\S
d(v)

≤
∑

v∈S

d(v) + (8|N [S]|)(η+1)2r′ ≤ r

α
·
∑

v∈S

d(v).

The last inequality follows from the fact that there
is no vertex of degree 0 in S.

Approximation Algorithms. We can show that
the algorithm given in Figure 2 gives a random-
ized constant factor approximation algorithm for
F -DELETION, an optimization version of p-F -
DELETION. However for this we need a notion
of protrusion replacer that is also approximation
preserving. Towards this we introduce the notion of
lossless protrusion replacer. A lossless protrusion
replacer is essentially a protrusion replacer that
reduces protrusions in such a way that any feasible
solution to the reduced instance can be changed
into a feasible solution of the original instance
without changing the gap between the feasible
solution and the optimum. More precisely it can
be defined as follows.

Definition 1 (Lossless Protrusion Replacer). A
lossless protrusion replacer for a vertex subset
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problem Π is a family of algorithms, with one
algorithm for every constant r. The r’th algorithm
has the following specifications. There exists a
constant r′ (which depends on r) such that given
an instance G and an r-protrusion X in G of
size at least r′, the algorithm runs in time O(|X|)
and outputs an instance G′ with the following
properties.

• G′ is obtained from G by replacing X by
a r-boundaried graph X ′ with less than r′

vertices and thus |V (G′)| < |V (G)|.
• OPT (G′) ≤ OPT (G).
• There is an algorithm that runs in O(|X|)

time and given a feasible solution S′ to G′

outputs a set X∗ ⊆ X such that S = (S′ \
X ′)∪X∗ is a feasible solution to G and |S| ≤
|S′|+OPT (G)−OPT (G′).

We show that not only F -DELETION but a
large number of vertex subset problems, that are
“strongly monotone” [13], admit lossless protru-
sion replacer. Then using this rather than the
normal protrusion replacer in the algorithm given
in Figure 2 and letting the algorithm run until the
current graph does not have any graph from F
as a minor, gives us a randomized constant factor
approximation algorithm.

Fast Protrusion Replacement Algorithms. What
makes the polynomial factor of the algorithm given
in Figure 2 large is the algorithm of Lemma 2
to remove all large enough protrusions with small
border size. However, one can show that reducing
almost all protrusions instead of all protrusions
is sufficient to speed up the algorithm given in
Figure 2. We show that if the graph G on n vertices
satisfies that n > ck, then then there exists a
protrusion decomposition having α > n

d for some
fixed constant d. Then we show that in expected
linear time we can discover some constant fraction
of these protrusions and replace them. Since each
protrusion replacement reduces the size of the
graph by at least one, we have that the size of
the reduced instance is a constant factor smaller
than the original graph. A repeated application of
this idea gives us our fast protrusion replacers.

IV. AN OVERVIEW OF THE KERNELIZATION

ALGORITHM

Towards kernelization, we begin by showing that
any yes-instance G to F-DELETION has a set
D of O(k3) vertices such that every connected
component C of G\D is a near-protrusion. Recall
that a r-protrusion C in a graph G is a vertex
set such that |∂(C)| ≤ r and tw(G[C]) ≤ r.
The components of G \D will not necessarily be
protrusions, however we will prove that there is
a constant r such that if (G, k) is a yes instance,

then for any F-deletion set S of size at most k,
C \ S is a r-protrusion of G \ S.

The algorithm begins by running a c-
approximation algorithm for F-DELETION.
If the solution returned by the approximation
algorithm is more than ck, the the kernelization
algorithm returns a trivial no instance. Otherwise,
let X denote the approximate solution. Based on
X , and exploiting the fact that G\X has constant
treewidth (say η), we are able to construct
Z ⊆ G \ X on O(k3) vertices such that: (a) for
every connected component C of G \ (X ∪ Z),
|N(C) ∩ Z| ≤ 2(η + 1), and (b) for every
connected component C of G \ (X ∪ Z), and u,
v ∈ N(C) ∩X there are at least k + η + 3 vertex
disjoint paths from u to v in G.

We now consider the sets X and Z and a single
component C of G\(X∪Z). We show that if C is
“too large”, then it is “not doing its job efficiently”.
In particular we prove that there exists a constant α
depending only on F such that if |C| ≥ α·kα then
there exists an edge e with at least one endpoint
in C, an edge e′ with both endpoints in C, or a
vertex v ∈ C such that deleting e, contracting e′ or
deleting v does not change whether G has an F-
deletion set of size at most k. Let G′ be the graph
obtained from G by doing this minor operation. If
G does have an F-deletion set of size at most k
then G′ does as well, since minor operations can
not increase the size of the minimum F-deletion
set. Thus it is sufficient to prove that if G does not
have an F-deletion of size at most k, then neither
does G′. We prove this by showing that for any
set S on at most k vertices, if G \ S contains a
copy of a graph H in F as a minor, then one
of the following two things must happen in G′.
Either the treewidth of G′ \ S is more than η, or
the model of H in G\S can be modified such that
the minor operation used to obtain G′ from G does
not destroy it. In both cases this yields a proof that
S is not a F-deletion in G′. This leads to the first
reduction rule, which is designed to ensure that the
proof of correctness works as described.

We introduce the notion of an interesting set,
and their signatures. The formal definitions are
beyond the scope of this abridged discussion. We
note that if P ⊆ C is interesting, then it has
a constant-sized neighborhood in G \ X . Call
B ⊆ V (G) a candidate boundary set if it satisfies
that outside X , B is contained in N(P ), and
|B ∩X| ≤ η + 1. Let Q denote the family of all
graphs on |B|+h vertices with boundary set B. For
a family Q of t-boundaried graphs, a Q-deletion
set for a t-boundaried graph G is a subset of ver-
tices S such that G\S does not contain any graph
from Q as a boundaried minor. The signature of P
is a function that records the size of the smallestQ-
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deletion set for GB
P (which denotes the graph with

boundary B and internal set P ), for all candidate
boundary sets B and the corresponding families
Q. The k-truncated signature simply agrees with
the signature whenever the output is at most k,
and returns infinity otherwise. This brings us to
the first reduction rule.

Reduction Rule 1. Let P be an interesting set
and let G′ and P ′ be obtained from G and P
respectively by deleting a vertex of P , deleting
an edge with at least one endpoint in P , or
contracting an edge with both endpoints in P . If
the k-truncated signatures σk

P of P and σk
P ′ of P ′

are identical, that is σk
P (B,Q) = σk

P ′(B,Q) for
every (B,Q), then reduce (G, k) to (G′, k).

If Rule 1 can not be applied but the input graph
G is still large, the number of components of G\X
must be large. For a component C, a candidate
boundary set B and a boundaried graph H with
B as boundary, we say that C realizes (B,H) if
H ≤m GB

C . We say that a pair (B,H) is rich if
there are at least |X|+|Z|+k+(h+3(η+1))2+2
components. We then have the following reduction
rule, which amounts to showing that whenever the
number of components in G \X is too large then
we can remove a vertex from one of them.

Reduction Rule 2. If there is a component C of
G \ (X ∪ Z) such that every pair (B,H) that C
realizes is rich, remove an arbitrary vertex v from
C.

Since X is a solution returned by a constant-
factor approximation algorithm, we have that
|X| = O(k). We also have that |Z| = O(k3)
by construction. Further, it can be shown with
a careful analysis that in a graph reduced with
respect to the first reduction rule, the size of each
component of G \ (X ∪ Z) is kO(1). Finally,
reduction with respect to the second reduction
rule ensures that the number of components of
G \ (X ∪ Z) is kO(1).

V. CONCLUSIONS AND OPEN PROBLEMS

The techniques of fast protrusion reductions de-
veloped for p-F -DELETION have a broader spec-
trum of applications which we mention briefly. By
combining results from [37] with fast protrusion
reducers, we have that kernelization algorithms on
apex-free and H-minor free graphs for all bidi-
mensional problems from [37] can be implemented
in linear time if we use randomized protrusion
reducer and in time O(n log2 n) when we use
deterministic reducer. This gives randomized linear
time linear kernels for a multitude of problems.

In the framework for obtaining EPTAS on H-
minor-free graphs in [35], the running time of

approximation algorithms for many problems is
f(1/ε) ·nO(g(H)), where g is some function of H
only. The only bottleneck for improving polyno-
mial time dependence in [35] is Lemma 4.1, which
gives a constant factor approximation algorithm for
TREEWIDTH η-DELETION or η-TRANSVERSAL

of running time nO(g(H)). Now instead of that
algorithm, we can use the algorithm from Theo-
rem 1, which runs in time O(n2). Therefore each
EPTAS from [35] runs in time O(f(1/ε) ·n2). For
the same reason, PTAS for many problems on unit
disc and map graphs from [36] become EPTAS.

Finally, an interesting direction for further re-
search is to investigate p-F -DELETION when none
of the graphs in F is planar. The most interesting
case here is when F = {K5,K3,3} aka the
VERTEX PLANARIZATION problem. Surprisingly,
we are not aware even of a single case of p-
F -DELETION with F containing no planar graph
admitting either constant factor approximation, or
polynomial kernelization, or parameterized single-
exponential algorithms. It is tempting to conjec-
ture that the line of tractability is determined by
whether F contains a planar graph or not.
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[57] S. Thomassé. A quadratic kernel for feedback vertex set.
In SODA 2009, pages 115–119. ACM-SIAM, 2009.

[58] M. Yannakakis. The effect of a connectivity requirement
on the complexity of maximum subgraph problems. J.
ACM, 26(4):618–630, 1979.

[59] M. Yannakakis. Some open problems in approximation.
In CIAC 1994, volume 778 of Lecture Notes in Comput.
Sci., pages 33–39, 1994.

479


