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Abstract—We introduce a new technique for designing fixed-
parameter algorithms for cut problems, namely randomized
contractions. With our framework:

• We obtain the first FPT algorithm for the parameterized
version of the UNIQUE LABEL COVER problem, with single
exponential dependency on the size of the cutset and the
size of the alphabet. As a consequence, we extend the set of
the polynomial time solvable instances of UNIQUE GAMES

to those with at most O(
√

log n) violated constraints.
• We obtain a new FPT algorithm for the STEINER CUT

problem with exponential speed-up over the recent work
of Kawarabayashi and Thorup (FOCS’11).

• We show how to combine considering ‘cut’ and ‘uncut’
constraints at the same time. We define a robust prob-
lem NODE MULTIWAY CUT-UNCUT that can serve as an
abstraction of introducing uncut constraints, and show
that it admits an FPT algorithm with single exponential
dependency on the size of the cutset. To the best of
our knowledge, the only known way of tackling uncut
constraints was via the approach of Marx, O’Sullivan and
Razgon (STACS’10), which yields algorithms with double
exponential running time.

An interesting aspect of our algorithms is that they can handle
real weights; to the best of our knowledge, the technique of
important separators does not work in the weighted version.

Keywords-fixed parameter tractability; unique label cover;
graph cut problems;

I. INTRODUCTION

Graph cut problems is a class of problems where, given

a graph, one is asked to find a cutset of minimum size

whose removal makes the graph satisfy a global separation

property. The motivation of studying graph cut problems

stems from the fundamental minimum cut problem, where

the goal is to separate two terminals from each other by

removing the least possible number of vertices or edges,

depending on the variant. Even though the minimum cut

problem can be solved in polynomial time, many of its
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natural generalizations become NP-hard. Moreover, many

problems, whose classical definitions do not resemble cut

formulations, after choosing an appropriate combinatorial

viewpoint show deep links with finding minimum separators;

the most important examples are FEEDBACK VERTEX SET

and ODD CYCLE TRANSVERSAL.

Therefore, circumventing NP-hardness of fundamental

graph cut problems, like MULTIWAY CUT (given a graph

with a set of terminals, separate the terminals from each

other using minimum size cutset) or MULTICUT (given a

graph with a set of terminal pairs, separate terminals in

the pairs using minimum size cutset), became an important

algorithmic challenge. It is then no surprise that graph cut

problems were studied intensively from the point of view of

approximation; (cf. [2]–[12]).

In this paper we address a different paradigm of tack-

ling NP-hard problems, that is, fixed-parameter tractability
(FPT). Recall that in the parameterized complexity setting

the instance of the problem comes with an additional integer

k, called the parameter, which intuitively measures the

hardness of the instance. The goal is to devise an algorithm

solving the problem with running time of form f(k)nc,

where f is some computable function and c is a fixed

constant. In other words, for every fixed parameter the

algorithm has to work in polynomial time, where the degree

of the polynomial is independent of the parameter. Algo-

rithms with such running time guarantee are called fixed-
parameter algorithms, and if a problem admits one, then we

say that it is fixed-parameter tractable. For a more detailed

introduction to fixed-parameter tractability we address an

interested reader to the books of Downey and Fellows [13]

or Flum and Grohe [14].

Graph separation problems in the context of parameterized

complexity were probably first considered in the seminal

work of Marx [15]. Marx established fixed-parameterized

complexity of MULTIWAY CUT parameterized by the size of

the cutset and MULTICUT parameterized by the size of the

cutset plus the number of terminal pairs. Perhaps the most

fruitful consequence of his work was the introduction of

the concept of an important separator. Important separators

proved to be a robust tool that enable us to capture the

bounded-in-parameter character of the family of reasonable

cutsets. The technique has found a number of applications
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[15]–[23], including proving fixed-parameter tractability of

MULTICUT parameterized by the cutsize only, which was

resolved by Marx and Razgon [22] and, independently, by

Bousquet et al. [24], after resisting attacks as a long-standing

open problem. The latest advances, by Chitnis et al. [18] and

Kratsch et al. [25], try to find a proper understanding of this

notion in directed graphs.

The important separators technique is based on greedy

arguments, which unfortunately makes this approach dif-

ficult to extend. Consider, for instance, adding constraints

of type ’uncut’, i.e., we would like to find a cutset that

separates some pairs of terminals, but is required not to

separate some other pairs. Any greedy choice of the farthest

possible cutset, which is precisely the idea behind the notion

of an important separator, can spoil the delicate requirements

of existence of some paths. Similar obstacles arise when

considering problems with weights or in directed setting.

Another approach has been recently presented by Marx,

O’Sullivan and Razgon [26]. Intuitively, the authors prove

that one can find a subset of vertices in which all the

minimal cutsets of size at most k are contained, and which

induces (for an appropriate meaning of ’induce’) a graph of

treewidth bounded by an exponential function of k. Thus,

having expressed the problem in MSO2 logic, we can use

Courcelle’s lemma on the obtained tree decomposition. The

technique can tackle more general constraints than important

separators, such as ’uncut’ constraints, and works elegantly

for easy cut problems with strong parameterizations. A

drawback is that algorithms constructed in this manner

almost always have double exponential dependence on k of

the running time, as we run a dynamic program on a tree

decomposition of width exponential in k.

A. Our techniques

We introduce a new technique, called randomized con-
tractions, of constructing fixed-parameter algorithms for

graph cut problems. The technique is based on a WIN/WIN

approach: either we find a well-balanced separation of small

order, whose one side can be simplified by a recursive call,

or the graph admits a highly-connected structure, which can

be used to identify the solution. First we test, whether the

graph admits a well-balanced separation. If this is the case,

we run the algorithm recursively on one of the sides for all

possible behaviors on the boundary, for each marking some

optimal solution. Then we argue that unmarked parts can be

conveniently reduced. However, if no separation is present,

we find that after removing the solution the graph can split

only into a bounded number of connected components of

bounded size, and at most one connected component that can

be arbitrarily large. Then, we randomly contract parts of the

graph; the highly-connected structure ensures us that with

high probability the optimal solution will be ’highlighted’

by the contraction step, so that we can easily extract it.

Intuitively, the event we aim for is that all the components

of bounded size and a sufficiently large neighborhood of the

solution are distinguished.

Finding a small separator and recursively reducing one of

the sides is the core idea of many algorithms for parameter-

ized problems. For example, a novel concept of finding and

reducing protrusions, large subgraphs of constant treewidth

and constant boundary, led to construction of linear kernels

for a large number of problems on classes of graphs with

topological constraints [27], [28]. Perhaps a better example

is the recent fixed-parameter algorithm for the k-WAY CUT

problem of Kawarabayashi and Thorup [29], which is in

fact the original motivation of our technique. The authors

observe that if they find a small, well-balanced separation

in the graph, they may reduce one of the sides up to bounded

size, in a very similar manner as we do. Basing on this, they

analyze the graph in a minor-style manner and whenever

they encounter a feasible separation, they can apply the

reduction.

One of the tools we use in our algorithms is the color

coding technique introduced by Alon et al. [30] to solve

some special cases of the SUBGRAPH ISOMORPHISM prob-

lem. The main idea is to color the graph at random and

ensure that with high probability the solution gets suffi-

ciently highlighted to be recognizable quickly. It has now

become a classical tool in the parameterized complexity

toolbox. Our technique is both similar and different to

color coding. The similarity lies in the first application

of color coding in our approach, i.e., finding a feasible

separation to make the reduction step. However, when no

good separation can be found, we use different ideas not

only to highlight the solution, but also to expose the highly

connected structure of the graph. Although the intuition

behind color coding is of probabilistic nature, the algorithms

obtained using this approach can be derandomized using

the technique of splitters of Naor et al. [31]. In fact, we

find it more convenient to present our algorithms already in

the derandomized version, so in spite of the name of the

technique there will be no randomization at all; instead we

use the following abstraction:

Lemma I.1. Given a set U of size n, and integers 0 ≤ a, b ≤
n, one can in O(2O(min(a,b) log(a+b))n logn) time construct
a family F of at most O(2O(min(a,b) log(a+b)) logn) subsets
of U , such that the following holds: for any sets A,B ⊆ U ,
A∩B = ∅, |A| ≤ a, |B| ≤ b, there exists a set S ∈ F with
A ⊆ S and B ∩ S = ∅.

Our approach is most natural for edge-deletion problems;

however, we can also extend it to node-deletion variants. For

the node deletion problems however, the situation is more

complicated and we need to define two kinds of separations.

Only when the graph does not have both kinds of separations

we get enough structure to solve the problem with other

methods. Moreover, one needs to be much more careful

in this final case, as we obtain much weaker structural
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properties of the graph.

B. Our results
We use the technique to provide the first fixed-parameter

algorithm solving an important problem in parameterized

complexity, and moreover we show how our approach can

be applied to reduce the time complexity of the best known

algorithms from double exponential to single exponential for

some problems already known to be FPT.
1) Unique Label Cover: In the UNIQUE LABEL COVER

problem we are given an undirected graph G, where each

edge uv = e ∈ E(G) is associated with a permutation ψe,u

of a constant size alphabet Σ. The goal is to construct a

labeling Ψ : V (G) → Σ maximizing the number of satisfied

edge constraints, that is, edges for which (Ψ(u),Ψ(v)) ∈
ψuv,u holds. At the first glance UNIQUE LABEL COVER

does not seem related to the previously mentioned cut prob-

lems, however it is not hard to show that the node deletion

version of UNIQUE LABEL COVER is a generalization of

GROUP FEEDBACK VERTEX SET problem [32], and hence

ODD CYCLE TRANSVERSAL and FEEDBACK VERTEX SET,

as well as MULTIWAY CUT.
The optimization version of UNIQUE LABEL COVER is

the subject of the very extensively studied UNIQUE GAMES

CONJECTURE proposed by Khot [33] in 2002, which is

used as a hardness assumption for showing several tight

inapproximability results. The UNIQUE GAMES CONJEC-

TURE states that for every sufficiently small ε, δ > 0, there

exists an alphabet size |Σ|(ε, δ), such that given an instance

(G,Σ, (ψe,v)e∈E(G),v∈e) it is NP-hard to distinguish be-

tween the cases |OPT | ≤ δ|E(G)| and |OPT | ≥ (1 −
ε)|E(G)|. In 2010 Arora et al. [34] presented a breakthrough

subexponential time algorithm, which in 2O(|Σ|nε) running

time satisfies (1− ε)|E(G)| edge constraints, assuming the

given instance satisfies |OPT | ≥ (1− εc)|E(G)|. We refer

the reader to a recent survey of Khot [35] for more detailed

discussion on the UNIQUE GAMES CONJECTURE.
Since all the edge constraints are permutations, fixing a

label for one vertex gives only one possibility for each of its

neighbors, assuming we want to satisfy all edges. For this

reason we can verify in polynomial time, whether OPT =
|E(G)|. In this paper we show that we can efficiently solve

the UNIQUE LABEL COVER problem, assuming almost all

the edges are to be satisfied. In particular we design a fixed

parameter algorithm for NODE UNIQUE LABEL COVER,

which is a generalization of EDGE UNIQUE LABEL COVER.

NODE UNIQUE LABEL COVER

Input: An undirected graph G, a finite alphabet Σ of

size s, an integer k, and for each edge e ∈ E(G) and

each of its endpoints v a permutation ψe,v of Σ, such

that if e = uv then ψe,u = ψ−1
e,v .

Question: Does there exist a set X ⊆ V (G) of size at

most k and a function Ψ : V (G) \X → Σ such that for

any uv ∈ E(G \X) we have (Ψ(u),Ψ(v)) ∈ ψuv,u?

Theorem I.2. There is an O(2O(k2 log s)n4 log n) time al-
gorithm solving NODE UNIQUE LABEL COVER, and conse-
quently EDGE UNIQUE LABEL COVER.

To justify our parameterization, we would like to note that

there is a long line of polynomial time approximation algo-

rithms designed for instances of UNIQUE LABEL COVER,

with currently best by Charikar et al. [36], working under the

assumption |OPT | ≥ (1−ε)|E(G)|, and where the alphabet

is of constant size. Therefore, it is reasonable to assume

that only a small number of constraints is not going to be

satisfied. Our results imply that one can in polynomial time

verify whether it is possible to satisfy |E(G)| −O(
√

logn)
constraints; consequently, we extend the range of instances

that can be solved optimally in polynomial time.

Finally, we show that the dependence on the alphabet size

in Theorem I.2 is probably necessary, since the problem

parameterized by the cutsize only is W [1]-hard. Hence,

existence of an algorithm parameterized by the cutsize

only would cause FPT = W [1], which is considered

implausible. For a more detailed introduction to the hier-

archy of parameterized problems and consequences of its

collapse, we refer to the books of Downey and Fellows

[13] or Flum and Grohe [14]. We consider this result an

interesting counterposition of the parameterized status of

GROUP FEEDBACK VERTEX SET [37], which is FPT even

when the group size is not a parameter.

Theorem I.3. The EDGE UNIQUE LABEL COVER problem,
and consequently NODE UNIQUE LABEL COVER, is W [1]-
hard when parameterized by k only.

2) Steiner Cut: Next, we address a robust generalization

of both k-WAY CUT and MULTIWAY CUT problems, namely

the STEINER CUT problem.

STEINER CUT

Input: A graph G, a set of terminals T ⊆ V (G), and

integers s and k.

Question: Does there exist a set X of at most k edges

of G, such that in G\X at least s connected components

contain at least one terminal?

Using our technique we present an FPT algorithm working

in O(2O(k2 log k)n4 logn), where the polynomial factor can

be improved to Õ(n2) at the cost of our algorithm being

randomized. These results improve the double exponential

time complexity of the recent algorithm of Kawarabayashi

and Thorup [29]1.

Theorem I.4. There is a deterministic
O(2O(k2 log k)n4 logn) and randomized Õ(2O(k2 log s)n2)
running time algorithm solving STEINER CUT.

1In [29] the authors solve the k-WAY CUT problem, however a straight-
forward generalization of their algorithm solves the STEINER CUT problem
as well.
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3) Connectivity constraints: We define the following

problem as an abstraction of introducing ’cut’ and ’uncut’

constraints at the same time.

NODE MULTIWAY CUT-UNCUT (N-MWCU)

Input: A graph G together with a set of terminals

T ⊆ V (G), an equivalence relation R on the set T ,

and an integer k.

Question: Does there exist a set X ⊆ V (G) \ T of

at most k nonterminals such that for any u, v ∈ T ,

the vertices u and v belong to the same connected

component of G \X if and only if (u, v) ∈ R?

Fixed-parameter tractability of this problem can be

derived from the framework of Marx, Razgon and

O’Sullivan [26], complemented with a reduction of the

number of equivalence classes of R in flavour of the

reduction for MULTIWAY CUT of Razgon [38]. However, the

dependence on k of the running time is double exponential.

Using our framework we provide an algorithm working

in O(2O(k2 log k)n4 log n) time, which can be constructed

by combining (i) ideas from the edge-deletion variant, (ii)
the general approach to node-deletion problems, (iii) the

aforementioned reduction of the number of equivalence

classes of R and (iv) simple reductions of terminals sharing

large parts of neighborhoods.

Theorem I.5. There is an O(2O(k2 log k)n4 log n) time al-
gorithm solving NODE MULTIWAY CUT-UNCUT.

In this extended abstract we describe the general idea

of the technique in Section II, illustrating them on the

edge-deletion version of the N-MWCU problem. Then, in

Section III, we sketch the algorithm for the NODE UNIQUE

LABEL COVER problem; we find this problem best-suited

to present the challenges that arise when considering node-

deletion variants, and means of overcoming them. Section IV

is devoted to brief concluding remarks. The complete proofs

of all results can be found in the full version of the paper

available at [1].

II. ILLUSTRATION

In this section we present the outline of the technique,

illustrating it with a running example of the EDGE MUL-

TIWAY CUT-UNCUT problem, the edge-deletion variant of

NODE MULTIWAY CUT-UNCUT.

EDGE MULTIWAY CUT-UNCUT (E-MWCU)

Input: A graph G together with a set of terminals T ⊆
V (G), an equivalence relation R on the set T , and an

integer k.

Question: Does there exist a set X ⊆ E(G) of at most

k edges such that for any u, v ∈ T , the vertices u and

v belong to the same connected component of G \X if

and only if (u, v) ∈ R?

As the edge-deletion variant can be easily reduced to the

node-deletion variant, the fixed-parameter tractability of E-

MWCU follows from Theorem I.5. However, we find this

particular problem best-suited to serve as an illustration of

our technique, to complement the description of abstract and

often intuitive concepts with a ‘real-life’ example. Through-

out this section we sketch an algorithm with running time

O(2O(k2 log k)n4 logn), resolving the E-MWCU problem.

As we consider the edge-deletion version, we use edge cuts

throughout this section. However, as our general framework

can be also applied to node-deletion problems, we comment

along the description where additional argumentation is

needed.

We assume that the graph given in the input is connected,

as it is easy to reduce the problem to considering each

connected component separately. This is true for all the

considered problems. Connectivity of the graph will be

maintained during the whole course of the algorithm. Note

that this means that the graph after excluding X can have at

most k + 1 connected components. Hence, we can assume

that R has at most k + 1 equivalence classes, as otherwise

we may safely return a negative answer.

A. High-level intuition

The starting point of our approach is an observation that

if two vertices of the graph v, w can be connected via k+1
edge-disjoint paths, then after removing at most k edges

they remain in the same connected component. Therefore, in

this situation we may apply a reduction rule that simplifies

the graph basing on the knowledge that v and w cannot

be separated by a small separator. For example, in the

EDGE MULTIWAY CUT-UNCUT problem it is safe to simply

identify v and w. Note that in this way we may obtain a

multigraph.

Of course, this simple reduction cannot solve the problem

completely in general, as the input graph can have, for

instance, degrees bounded by a constant. However, we still

would like to pursue the intuition that making the input graph

well-connected leads to better understanding of its structure.

To this end, we introduce the notion of good separations.

Definition II.1. Let G be a connected graph. A partition

(V1, V2) of V (G) is called a (q, k)-good edge separation, if

(i) |V1|, |V2| > q; (ii) |δ(V1, V2)| ≤ k; (iii) G[V1] and G[V2]
are connected.

In the first phase, named recursive understanding, we

iteratively find a good edge separation and reduce one of its

sides up to the size bounded by a function of the parameter.

We use the lower bound on the number of vertices of either

side to ensure that we indeed make some simplification.

The applied reduction step needs introducing a more general

problem, in which, intuitively, we have to prepare for every

possible behavior on a bounded number of distinguished

vertices of the graph, called border terminals.

When no good edge separation can be found, by Menger’s

theorem we know that between every two disjoint connected
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subgraphs of size larger than q we can find k + 1 edge-

disjoint paths. Then we proceed to the second phase, named

high connectivity phase, where we exploit this highly con-

nected structure to identify the solution.

B. Recursive understanding

Lemma II.2. There exists a deterministic algorithm
that, given an undirected, connected graph G on
n vertices along with integers q and k, in time
O(2O(min(q,k) log(q+k))n3 log n) either finds a (q, k)-good
edge separation, or correctly concludes that no such sep-
aration exists.

Proof sketch: Consider a family F obtained via Lemma

I.1 for the universe U = E(G) and integers a = 2q and

b = k. Let (V1, V2) be a good separation in G and, for

i = 1, 2, let Ti be any tree with q edges that is a subgraph

of G[Vi]. By the properties of F , there exists S ∈ F
such that E(T1), E(T2) ⊆ S, but S ∩ E(V1, V2) = ∅.
Consider a (multi)graph GS obtained from G by contracting

the edges of S, and let v ∈ V (GS) be called heavy if

more than q vertices of G were contracted onto it. It is

easy to see that the good separation of (V1, V2) corresponds

to a cut between two heavy vertices in GS of size at

most k; moreover, any such cut yields a good separation

in G. Such a desired cut can be found in polynomial time;

the claimed running time follows if we first apply the

sparsifying technique of Nagamochi and Ibaraki [39] and

then the classical algorithm of Ford and Fulkerson to find

a minimum cut between each pair of heavy vertices. We

note that, using instead a variant of the classical Karger’s

algorithm for minimum cut [40], the problem can be solved

in Õ(2O(min(q,k) log(q+k))(|V (G)|+|E(G)|)) time at the cost

of being randomized.

Having found a good edge separation we can proceed to

simplification of one of the sides. To this end, we consider

a more general problem, where the input graph is equipped

with a set of border terminals Tb, whose number is bounded

by a function of the budget for edge deletions. Intuitively,

each considered instance of the border problem corresponds

to solving some small part of the graph, which can be

adjacent to the remaining part only via a small boundary

— the border terminals. Our goal in the border version is,

for every fixed behavior on the border terminals, to find

some minimum size solution or conclude that the size of

the minimum solution exceeds the given budget. Of course,

the definition of behavior is problem-dependent; therefore,

we present this concept on the example of the E-MWCU

problem.

The behavior on the border terminals, whose number will

be bounded by 2k, is defined by a pair of equivalence

relations P = (Rb, Eb). Rb is defined on T ∪ Tb, but we

require that Rb|T = R, i.e., Rb extends R. Informally,

Rb expresses which border terminals are required to be in

the same connected with which terminals after removing

the solution. The second relation Eb is defined on Tb

and we require it to be a subset of Rb. Informally, Eb

expresses, which pairs of border terminals are assumed to

be reachable via paths outside the considered subgraph. The

reader may view Eb as a torso operation, commonly used

in the context of graph minors; thus, in the border problem

we prepare ourselves for all the possible torso operations.

For an instance of the border problem Ib by P(Ib) we

denote the set of possible pairs P = (Rb, Eb); note that

|P(Ib)| ≤ f(k) = 2O(k log k), as the number of equivalence

classes of R is bounded by k + 1. Formally, we say that

a set X ⊆ E(G) is a solution to (Ib,P) if |X| ≤ k and

in the graph GP := (V (G), E(G) ∪ Eb) after removing X
every two vertices u, v ∈ T ∪ Tb are in the same connected

component if and only if they are equivalent with respect

to Rb. Note that the graph GP is exactly G with torso

operation performed on equivalence classes of Eb. We can

now formally define the border problem:

BORDER E-MWCU

Input: An E-MWCU instance I = (G,T,R, k) with

G being connected, and a set Tb ⊆ V (G) of size at most

2k; denote Ib = (G,T,R, k, Tb).
Output: For each P ∈ P(Ib) output a solution solP =
XP to (Ib,P) with |XP | minimum possible, or output

solP = ⊥ if such a solution does not exist.

BORDER E-MWCU generalizes E-MWCU: we ask for

Tb = ∅ and take the output for the pair (R, ∅).
Now assume that (V1, V2) is a (q, k)-good separation of

the graph G, for the input instance Ib = (G,T,R, k, Tb)
of BORDER E-MWCU, where q = k · f(k) + 1 is the

maximum number of edges that can appear on the output

plus 1. As |Tb| ≤ 2k, at least one of the sides contains

at most k border terminals. Without loss of generality we

assume that |V1 ∩ Tb| ≤ k. Now consider an instance I∗b =
(G[V1], T ∩V1,R|T∩V1 , k, (Tb∩V1)∪(V1∩V (δ(V1, V2))) of

BORDER E-MWCU. In other words, we trim the instance to

the part V1 and incorporate all the vertices incident to V2 to

the set of border terminals. Note that I∗b is a correct instance,

as |(Tb ∩V1)∪ (V1 ∩V (δ(V1, V2)))| ≤ k+k = 2k. We now

recursively solve the instance I∗b , obtaining a set of at most

q− 1 edges that appear in any solution for any behavior on

border terminals. Consider the remaining edges, i.e., those

that do not appear in any solution to I∗b for any behavior on

the terminals. It is not hard to see that all these edges can

be in fact contracted, as it is useless to incorporate them in

the solution to Ib for any behavior on the border terminals.

Intuitively, for every solution that uses some of these edges

we can replace the part contained in G[V1] with the optimal

solution for I∗b that imposes the same behavior on border

terminals of I∗b , computed by the recursive call. We omit

here the formal proof. After applying the contractions, part

G[V1] shrinks to size at most q, as it is still connected and
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contains at most q − 1 edges. The sets of terminals, border

terminals and relations are defined naturally.

We remark that the operation applied to reduce parts of

the graph determined to be useless is problem-dependent. In

E-MWCU we use edge contraction; however, more complex

problems or node-deletion versions require more careful

simplification rules.

We are left with estimating the running time of the

algorithm. By Lemma II.2 the time required to find a

(q, k)-good edge separation is O(2O(k log f(k))n3 log n) =
O(2O(k2 log k)n3 log n); hence, the total running time is

O(2O(k2 log k)n4 log n). We note that if f , the bound on

the number of behaviors on the border terminals, is only

a function of k, then we always obtain a running time of

the form O(g(k)n4 log n) for some function g.

C. High connectivity phase

We are left with the more involved part of our approach,

namely, what to do when no (q, k)-good edge separation is

present in the graph. Note that we can assume that the graph

has more than q(k + 1) vertices, as otherwise a brute-force

search, which checks all the subsets of edges of size at most

k, runs within the claimed time complexity bound.

The following simple lemma formalizes the structural

properties of the graph after removing the solution. Note

that this structure is precisely the gain of the first phase of

the algorithm. We remark that we have this structure only in

graph G, not GP . Fortunately, adding the edges of Eb will

not be a problem.

Lemma II.3. Let G be a connected graph that admits no
(q, k)-good edge separation. Let F be a set of edges of
size at most k, such that G \ F has connected components
C0, C1, . . . , C�. Then (i) � ≤ k, and (ii) all the components
Ci except at most one contain at most q vertices.

From now on, we always assume that |V (Ci)| ≤ q for

i = 1, 2, . . . , �, while C0 can have unbounded size. In fact,

as |V (G)| > q(k+1) we find that |V (C0)| > q. We refer to

components Ci for i = 1, 2, . . . , � as to small components,

while C0 is called the big component. We would like to

remark that if we apply the framework directly to the node-

deletion problems, we do not have any bound on �, i.e., the

number of small components — in the node-deletion setting

we need additional tools here.

Fix some behavior on the border terminals P =
(Rb, Eb) ∈ P(Ib); we iterate through all of them, which

gives 2O(k log k) overhead to the running time. Assume

that there exists a solution X ⊆ E(G) for this particular

choice. Without loss of generality let X be minimum. Let

C0, . . . , C� be components of G\X , as in Lemma II.3, where

|V (Ci)| ≤ q for i = 1, 2, . . . , �. For every component Ci,

choose its arbitrary spanning tree Ti. Let A1 =
⋃�

i=1E(Ti)
be the set of edges of the spanning trees of small compo-

nents. As � ≤ k, we have that |A1| ≤ (q − 1)k. For every

vertex u ∈ V (X)∩V (C0) construct an arbitrary subtree Tu
0

of T0 such that u ∈ V (Tu
0 ) and |V (Tu

0 )| = q + 1, and let

A2 =
⋃

u∈V (X)∩V (C0)
E(Tu

0 ). As X is minimum, we have

that |V (X) ∩ V (C0)| ≤ k and hence |A2| ≤ qk.

Now, we would like to apply edge contractions once more,

in order to condensate the high-connectivity between large

connected subgraphs of G to single vertices. Let F be the

family obtained from Lemma I.1 for the universe E(G) and

constants a = (2q − 1)k and b = k. By Lemma I.1, there

exists S0 ∈ F such that all the edges from A1∪A2 belong to

S0, whereas all the edges from X are not in S0. We branch

into |F| subcases labeled by the sets S ∈ F . In each branch

we either find a candidate for an optimal solution among

edges that do not belong to S, or conclude that no such

exists. We argue that if a (minimum) solution X exists, then

some optimal solution will be found in the branch where S0

is chosen.

For the sake of analysis, we present the routine performed

in every branch assuming that we consider S0. First, we

can contract all the edges of S0, as we seek a solution

that is disjoint with S0. Let H0 be the graph obtained

in this operation. Observe that each small component Ci,

i = 1, 2, . . . , �, forms exactly the subgraph contracted to

a single vertex ci. Moreover, all the vertices ci can be

incident only to edges from X , which are preserved due

to the properties of S0 and X being minimum. The set of

terminals, border terminals and relations in H0 are defined

naturally as projections of the corresponding objects in G; if

we encounter any mismatch, e.g., two terminals that are non-

equivalent with respect to R are contracted onto the same

vertex, we can safely terminate the branch. Observe that the

branch when S0 is considered is not terminated. Moreover,

X survives the contractions and remains a feasible solution.

For a vertex u ∈ V (H0) we define its weight to be

the number of vertices of G that were contracted onto it.

A vertex u ∈ V (H0) is called heavy if it has weight at

least q+ 1. Observe that all the vertices of V (X)∩ V (C0),
that is, endpoints of edges from the solution that lie in C0,

are contracted onto heavy vertices. Now we may make use

of the high-connectivity structure of the graph. As G does

not admit any (q, k)-good edge separation, by Menger’s

theorem between each pair of big vertices in H0 we can find

k+1 edge-disjoint paths. This means that after removing the

solution, all the big vertices are still in the same connected

component. Hence, it is safe to identify them into one vertex

b, which will be denoted the core vertex. Let H be the

graph obtained after identification. The set of terminals and

border terminals are defined naturally as before; again we

can provide a negative answer if we encounter any mismatch

during identifications. Moreover, all the edges from X are

still present in H , as they do not connect big vertices, and

X remains a feasible solution.

We remark that we can assume that the optimal deletion

set is nonempty, as this particular possibility can be checked
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in polynomial time. Hence, there exists at least one heavy

vertex or otherwise we may terminate the branch. Therefore,

the core vertex b is well-defined. See Figure 1 for an

illustration.

Let B′1, B
′
2, . . . , B

′
p be the components of H \{b} and let

Bi = H[V (B′i) ∪ {b}] for i = 1, 2, . . . , p. Observe that B′i
are connected, edge-disjoint and b separates them. We claim

that for every component Bi, the solution X contains either

all edges of E(Bi) or none of them. This follows directly

from the fact that all the small components are contracted

into single vertices, while all endpoints of edges from X
that are contained in C0 are contracted onto b.

We conclude the algorithm by showing how to find an

optimal solution inside the graph H in O(kn2) time. First, if

b is not a border terminal nor a terminal, we iterate through

all the possible equivalence class of Rb, with which the

vertex b is in the same connected component (plus one

possibility, with none of them). Observe that we can assume

that the number of equivalence classes of Rb is bounded by

k+ 1, so we have at most k+ 2 possibilities. Let D be the

guessed subset of vertices from T ∪ Tb that are reachable

from b after removing the solution. Observe that now we

know exactly how the solution needs to look like. It simply

needs to contain the entire edge sets of components that

contain terminals or border terminals that do not belong

to D, while all the other components may be left disjoint

with the solution. The last claim is asserted by Eb ⊆ Rb:

the additional edges inserted in GP cannot force us to

include into the solution also an edge set of a component,

that contains only terminals and border terminals from D.

Having constructed a candidate for the solution, we can

check if it is satisfies all the constraints in GP in O(n2)
time. It follows from the presented construction that when

S0 is considered, some solution of optimal size is found.

We remark that the last part of the algorithm, i.e., solv-

ing the problem inside the graph H , is highly problem-

dependent. In our simple example of EDGE MULTIWAY

CUT-UNCUT we were able to derive a simple routine with

running time polynomial in k and n, but for more involved

problems we can still need time exponential in k. All the

other parts of the approach are to some extent generic and

can be applied to various problems. We also would like to

note that contractions of big trees on the side of C0 were

not necessary in this particular problem: one could iterate

through a smaller family F assuming only contractions of

small components into single vertices. However, we chose

to present the algorithm in this way, as the idea of conden-

sating the big component into the core vertex significantly

strengthens the obtained structure of the graph, and is an

essential ingredient in all the other our algorithms.

III. FPT ALGORITHM FOR NODE UNIQUE LABEL COVER

In this section we present a brief sketch of the algorithm

for NODE UNIQUE LABEL COVER, with the emphasis on

the difficulties that arise due to considering a node-deletion

variant, as well as means that we use to overcome them.

We note that the edge-deletion variant can be reduced to the

node-deletion variant via a simple polynomial parameterized

transformation.

Recall that in NODE UNIQUE LABEL COVER we are

given an instance (G,Σ, k, (ψe,v)e∈E(G),v∈e) and we are

to construct a set X of size at most k and a function

Ψ : V (G)\X → Σ that satisfies all constraints ψe,v in G\X .

The relations ψe,u are called edge constraints, function Ψ
is called a labeling and set X is the deletion set. We can

naturally extend the notion of labelings to subsets: a labeling

of a subset S ⊆ V (G) is a function from S to the alphabet

that respects all the constraints in G[S]. Given a set S one

can check in O(s2n2) time whether S admits a consistent

labeling via a simple breadth-first search on each connected

component.

In case of the edge-deletion problems we could sim-

ply contract edges determined to be useless. Since NODE

UNIQUE LABEL COVER is a vertex-deletion type of prob-

lem, when we decide that a vertex is not going to be a part

of a solution, then we bypass this vertex. When bypassing

a vertex v, we remove it from the graph and for each pair

of neighbors u1, u2 ∈ NG(v) the constraint ψu1u2 needs to

be restricted to simultaneously satisfy also ψvu2,v ◦ψvu1,u1 .

For this reason, we need to consider a slightly more general

version of the NODE UNIQUE LABEL COVER problem,

where edge constraints are partial permutations and each

vertex has a list of available labels φv ⊆ Σ. The additional

vertex constraints, as we call lists φv , are due to the fact

that a solution might remove all but one vertex of N(v), and

then even the restricted edge constraints between vertices of

N(v) are not enough.

A. Good cuts in the node-deletion variant

We now adjust the notion of good separations also to the

node-deletion problems.

Definition III.1. Let G be a connected graph. A triple

(Z, V1, V2) of subsets of V (G) is called a (q, k)-good node
separation, if |Z| ≤ k, V1 and V2 are vertex sets of two

different connected components of G\Z and |V1|, |V2| > q.

Unfortunately, we need not only the aforementioned nat-

ural extension of the good separation, but also we need to

capture a situation where a large number of small compo-

nents is attached to a common, small interface. This leads

us the definition of a (q, k)-flower cut; we omit its technical

formal definition in this extended abstract. Similarly to edge-

deletion variant, one can find both types of separations

in time O(2O(min(q,k) log(q+k))n3 log n) in the graph, or

conclude that no such exists. If a graph does not admit a

(q, k)-good node separation or a (q, k)-flower separation, we

can prove a similar result to Lemma II.3 that encapsulates

the high-connectivity behavior in G.
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Figure 1. Obtaining the graph H from the graph G. Light grey edges are the edges of X that are preserved, while dashed edges belong to A1 ∪ A2

and are contracted. Note that trees T u
0 inside T0 are not necessarily disjoint, but to make the presentation clearer they are disjoint in the figure. Moreover,

on the left side of the picture we have drawn only edges belonging to X and trees Ti. However, there may be many more edges that, in particular, can
influence the shape of the graph H after contraction and identification.

Lemma III.2. If a connected graph G with terminals Tb ⊆
V (G) does not contain a (q, k)-good node separation or a
(q, k)-flower separation w.r.t. Tb then, for any Z ⊆ V (G)
of size at most k, the graph G \ Z contains at most (2q +
2)(2k − 1) + |Tb| + 1 connected components, out of which
at most one has more than q vertices.

Note that the number of connected components could not

be bounded if we only used the first type of separations. This

problem is the sole purpose of introducing flower separations

as well. Fortunately, they admit enough structure to make the

recursive understanding step still work.

B. Border problem and recursive understanding

The definition of the border problem is very natural. In

the border problem the graph is also equipped with a set Tb

of at most 4k border terminals. The behavior on the border

terminals is expressed by a function P : Tb → Σ ∪ {�},
which simply fixes the values of the labeling. We say that a

solution (X,Ψ) is consistent with P if X ∩ Tb = P−1(�)
and Ψ|Tb\X = P|Tb\X .

BORDER N-ULC

Input: A NODE UNIQUE LABEL COVER instance I =
(G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e) with G being

connected, and a set Tb ⊆ V (G) of size at most 4k.

Output: For each P ∈ P(I), output a solution solP =
(XP ,ΨP) to the instance I that is consistent with P
and |XP | is minimum possible, or outputs solP = ⊥
if such a pair does not exist.

This definition allows a standard recursive understanding

routine. Take q = k(s + 1)4k + 2k and suppose we are

given a (q, 2k)-good node separation (Z, V1, V2) of G. At

least one set V1, V2 has at most 2k terminals, let it be V1.

We recursively apply the algorithm to the instance trimmed

to the graph induced by the set N [V1] ⊆ V1 ∪ Z, where

we also incorporate N(V1) ⊆ Z to the border terminals.

Let us mark all the border terminals and all the vertices

that appeared in any output solution. One can easily show

that all the unmarked vertices can be safely bypassed, as

their usage can be always replaced with using some marked

ones. As we chose q to be large enough, we bypass at least

one vertex and we obtain a recursive equation that gives the

claimed complexity bound. Given a (q, k)-flower separation

with respect to Tb we can make a recursive understanding

step in the same manner. Once neither a (q, 2k)-good node

separation nor a (q, k)-flower separation with respect to

Tb is present, the graph admits the structure expressed by

Lemma III.2 and we may proceed to the high connectivity

phase. Note that we also excluded good node separations

with larger cutsets, as it will be useful in the future.

C. High connectivity phase

Recall that we are to compute the optimal solution for

every behavior P on border terminals. We iterate through

all possible P and perform computation for each separately;

note that this gives 2O(k log s) overhead to the running time.

From now on we can assume that P is fixed.

Let us examine the structure of the instance after removing

an optimal deletion set X , given by Lemma III.2. We have

at most d = (q + 1)(2k − 1) + 4k small components,

each containing at most q vertices, and one component of

unbounded size. Note that we can assume that this big

component, denote its vertex set by big(X), contains more

than q vertices, as otherwise the whole graph has size at most

q(d + 1) and a brute-force search runs within the claimed

complexity bound. As feasibility of an empty deletion set
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can be checked in polynomial time, we assume that X is

nonempty. Let Ψ be a labeling witnessing that X is a feasible

deletion set.

We now would like to use a similar approach to the one

presented in the illustration, that is, to condensate the high-

connectivity behavior in G. Let us take A1 to be the union

of vertex sets of small connected components in G \ X;

note that |A1| ≤ qd. For every u ∈ X ∩ N(big(X)) we

construct a set Au ⊆ big(X) such that |Au| = q+1, G[Au]
is connected and Au contains a neighbor of u; note that this

is possible due to |big(X)| > q. Let us now take A2 =⋃
u∈X∩N(big(X))A

u; note that |A2| ≤ k(q + 1). Therefore,

if using Lemma I.1 we generate the random family F for

universe U = V (G) and constants a = qd + k(q + 1),
b = k, then we know that there is a set S0 ∈ F such that

A1 ∪ A2 ⊆ S0 and X ∩ S0 = ∅. We guess the right S0 by

branching into |F| subcases, labeled by S ∈ F . Formally,

each branch produces a candidate for an optimal solution

and the algorithm picks the smallest possible; we argue that

the branch with S0 guessed correctly produces an optimal

solution. From now on, we have fixed a set S and we seek

a deletion set X that is disjoint with S, but S contains all

the vertex sets of small components after removing X , as

well as, for every u ∈ X adjacent to the big component,

a vertex set inducing a connected subgraph of size at least

q + 1 adjacent to u.

We refer to vertex sets of connected components of

G[S] as stains; note that these sets will induce connected

subgraphs even after removing the solution. A stain is big if

it is of size at least q+1, otherwise it is small. Note that each

big stain has to be entirely contained in big(X). Moreover,

for each stain there must exist a consistent labeling of it,

or otherwise we may immediately terminate the branch.

We would like to mimic the identification step from the

illustration for big stains. Consider two big stains C1, C2.

As the graph does not admit a (q, 2k)-good node separation,

by Menger’s theorem we can distinguish 2k + 1 paths

P 0, P 1, . . . , P 2k from C1 to C2 that are internally vertex-

disjoint. Having fixed Ψ|C1 (recall that we assume that all

the vertices of S do not belong to X), for every path P i we

can find a labeling Ψi of C2 that is Ψ propagated via the

path P i to C2 assuming that P i is not hit by the deletion

set, or conclude that P i must be hit. As at most k paths P i

are hit, majority of the paths are not hit. It follows that for

these paths Ψi = Ψ|C2 . Therefore, having fixed a labeling

on one big stain, we can also fix the labeling on all the big

stains, even if we do not know the deletion set: for each big

stain we just compute all the labelings Ψi and take the one

that appears most of the time. Let Sbig be the union of all

big stains. We branch into at most s branches, in each fixing

a labeling of one vertex from Sbig, thus fixing the labeling

of the whole Sbig.

By our assumptions on S, we know that X ∩
NG(big(X)) ⊆ NG(Sbig). Intuitively, Sbig together with

its neighbourhood play the role of the core vertex b, while

the components of G \ NG[Sbig] can be solved more or

less independently. In fact, it still holds that for each such

component, let C be its vertex set, either C is disjoint with

X and entirely contained in big(X), or all the small stains

in C are separated from each other and from big(X) by

X , while the deletion set X contains C \ S as well as

the whole N(C). This corresponds to the observation in

the edge-deletion variant, that no component of the graph

after removing the core has a nontrivial intersection with

the deletion set.

We omit the description of the remaining part of the

algorithm in this extended abstract, as it consists of a few

further simple observations and a technical and involved

but quite standard application of the bounded search tree

technique.

IV. CONCLUSIONS

In this paper we presented a new technique of designing

parameterized algorithms for cut problems. The natural next

step is to try to find further applications of this framework.

On the other hand, the algorithms obtained using our frame-

work run in time complexity 2O(k2 log k) · poly(n). Is the

dependence on k optimal (for example, under Exponential

Time Hypothesis)? Or is it possible to design algorithms

with running time 2O(k log k) ·poly(n) or even 2O(k) ·poly(n)
for at least some of the considered problems?
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