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Abstract—The existence of a polynomial kernel for Odd Cy-
cle Transversal was a notorious open problem in parameterized
complexity. Recently, this was settled by the present authors
(Kratsch and Wahlström, SODA 2012), with a randomized
polynomial kernel for the problem, using matroid theory to
encode flow questions over a set of terminals in size polynomial
in the number of terminals (rather than the total graph size,
which may be superpolynomially larger).

In the current work we further establish the usefulness of
matroid theory to kernelization by showing applications of a
result on representative sets due to Lovász (Combinatorial Sur-
veys 1977) and Marx (TCS 2009). We show how representative
sets can be used to give a polynomial kernel for the elusive
Almost 2-sat problem (where the task is to remove at most k
clauses to make a 2-CNF formula satisfiable), solving a major
open problem in kernelization.

We further apply the representative sets tool to the problem
of finding irrelevant vertices in graph cut problems, that is,
vertices which can be made undeletable without affecting the
status of the problem. This gives the first significant progress
towards a polynomial kernel for the Multiway Cut problem;
in particular, we get a polynomial kernel for Multiway Cut
instances with a bounded number of terminals.

Both these kernelization results have significant spin-off
effects, producing the first polynomial kernels for a range of
related problems.

More generally, the irrelevant vertex results have implica-
tions for covering min-cuts in graphs. In particular, given a
directed graph and a set of terminals, we can find a set of
size polynomial in the number of terminals (a cut-covering
set) which contains a minimum vertex cut for every choice
of sources and sinks from the terminal set. Similarly, given
an undirected graph and a set of terminals, we can find a
set of vertices, of size polynomial in the number of terminals,
which contains a minimum multiway cut for every partition of
the terminals into a bounded number of sets. Both results are
polynomial time. We expect this to have further applications;
in particular, we get direct, reduction rule-based kernelizations
for all problems above, in contrast to the indirect compression-
based kernel previously given for Odd Cycle Transversal.

All our results are randomized, with failure probabilities
which can be made exponentially small in the size of the input,
due to needing a representation of a matroid to apply the
representative sets tool.

Keywords-kernelization; parameterized complexity; ma-
troids; graph cuts; multiway cut; almost 2-sat

I. INTRODUCTION

Polynomial kernelization is a formalization of the notion

of efficient polynomial-time preprocessing, or more gener-

ally of efficient instance simplification and data reduction.

Such reduction steps are commonly applied in practice, see,

e.g., the well-known CPLEX integer programming package,

or many state-of-the-art SAT solvers. However, to study

this theoretically, one needs a notion of the hardness of

an instance beyond the instance size, e.g., the length of

a certificate [1] or a more generic parameter associated

with the input (cf. [2], [3]). Informally, a kernelization

is a polynomial-time reduction of an input instance, with

parameter value k, to an equivalent instance of the same

problem, the kernel, with total output size bounded as a

function of k; a problem has a polynomial kernel if the size

bound is polynomial in k. This turns out to be a robust

and interesting notion, and there is much work on both

upper and lower bounds for the existence of, or best possible

size of, a polynomial kernel for various problems; see [4],

[5] and [6]–[8]. A very recent breakthrough was achieved

by Drucker [9], who proved, among other things, that the

AND-distillation conjecture of Bodlaender et al. [6] holds

assuming that NP does not admit non-uniform statistical

zero-knowledge proofs (a weaker assumption than the usual

NP � coNP/poly).

Among the problems for which the existence of poly-

nomial kernels is still open, one can identify two major

groups. The first group is centered around the ALMOST 2-

SAT problem: Given a 2-CNF formula F and an integer k,

can you remove at most k clauses to make F satisfiable

(or, equivalently, find an assignment under which at most k
clauses are not satisfied)? This is a natural, expressive prob-

lem which (at least for purposes of parameterized complexity

and kernelization) captures several problems of independent

interest. For one thing, it directly expresses ODD CYCLE

TRANSVERSAL (OCT); the existence of a polynomial kernel

for OCT was a long-standing open problem, only recently

solved by the present authors [10]. Less directly, a polyno-

mial kernel for ALMOST 2-SAT has been shown to imply

the same for VERTEX COVER ABOVE MATCHING, KÖNIG

VERTEX DELETION for graphs with perfect matchings,

and the RHORN-BACKDOOR DELETION SET problem from

practical SAT solving (cf. [11], [12]), among other problems;

see [13]–[15]. We add to the list VERTEX COVER ABOVE

LP, i.e., VERTEX COVER parameterized by the size of the

LP gap. For all of these problems, no polynomial kernel was
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previously known.

The second group of open problems represents the class

of graph cut problems. This is a wide class, where little

is known regarding polynomial kernelization; problems for

which polynomial kernelization is open include DIRECTED

FEEDBACK VERTEX SET (arguably one of the biggest

open problems in kernelization; see [16]), MULTIWAY CUT,

and MULTICUT under various parameterizations, as well

as GROUP FEEDBACK ARC/VERTEX SET, which again

generalizes OCT.

In this paper, we show polynomial kernels for ALMOST

2-SAT, and for a collection of graph cut problems, including

MULTIWAY CUT with a constant number of terminals and

MULTICUT with a constant number of cut requests. We also

show results about covering min-cuts and multiway cuts

through a set of terminals using few vertices, which should

be of independent interest. We make use of a lemma on

representative sets from matroid theory, due to Lovász [17]

and Marx [18]. In particular, we show how to apply the

lemma in irrelevant vertex arguments, i.e., how to use

it to find vertices in cut problems which can be made

undeletable without affecting the outcome. All our results

are randomized, with failure probabilities which can be made

exponentially small in the input size.

Related work. ALMOST 2-SAT (also known as MIN

2CNF DELETION) was showed to be FPT, runtimeO∗(15k),
by Razgon and O’Sullivan [19]; this has been improved

to O∗(9k) [13], O∗(4k) [20], and O∗(2.6181k) [15]. It has

an O(√log n)-approximation by Agarwal et al. [21], and

no constant factor approximation under the unique games

conjecture [22].

Graph cut problems have been a catalyst for the de-

velopment of new techniques in parameterized complexity,

including the now ubiquitous iterative compression tech-

nique [23], [24], the notion of important separators [25],

and the shadow removal technique [26]. Our focus here is on

MULTIWAY CUT(k), first showed to be FPT by Marx [25].

The currently fastest algorithm [20], runtime O∗(2k), uses

an LP approach based on work of Guillemot [27]; we also

use some insights of the latter.

As for polynomial kernelization of graph cut problems,

in joint work with Cygan, Pilipczuk, and Pilipczuk [28] the

present authors show, amongst others, that MULTICUT(k)
and DIRECTED 2-MULTIWAY CUT(k) do not admit poly-

nomial kernels unless the polynomial hierarchy collapses.

Apart from this, and previous work [10] for ODD CYCLE

TRANSVERSAL, little is known about kernels for cut or

feedback problems beyond the kernelizations for FEEDBACK

VERTEX SET, e.g., [29].

Matroids have seen little use as tools in parameterized

algorithms (though see [30]), and only few papers address

problems on matroids. However, recent work of Marx [18]

on a parameterized matroid intersection problem also pro-

vides some results that are used in the current paper.

Regarding kernelization, to our best knowledge, previous

work of the present authors [10] is the first and so far only

application of matroid theory, using it to encode terminal

cut functions of a (large) graph into small space.

Irrelevant vertex arguments are a central part of the

DISJOINT PATHS algorithm of Robertson and Seymour [31],

which lies behind the celebrated FPT algorithm for testing

graph minors. However, the arguments used by Robertson

and Seymour to locate irrelevant vertices are very different

from those used in this paper (and the resulting bounds are

far from polynomial).

Moitra [32] defined and constructed vertex cut sparsi-

fiers, which, given a graph G and a set of terminals X ,

approximate the values of all terminal cuts in G using

(capacitated) edges on vertex set X only. This has lead

to a sequence of follow-up work; closest to our setting is

Chuzhoy [33], who gives a constant-factor approximation

result using O(C3) vertices, where C is the total capacity

of the terminals X (assuming every edge has capacity at

least one). The present work differs from hers in that, on

the one hand, we do not consider weighted edges; on the

other hand, our constructions are exact, run in polynomial

time in both n and k, and also cover directed graphs (and

vertex deletions); see Theorem 3, below, and Corollary 3 of

Section V-C. Chuzhoy also covers the more general case of

flow sparsifiers (see [34]).

Our results. We show several applications of the repre-

sentative sets lemma of Lovász [17] and Marx [18] to poly-

nomial kernelization, producing the first polynomial kernels

for a range of important problems. First, we study DIGRAPH

PAIR CUT, a constrained graph cut problem designed to

capture (the iterative compression form of) ALMOST 2-SAT.

We show that the representative sets lemma can be used

to simplify DIGRAPH PAIR CUT down to a cut problem

involving a polynomial number of terminals; from here, we

can get a polynomial kernel either by compression methods

as in [10] or a direct kernel by the cut-covering sets given

below. We get the following.

Theorem 1. ALMOST 2-SAT with a bound k on the solution
size has a polynomial-time randomized compression into
size Õ(k6), with one-sided error probability O(2−k) and
false positives only, and a randomized kernel with O(k6)
variables and failure probability O(2−n).

As mentioned above, this gives the first polynomial ker-

nels for a range of problems. Next, we apply the representa-

tive sets lemma to the search for irrelevant vertices for graph

cut problems. This gives two sets of results. The first relates

directly to polynomial kernelization.

Theorem 2. The following kernelizations are possi-
ble: MULTIWAY CUT WITH DELETABLE TERMINALS(k),
with O(k3) vertices; s-MULTIWAY CUT(k), with O(ks+1)

vertices; s-MULTICUT(k), with O(k�
√
2s�+1) vertices;
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GROUP FEEDBACK VERTEX SET(k), for a group of s el-
ements, with O(k2s+2) vertices. All results are randomized,
with failure probability exponentially small in n.

Finally, as a second set of irrelevant vertex results, we

get interesting conclusions about covering min-cuts and

multiway cuts in graphs.

Theorem 3. Let G = (V,E) be a digraph and let S, T ⊆ V .
Let r denote the size of a minimum (S, T )-vertex cut (which
may intersect S and T ). There exists a set Z ⊆ V , |Z| =
O(|S| · |T | · r), such that for any A ⊆ S and B ⊆ T , it
holds that Z contains a minimum (A,B)-vertex cut. We can
find such a set in randomized polynomial time with failure
probability O(2−n).

Theorem 4. Let G = (V,E) be an undirected graph
and X ⊆ V . For any s, there exists a set Z ⊆ V , |Z| =
O(|X|s+1), such that for any partition X = (X1, . . . , Xs)
with pairwise disjoint subsets of X , it holds that Z contains
a minimum multiway cut of X (i.e., a minimum cut C such
that no pairs of sets Xi, Xj are connected to each other
in G−C). We can find such a set in randomized polynomial
time with failure probability O(2−n).

Organization. Our paper is organized as follows. Sec-

tion II contains preliminaries, and Section III presents the

matroid theory tools we use. Section IV gives the first

application, in the form of a polynomial kernel for AL-

MOST 2-SAT, and Section V gives irrelevant vertex-type

consequences, yielding polynomial kernels for variants of

MULTIWAY CUT and the cut-covering sets of Theorems 3

and 4. Section VI concludes the paper. Most proofs are

deferred to the full version of this work [35].

II. PRELIMINARIES

Parameterized complexity and kernelization. A pa-
rameterized problem is a language Q ⊆ Σ∗ × N; the

second component of instances (x, k) is called the parameter

(cf. [2], [3]). A parameterized problem is fixed-parameter
tractable (FPT) if there is an algorithm A and a computable

function f : N → N such that A decides (x, k) ∈ Q in

time f(k)|x|O(1). A kernelization of Q is a polynomial-

time computable mapping K : Σ∗×N→ Σ∗×N : (x, k) �→
(x′, k′) such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q and

with |x′|, k′ ≤ h(k) where h is a computable function; h
is called the size of the kernel and K is a polynomial
kernelization if h(k) is polynomially bounded.

All kernelization results in this paper are randomized,

i.e., there is a (small) chance for the reduced instance

not to be equivalent to the input. In all cases, the failure

is either one-sided, with false positives only, or occurs

with probability exponentially small in the input size. The

former type of kernels were called coRP-kernels in previous

work [10]; see [10] for a brief discussion on why they are

compatible with the lower bound framework [6], [7], and

refer to [1], [7] for more on randomized compression. The

latter type is easily seen to be computable in non-uniform

polynomial time, compatible with the exclusion of non-

uniform compression [7].

Matroids. A matroid is a pair M = (E, I), where E is

the ground set and I ⊆ 2E a collection of independent sets,

such that: (i) ∅ ∈ I; (ii) if I1 ⊆ I2 and I2 ∈ I, then I1 ∈ I;

and (iii) if I1, I2 ∈ I and |I2| > |I1|, then there exists

some x ∈ (I2 \ I1) such that I1 ∪ {x} ∈ I . A set I ⊆ E is

independent if I ∈ I, and dependent otherwise. A set B ∈
I is a basis of M if no superset of B is independent; a

matroid may equivalently be defined by its set of bases.

For a subset X ⊆ E, the rank r(X) of X is the largest

cardinality of an independent set I ⊆ X . The rank of M
is r(M) := r(E).

Let A be a matrix over a field F and E be the set of

columns of A. Let I be the set of all sets X ⊆ E of

columns that are linearly independent over F (as vectors).

Then (E, I) defines a matroid M , and we say that A
represents M . A matroid is representable (over a field F)

if there is a matrix (over F) that represents it. A matroid

representable over some field is called linear. In this work,

we will concern ourselves only with linear matroids.

Gammoids. Let D = (V,A) be a digraph and let S, T ⊆
V . The set T is linked to S if there exist |T | vertex-disjoint

paths from S to T ; this allows paths of length zero, e.g.,

any set is linked to itself. Given any digraph D = (V,A)
with source vertices S ⊆ V , the sets T ⊆ V which are

linked to S in D form a matroid, a so-called gammoid [36]

(see also [37], [38]); we refer to it as (D,S). Marx [18]

gave a randomized polynomial-time procedure for finding

a representation of a gammoid. The error probability can

be made exponentially small in the size of the graph. By

standard arguments, advice polynomial in n is sufficient to

derandomize this step.

Theorem 5 ( [18], [36]). Let D = (V,A) be a directed
graph, and let S ⊆ V . The subsets T ⊆ V which
are linked to S form the independent sets of a matroid
over V . Furthermore, a representation of this matroid can
be obtained in randomized polynomial time with one-sided
error.

Throughout the paper, (A,B)-cuts may intersect A and B,

unless otherwise noted. We also create sink-only copies of

vertices; a sink-only copy of v ∈ V , in D = (V,A), is a

parallel copy v′ of v which retains only the incoming edges

of v (in the undirected case all edges are oriented inwards).

These will be used, effectively, to require two paths to a

vertex v ∈ X in a set X linked to S. Note that adding v′ to

the graph has no effect on any independent (linked) set not

containing v′.

452



III. TOOLS FROM MATROID THEORY

Representative sets. The notion of representative sets
plays an essential role in the paper.

Definition 1. Given a matroid M = (E, I) and a collection
S of subsets of E, we say that a subcollection S∗ ⊆ S is
r-representative for S if the following holds: for every set
Y ⊆ E of size at most r, if there is a set X ∈ S disjoint
from Y with X∪Y ∈ I, then there is a set X∗ ∈ S∗ disjoint
from Y with X∗ ∪ Y ∈ I.

We will use representative set without specifying r to

mean an (r(M)−s)-representative set. The following result

is due to Marx [18], building on Lovász [17].

Lemma 1 ( [17], [18]). Let M be a linear matroid of
rank r + s, and let S = {S1, . . . , Sm} be a collection of
independent sets, each of size s. If |S| > (

r+s
s

)
, then there

is a set Si ∈ S such that S \ {Si} is r-representative for
S. Furthermore, given a representation A of M , we can
find such a set Si in time (m + ||A||)O(1) (note that terms
polynomial in

(
r+s
s

)
are bounded by mO(1)).

Closest cuts and gammoid rank. Our usage of represen-

tative sets and Lemma 1 is centered around the concept of

closest sets, defined as follows. Let D = (V,A) be a digraph,

and S ⊆ V . A set X ⊆ V is closest to S if X is the unique

(S,X)-min-cut (or, if S and X are not disjoint, X \ S is

the unique (S \ X,X \ S)-min-cut). If so, we say that X
is a closest set. For any set of vertices X , the induced
closest set C(X) is the unique (S,X)-min-cut which is

closest to S; this is well-defined by the submodularity of

cuts, and can be found in polynomial time. If X is a closest

set, then C(X) = X . Note that a closest set does not need to

be a cut; there may not be any vertices except for X which

are separated from S by X .

Closest sets are a natural notion, but do not seem to have

a fixed name; e.g., they occur in the bipedal stage of the

MULTICUT(k) algorithm of Marx and Razgon [26]. There

are also similarities between closest sets and the concept

of important separators [25]: for any set X closest to S
which separates some vertex v /∈ X from S, there is a

corresponding important separator. However, the change of

focus from separation to closeness means that the concepts

behave differently.

We make the following observations connecting closest

sets to the rank function of a gammoid.

Proposition 1 (∗1). Let D = (V,A) be a digraph with a
set of source vertices S ⊆ V , and let X ⊆ V . Let D′ be the
result of adding a sink-only copy x′ for every vertex x ∈ X .
The following hold.

1) The set X is closest to S in D if and only if X + x′

1Proofs of statements marked with ∗ are postponed to the full version
of the paper [35].

is independent in the gammoid (D′, S) for every x ∈
X \ S.

2) Let XB be a maximal independent subset of X . A
vertex v is reachable from S in D−C(X) if and only
if XB + v is independent in the gammoid (D′, S).

In particular, any (S, T )-cut X which is not a closest set,

i.e., such that X + x′ is dependent in the gammoid (D′, S)
for some x ∈ X \ S, can be replaced by a different (S, T )-
cut Z of at most the same size which does not contain x.

IV. REPRESENTATIVE SETS:

A POLYNOMIAL KERNEL FOR ALMOST 2-SAT

In this section we show how to obtain polynomial kernels

via representative objects. We consider a problem that we

call DIGRAPH PAIR CUT, which captures the iterative com-

pression version of ALMOST 2-SAT. We show a polynomial

kernel for DIGRAPH PAIR CUT, using representative sets

and a gammoid representation of graph cuts. Polynomial

kernels for ALMOST 2-SAT and related problems follow

via kernelization-preserving reductions.

We now study the DIGRAPH PAIR CUT problem, to

provide an O∗(2k) time algorithm and a randomized polyno-

mial kernelization for it. Given a digraph D = (V,A) with

a source vertex s, we say that a pair p = {u, v}, u, v ∈ V ,

is reachable in D if both u and v are reachable from s (not

necessarily via disjoint paths). The problem is then defined

as follows.

DIGRAPH PAIR CUT Parameter: k.

Input: A digraph D = (V,A) with source vertex s ∈ V ,

a set of pairs P ⊆ (
V
2

)
, and an integer k.

Question: Is there a set X ⊆ V \ {s} with |X| ≤ k such

that no pair in P is reachable in D −X?

Note that DIGRAPH PAIR CUT can be seen as a cut-

based generalization of VERTEX COVER. Specifically, if the

graph D is an n-point star with s in the center, then the

input is equivalent to a VERTEX COVER instance with one

edge for every pair in P .

Theorem 6 (∗). The DIGRAPH PAIR CUT problem can be
solved in time O∗(2k).

It is easy to see that optimal solutions for DIGRAPH PAIR

CUT can be assumed to be closest to the source vertex s.

We show that there exists a representative subset P ∗ of the

pairs P , of size O(k2), which determines whether or not

any pair from P is reachable from s under some cut X
closest to s. Given P ∗, and a gammoid encoding of the cut

function between s and the vertices occurring in P ∗, we get

a polynomial kernel for DIGRAPH PAIR CUT. Note that the

bound on |P ∗| is tight even in the case of VERTEX COVER,

where O(k2) edges is optimal [8].

Lemma 2 (∗). Let D = (V,A) be a digraph, s ∈ V , k an
integer, and P ⊆ (

V
2

)
a set of vertex pairs. In randomized
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polynomial time (with failure probability exponentially small
in the input size) we can find a set of O(k2) pairs P ∗ ⊆ P
(the representative pairs), such that for any set X ⊆ V \{s}
closest to s of at most k vertices, the graph D−X contains
a reachable pair p ∈ P if and only if it contains a reachable
pair p∗ ∈ P ∗.

Proof (sketch): Proposition 1 implies that, for any

cut X closest to s, a vertex v is reachable from s in G−X
if and only if X+ v is independent in the gammoid (D,S),
where S consists of k + 1 copies of s.

By studying a matroid M consisting of two disjoint copies

of (D,S), we can extend this fact to pairs of vertices. We use

Lemma 1 to generate a set of representative pairs P ∗ ⊆ P
of size O(k2) with respect to independent sets of size at

most 2k in M . Now if P contains a pair that extends an

independent set X ′, with |X ′| ≤ 2k, then P ∗ contains such a

pair too; the crucial sets X ′ in M are those which correspond

to two copies of some closest cut X . This completes the

proof since, by Proposition 1, reachability with respect to

closest cuts is equivalent to extension of the corresponding

independent set.
We note that a generalization from pairs to q-tuples still

holds. If applied to q-tuples, the lemma uses polynomial

time to reduce a given set of q-tuples to a set of O(kq)
representative q-tuples. This implies a polynomial kernel for

the q-ary generalization of DIGRAPH PAIR CUT, where the

input contains a set of q-tuples Q, and the task is to separate

at least one member of every q-tuple from s. We call this

variant DIGRAPH q-TUPLE CUT. Again, note that a bound

of O(kq) is tight for q-tuples: it is straightforward to reduce

from q-HITTING SET for which total size of O(kq−ε) for

any ε > 0 is excluded unless NP ⊆ coNP/poly [8].
Now, let (D, s, P, k) be an instance of DIGRAPH PAIR

CUT, and let P ∗ be a set of representative pairs of P .

Clearly, it is enough to find a set X of size k such that

no pair in P ∗ is reachable in D−X; we show that, in turn,

the existence of such a set can be encoded into a gammoid

on s and
⋃

P ∗.

Theorem 7 (∗). There is a randomized polynomial-time
compression algorithm for DIGRAPH PAIR CUT which given
an instance I = (D, s, P, k) and a positive real ε computes
a compressed representation of I of size Õ(k3(k+log 1/ε)).
The success probability is at least 1−ε, and in the remaining
cases the output encodes a positive instance.

As a corollary, by standard arguments (cf. [39]), we get

a polynomial coRP-kernelization for DIGRAPH PAIR CUT.

A kernelization-preserving reduction from ALMOST 2-SAT

to DIGRAPH PAIR CUT (omitted in this version of the

paper) now finishes the kernelization of ALMOST 2-SAT,

and the first half of Theorem 1. Further reductions give

polynomial kernels for additional problems. Many of these

were previously known; see [13], [14], [40].

Corollary 1 (∗). The following problems have randomized
polynomial kernels: VERTEX COVER ABOVE MATCHING,
VERTEX COVER PARAMETERIZED BY KÖNIG DELETION

SET, KÖNIG VERTEX DELETION restricted to input graphs
having perfect matchings, and RHORN-BACKDOOR DELE-

TION SET.

The result on VERTEX COVER PARAMETERIZED BY

KÖNIG DELETION SET generalizes the best previ-

ously known structural kernelization results for VERTEX

COVER [41].

We also provide a new reduction result in the form

of a PPT from VERTEX COVER ABOVE LP to VERTEX

COVER ABOVE MAXIMUM MATCHING, implying that the

two problems are PPT-equivalent, and that VERTEX COVER

ABOVE LP has a polynomial kernel.

Corollary 2 (∗). VERTEX COVER ABOVE LP admits a
randomized polynomial kernelization.

V. FINDING IRRELEVANT VERTICES:

POLYNOMIAL KERNELS FOR CUT PROBLEMS

In this section we extend our scope by showing how to use

representative sets for the identification of irrelevant vertices

in terminal cut problems. In this setting, a vertex is said to

be irrelevant if there is at least one optimal solution which

does not contain the vertex. Note that it is well possible

that some irrelevant vertices are needed to build an optimal

solution, but that any single one of them can be avoided.

As a warm-up result, we will consider the MULTIWAY

CUT WITH DELETABLE TERMINALS(k) problem, where

the solution is allowed to contain terminals as well. For

this simpler problem we are able to give a representative

set characterization that covers not only all non-irrelevant

vertices, but in fact contains an optimal solution. Thus a

single iteration of the representative sets tool will produce a

(randomized) polynomial kernel with O(k3) vertices.

Next, we move on to the main focus of the section,

namely multiway cuts with a bounded number of terminals

or partitions. We present a randomized polynomial kernel

with O(ks+1) vertices for the s-MULTIWAY CUT(k) prob-

lem, where the number of terminals is bounded by the

constant s. For this problem we need a more “traditional”

irrelevant vertex approach where only a single vertex is

removed in each iteration.

The approach has further consequences, in the form of

the cut-covering sets of Theorems 3 and 4 – we find a small

set of vertices which simultaneously contains an optimal

solution for all min-cut questions involving T (and a similar

conclusion for multiway cuts). In particular, this result lets

us replace the gammoid encoding of graph cuts of [10] by

a “proper” kernelization rule.

Finally, we mention two further applications, namely

polynomial kernels for s-MULTICUT(k) and Γ-FEEDBACK

VERTEX SET(k) for groups Γ with at most s elements.
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A. Multiway Cut with deletable terminals

In this section we focus on the MULTIWAY CUT WITH

DELETABLE TERMINALS(k) problem (DT-MWC(k)), where

the task is to separate a set T of terminals by deleting at

most k vertices (including terminals). It can be easily seen to

be equivalent to MULTIWAY CUT restricted to terminals of

degree one. The problem is NP-hard by a simple reduction

from VERTEX COVER.2

Let (G,T, k) be an instance of DT-MWC(k), with G =
(V,E) and T ⊆ V . We will use the tool of representative

sets to identify a set of O(k3) representative vertices V ∗

such that V ∗ ∪ T contains an optimal solution. But first,

using a result of Guillemot [27], we limit |T | in terms of k.

Lemma 3 (∗). Let (G,T, k) be an instance of MULTIWAY

CUT WITH DELETABLE TERMINALS(k). An equivalent in-
stance (G′, T ′, k′) with k′ ≤ k and |T ′| ≤ 2k′ can be
computed in polynomial time.

For the representative set, we form a graph G′ by adding

to every non-terminal vertex v two sink-only copies v′

and v′′, and form the gammoid on G′ with T as source set.

We form the set S of triples {v, v′, v′′} for v ∈ V \ T , and

let S∗ be a k-representative set of S. Further, we let V ∗ ⊆ V
be the set of vertices v with {v, v′, v′′} ∈ S∗. We know

that |V ∗| = O(k3); we argue (again) that there is an optimal

solution X such that (X \ T ) ⊆ V ∗.

Lemma 4 (∗). Let (G,T, k) be an instance of MULTIWAY

CUT WITH DELETABLE TERMINALS(k), and let X be a
minimum size multiway cut (of size k) which as a secondary
criterion has a maximum size intersection with T . Let V ∗

be a representative set of V , as constructed above. Then for
every x ∈ (X \ T ), the set X + x′ + x′′ is linked to T ,
and X ⊆ T ∪ V ∗.

Proof (sketch): The proof is given by matching argu-

ments on an auxiliary bipartite graph H = (X ′ ∪ T ′, EH)
where X ′ = X \ T and T ′ = T \ X (skipping deleted

terminals t ∈ T ∩ X), and with an edge {x, t} if x can

reach t in G − (X − x). There are two crucial facts. First,

any pseudomatching M ⊆ EH such that edges in M share

no endpoint in T ′ corresponds to |M | paths from T ′ to X ′

which overlap only on vertices in X ′; this follows from

the fact that each component of G − X contains at most

one terminal. Second, it follows from the maximum overlap

of X with T that any subset S ⊆ X has at least |S| + 2
neighbors in H , since instead of S we could delete all but

one terminal reachable from S. An application of Hall’s

Theorem completes the proof.

By this lemma, we may set all vertices of V \(V ∗∪T ) as

undeletable, without changing the existence of a solution of

size at most k. The easiest way to achieve this is by adding

2Given a graph G, create G′ by attaching a terminal v′ to each vertex v.
Multiway cuts in G′ correspond to vertex covers of G and vice versa.

shortcut edges {u, v} between any two vertices u, v ∈
V ∗∪T which are connected by a path with internal vertices

from V ′, and subsequently deleting V ′ from the graph. Thus

we get a polynomial kernel.

Theorem 8. MULTIWAY CUT WITH DELETABLE TERMI-

NALS(k) has a randomized kernel of O(k3) vertices. The
error probability can be made exponentially small in n; all
errors are false negatives.

B. Bounded terminals Multiway Cut
We will now focus on s-MULTIWAY CUT(k), i.e., the vari-

ant of MULTIWAY CUT(k) where the number of terminals is

bounded by some fixed constant s; we show a randomized

polynomial kernel with O(ks+1) vertices.
Unlike for MULTIWAY CUT WITH DELETABLE TERMI-

NALS(k) we are not able to directly form a set of repre-

sentative vertices which is guaranteed to contain an optimal

solution. Instead we show how to identify irrelevant vertices

via representative sets techniques, and get the kernel by

iterating computation of representative vertices and deletion

of a single irrelevant vertex.
We begin by identifying a condition under which at

most O(ks+1) vertices are representative, and such that for

any single non-representative vertex v of G there is an

optimal solution not containing v. Let T = {t1, . . . , ts}
be the set of terminals, arbitrarily ordered. Assume that the

LP-based reductions of Guillemot [27] have been applied, so

that the terminals have disjoint neighborhoods and |N(T )| ≤
2k (see Lemma 3). Our condition of representativeness,

called high reachability, is defined as follows.

Definition 2. Let (G,T, k) be an instance of s-MULTIWAY

CUT(k) with G = (V,E) and a set T ⊆ V of at
most s terminals. Let X ⊆ V \ T be a multiway cut of
at most k vertices. Furthermore, let G′ be the directed
graph obtained from G by adding one sink-only copy v′

for each v ∈ V \ T . We say that v ∈ X is highly reachable

under X if X + v′ +N(t) is independent for every t ∈ T ,
in the gammoid (G′, N(T )). We say that v ∈ V is highly

reachable if there exists some multiway cut X of at most k
vertices such that v is highly reachable under X .

Intuitively, after removing any one terminal from T , the

solution X should still be independent with two vertex-

disjoint paths to v. Though there are other ways to express

this, the exact wording of Definition 2 will be useful for the

group feedback vertex set problems later in this section.
We may identify the highly reachable vertices in polyno-

mial time.

Lemma 5. We can identify a set of O(ks+1) vertices, in
randomized polynomial time with error probability O(2−n),
which contains all highly reachable vertices.

Proof: Create a gammoid which is the disjoint union

of s+ 1 layers 0, 1, . . . , s, where layers 1, . . . , s are copies
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of the gammoid (G′, N(T )), where G′ is as in Definition 2.

For layer 0 we take the uniform matroid of rank k on

base set V , i.e., we take (V,
(
V
≤k

)
). Then, create a set of

tuples (v(0), v′(1), v′(2), . . . , v′(s)) for every v ∈ V (G),
where v(0) is the copy of v in layer 0 and each v′(i),
with 1 ≤ i ≤ s is the sink-only copy of v in the i:th
matroid layer. Use Lemma 1 to identify a O(ks+1)-sized set

of representative tuples (note that the rank can be bounded

by O(ks)).
We show that the tuples (v(0), v′(1), v′(2), . . . , v′(s))

corresponding to highly reachable vertices v (with respect

to some solution X) will be the unique choice for extend-

ing some particular independent sets. Hence they must be

contained in the representative subset of the tuples.
Let X be a solution to the instance, and let v ∈ X

be highly reachable under X . Consider the set X∗ which

contains the following elements in the s+ 1 layers:

1) In layer 0 it contains all vertices u ∈ X \ {v}; these

are at most k − 1.

2) In each other layer i ∈ {1, . . . , s} it contains the

vertices X +N(ti).

By assumption the tuple (v(0), v′(1), v′(2), . . . , v′(s)) ex-

tends this set (to an independent set). Note that v(0) is not

among the vertices chosen for layer 0, since those are only

the copies of X \ {v}.
Now assume that there is some vertex u �= v such

that (u(0), u′(1), u′(2), . . . , u′(s)) extends X∗. If u ∈ X ,

then its tuple intersects X \ {v} in layer 0. If u /∈ X , then

it is reachable from only one terminal, say ti, in G − X .

Hence, in layer i, the vertex u′(i) cannot be added to X∗

since we already request paths which saturate (the layer i
copies of) X and N(ti).

Thus v is the unique vertex whose tuple can extend the

independent set X∗, implying that its tuple will be among

the representative tuples computed via Lemma 2. Thus the

corresponding O(ks+1) vertices contain all highly reachable

vertices.
Now, we need to show that any single vertex which is

not highly reachable can be removed without harm, i.e.,

that such a vertex is irrelevant. It suffices to show that any

optimal solution X containing v can be converted into a

solution of the same size and avoiding v.

Lemma 6 (∗). Let v be a vertex which is not highly
reachable under any multiway cut of size at most k and is
not contained in N(T ). Then there is an optimal multiway
cut which does not contain v.

Proof (sketch): Let X be an optimal multiway cut for G
with v ∈ X . Let t ∈ T such that X+ v′+N(t) is not inde-

pendent in (G′, N(T )), according to Definition 2. It follows

that there is a minimal cut C of size at most |X| + |N(t)|
separating N(T ) and X + v′ + N(t). The proof goes by

constructing a new multiway cut X ′ from C and X , such

that |X ′| ≤ |X| and v /∈ X ′.

To conclude our result, we only need one simple reduction

rule.

Reduction Rule 1. Let (G = (V,E), T, k) be a multiway
cut instance, and let v ∈ V \ (T ∪ N(T )) be a vertex
which is not identified as potentially highly reachable by
Lemma 5. Create G′ from G by replacing N(v) by a clique
and removing v from the graph. Return (G′, T, k).

Theorem 9 (∗). s-MULTIWAY CUT(k) has a randomized
kernel of O(ks+1) vertices. The error probability can be
made exponentially small in n, and errors are limited to
false negatives.

The kernel is, arguably, near-combinatorial, in the sense

that it consists of a reduction rule which performs simple di-

rect modifications to the input graph, while the condition of

applicability for the rule may be seen as non-combinatorial,

as it at the moment requires a representation of a gammoid

and the multilinear algebra of Lemma 1.

C. Covering Graph Cuts

In this section, we will adapt the above approach to prove

the more general Theorems 3 and 4 about covering terminal

min-cuts and minimum multiway cuts. In essence, we find

that the representative sets condition of Lemma 5 gives us

much more power than we need for kernelization. We begin

with the statement for cuts in directed graphs.

Proof of Theorem 3: Let G,S, T be as given; we

may assume w.l.o.g. that S are sources and T sinks in the

graph (by adding source vertices before S and sink vertices

after T ; this does not modify any cuts). Let a vertex v ∈ V
be essential if there are sets A ⊆ S, B ⊆ T such that

every minimum (A,B)-vertex cut contains v, and irrelevant
otherwise. Let A ⊆ S and B ⊆ T , and let CA resp. CB be

the minimum (A,B)-vertex cut closest to A resp. to B. The

idea of the proof is that vertices essential for an (A,B)-cut

are exactly those in CA∩CB , and, in turn, by Proposition 1,

we can use representative sets to find such vertices.

Claim 1 (∗). Let r denote the size of a minimum (S, T )-
vertex cut (which may intersect S and T ). We can find a
set Z ⊆ V of O(|S| · |T | · r) vertices which includes all
essential vertices.

Now, any vertex in V \ (Z ∪ S ∪ T ) may safely be

made undeletable (as in Reduction Rule 1) without changing

the size of any minimum (A,B)-vertex cut. By induction,

this gives a set of O(|S| · |T | · r) vertices which covers a

minimum (A,B)-vertex cut in G for every A ⊆ S, B ⊆ T ,

as requested.

By a construction in [10], we can transfer this result

to preserving minimum cuts through a set of terminals,

allowing for deleting terminals.

Corollary 3 (∗). Let G = (V,E) be a directed graph,
and X ⊆ V a set of terminals. We can identify, in
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polynomial time, a set Z of O(|X|3) vertices such that for
any S, T,R ⊆ X , a minimum (S, T )-vertex cut in G−R is
contained in Z.

Regarding tightness, it is easy to show that Ω(|S| · |T |)
vertices are necessary, even in a very simple setup: Let S
and T be disjoint sets of vertices of weight 2, and for

every u ∈ S,w ∈ T create a connecting vertex vu,w of

weight 1, with N(vu,w) = {u,w}. Then, the sets A = {u}
and B = {w} show that we must include vu,w to preserve

the unique minimum (A,B)-cut. This is easily converted

into a setting without weights, by copying vertices in S
and T into pairs of twins. We do not know whether the

further factor of r in our upper bound is necessary.
The above gives us direct polynomial kernels for a number

of problems (as opposed to the implicit polynomial kernels

resulting from polynomial compression due to NP-hardness

reductions, e.g. as in [10]).

Corollary 4 (∗). DIGRAPH PAIR CUT has a kernel of O(k4)
vertices; ALMOST 2-SAT has a kernel of O(k6) ver-
tices. The signed graph generalizations of ODD CYCLE

TRANSVERSAL and EDGE BIPARTIZATION, where edges
are marked as even or odd and the goal is to kill all odd-
parity cycles, have kernels with O(k4.5) respectively Õ(k3)
vertices. All the above kernels are randomized, and can be
derandomized with polynomial advice.

Covering multiway cuts: We now turn to a multiway cut

variant of the above. To state our results, we define a mul-

tiway cut of a partition as follows: Let X = (X1, . . . , Xs)
be a tuple of pairwise disjoint sets of vertices, X :=

⋃
Xi.

A multiway cut of X is a set of vertices C ⊆ V , which

may intersect X , such that for i �= j, there is no path

between (Xi \ C) and (Xj \ C) in G− C. In other words,

it is a multiway cut of the instance produced by adding

terminals t1, . . . , ts, with N(ti) = Xi. We show that we

can find a set which covers a minimum multiway cut for

every partition X = (X1, . . . , Xs) with
⋃

i Xi ⊆ X .
Proof of Theorem 4: The proof will again be an

irrelevant vertex construction, using the representative set

condition of Lemma 5 as guide. Call a vertex v ∈ (V \X) es-
sential if there is a partition X = (X1, . . . , Xs) of X ′ ⊆ X
such that every minimum multiway cut of X contains v. As

in Section V-B, we find that such an essential vertex must

be highly reachable under the partition X . Essentially, what

remains to be proven is that Lemma 5 does not really depend

on knowing the partition X in advance.

Claim 2 (∗). We can identify (in polynomial time) a set
of O(|X|s+1) vertices which includes all essential vertices.

The rest of the proof now proceeds as for Theorem 3.

D. Further kernelization implications
We now briefly mention two further related kernelization

results for cut problems, providing the last parts of Theo-

rem 2. First, we extend the result for s-MULTIWAY CUT(k)
to also give a polynomial kernel for s-MULTICUT(k), i.e.,

MULTICUT(k) restricted to instances having at most s
terminal pairs. The key fact is that an optimal multicut X
for some instance (G,T, k), where T ⊆ (

V
2

)
of size at

most s, is also a multiwaycut for some partition of the

terminal vertices V (T ) = {v | ∃u : {u, v} ∈ T} in

which no set contains both vertices of some terminal pair.

By considering partitions that are maximally coarse, i.e.,

merging any two sets would violate this condition, we get a

relation to multiway cut instances with up to (roughly)
√
2s

terminals.

Theorem 10 (∗). s-MULTICUT(k) admits a randomized
polynomial kernel with f(s)k�

√
2s�+1 vertices. The error

probability can be made exponentially small in n, and errors
are limited to false negatives.

Second, we obtain a polynomial kernel for the GROUP

FEEDBACK VERTEX SET(k) problem, for groups of

bounded size. FPT algorithms for this problem have been

given by Guillemot [27] and, in a very general form, Cygan

et al. [42]. We focus on the following version, which can be

easily seen to generalize OCT, and furthermore encompasses

s-MULTIWAY CUT(k) for any group Γ with at least s
elements (see [35]).

Γ-FEEDBACK VERTEX SET(k) Parameter: k.

Input: A directed graph D = (V,A), an edge label-

ing φ : A→ Γ, and an integer k.

Question: Is there a set X of at most k vertices such

that D −X has a consistent labeling, i.e., a function π :
V → Γ such that π(u) ⊗ φ((u, v)) = π(v) for all

arcs (u, v) ∈ A \ F .

Our proof essentially has three parts. First, we show

that we can use known approximation results for VERTEX

MULTICUT [43] to get a solution of O(s2k2) elements;

second, we show that the iterative compression form of

GROUP FEEDBACK VERTEX SET(k) reduces to MULTIWAY

CUT, albeit with a superpolynomial number of calls; finally,

we adapt the above to give an irrelevant vertex reduction

rule for GROUP FEEDBACK VERTEX SET(k). We get the

following kernelization result.

Theorem 11 (∗). Let Γ be a fixed group with s elements.
Γ-FEEDBACK VERTEX SET(k) admits a randomized poly-
nomial kernel with O(k2s+2) vertices. The error probability
can be made exponentially small in n, and errors are limited
to false negatives.

VI. CONCLUSION

We give powerful new techniques for polynomial kernel-

ization, centered around applications of a lemma from ma-

troid theory due to Lovász [17] and Marx [18]. The resulting

tools significantly advance the field of kernelization, and
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imply polynomial kernels for a range of problems, including

ALMOST 2-SAT(k), s-terminal MULTIWAY CUT(k), and

MULTICUT(k) with s terminal pairs, for constant s, among

other results. In particular, we show how the lemma can be

applied to find irrelevant vertices for graph cut problems.

In addition to the aforementioned kernels, this lets us find a

form of cut-covering sets of small size: given a graph G and

terminal set T , we can find a set Z, of size polynomial in |T |,
such that for every A,B ⊆ T , a minimum (A,B)-vertex cut

is contained in Z. Similarly, for a constant s, we can find a

set Z of polynomial size such that for every partition of T
(or a subset of T ) into at most s partitions, a minimum

multiway cut of the partition is contained in Z. We foresee

further applications of these results. Similarly to in [10], our

kernels are randomized; unlike in [10], they can all be made

reduction rule-based. Furthermore, the failure probability

can be reduced to be exponentially small in the input length,

implying non-uniform polynomial-time kernelization.

Despite being randomized, we note that all our kernels are

compatible with the lower bound framework of Bodlaender

et al. [6] and Fortnow and Santhanam [7]; see the discussion

in [10] regarding coRP-kernels. Similar arguments can be

made regarding non-uniform kernels; see [7, Corollary 3.4].

Hence, concrete polynomial upper and lower bounds for the

current problems is a relevant path of research (see Dell and

van Melkebeek [8], Dell and Marx [44], and Hermelin and

Wu [45]). Research on non-uniform kernels in general is

also left as future work.

Further significant open questions include the existence

of polynomial kernels for the general form of MULTIWAY

CUT(k) and MULTICUT (s + k), in edge- and vertex-

deletion variants, and for the GROUP FEEDBACK ARC

SET(k) and GROUP FEEDBACK VERTEX SET(k) problems

with arbitrary groups. Additionally, a polynomial kernel

for DIRECTED FEEDBACK VERTEX SET remains an open

problem.
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