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Abstract—Let G be a graph cellularly embedded in a
surface S. Given two closed walks c and d in G, we take
advantage of the RAM model to describe linear time algorithms
to decide if c and d are homotopic in S , either freely or with
fixed basepoint. After O(|G|) time preprocessing independent
of c and d, our algorithms answer the homotopy test in
O(|c| + |d|) time, where |G|, |c| and |d| are the respective
numbers of edges of G, c and d. These results were previously
announced by Dey and Guha (1999). Their approach was based
on small cancellation theory from combinatorial group theory.
However, several flaws in their algorithms make their approach
fail, leaving the complexity of the homotopy test problem still
open. We present a geometric approach, based on previous
works by Colin de Verdière and Erickson, that provides optimal
homotopy tests.

Keywords-computational topology, curve homotopy, combi-
natorial surface.

I. INTRODUCTION

Computational topology of surfaces has received much

attention in the last two decades. Among the notable results

we may mention the test of homotopy between two cycles

on a surface [1] or the computation of a shortest cycle

homotopic to a given cycle [2], [3], [4]. In their 1999 paper,

Dey and Guha announced a linear time algorithm for testing

whether two curves on a triangulated surface are freely

homotopic. This appeared as a major breakthrough for one of

the most basic problem in computational topology. Dey and

Guha’s approach relies on results by Greendlinger [5], [6]

for the conjugacy problem in one relator groups satisfying

some small cancellation condition. In the appendix, we show

several subtle flaws in the paper of Dey and Guha [1] that

invalidate their approach1. Inspired by the recent work of

Colin de Verdière and Erickson [4], we propose a self-

contained approach and confirm the results of Dey and Guha.

In addition, our free homotopy test covers the cases of

orientable surfaces of genus 2 or non orientable surfaces of

genus 3 and 4 which are not addressed in Dey and Guha’s

approach.

As commonly assumed in computational topology, we

analyze the complexity of our algorithms with the uniform

1In a private communication, one of the authors of [1] claims that their
contractibility test can be fixed.

cost RAM model of computation [7]. A notable feature of

this model is the ability to manipulate arbitrary integers

in constant time per operation and to access an arbitrary

memory register in constant time.

Let G be a graph cellularly embedded in a surface S of

genus g. In a first part we consider the homotopy test for

curves with fixed endpoints drawn in G. This test reduces

to decide if a loop is contractible in S, i.e., null-homotopic,

since two curves c and d are homotopic with fixed endpoints

if and only if the concatenation c · d−1 is contractible.

The contractibility test was already considered by Dey and

Schipper [8] using a partial and implicit construction of the

universal cover of S . Indeed, a curve is contractible in S if

and only if its lift is closed in the universal cover of S . Given

a closed curve c, Dey and Schipper detect if c is contractible

in O(|c| log g) time. Their implicit construction is relatively

complex and does not seem to extend to handle the free

homotopy test. Our contractibility test relies on the more

explicit construction in [4, Sec. 3.3 and 4] for tightening

paths. It amounts to build a convex region of the universal

cover of S large enough to contain a lift of c. An argument

à la Dehn shows that this region can be chosen to have

size O(|c|), leading to our first theorem:

Theorem 1 (Contractibility test). Let G be a graph of
complexity n cellularly embedded in a surface S. We can
preprocess G in O(n) time, so that for any loop c on S
represented as a closed walk of k edges in G, we can decide
whether c is contractible or not in O(k) time.

We next study the free homotopy test, that is deciding if

two cycles c and d drawn in G can be continuously deformed

one to the other on S. By theorem 1, we may assume that

none of c and d is contractible. We first build (part of) the

cyclic covering Sc of S induced by the cyclic subgroup

generated by c in the fundamental group of S. Assuming

that S is orientable (see the end of Section IV for the non-

orientable case), Sc is a topological cylinder and we call

any of its non-contractible simple cycles a generator. Since

the generators of Sc are freely homotopic, their projection

on S are freely homotopic to c. Our next task is to extract

from Sc a canonical generator γR whose definition only

depends on the isomorphism class of Sc. To this end, we lift
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the graph G in Sc and we endow Sc with the corresponding

cross-metric [4]. The set of generators that are minimal for

this metric form a compact annulus in Sc. We define γR as

the “right” boundary of this annulus. Similarly, we extract a

canonical generator δR of Sd. If c and d are freely homotopic

we know that Sc and Sd are isomorphic covering spaces [9,

§V.6]. It follows that c and d are freely homotopic if and

only if γR and δR have equal projections on S . Proving

that γR and δR can be constructed in time proportional to

|c| and |d| respectively, we finally obtain:

Theorem 2 (Free homotopy test). Let G be a graph of
complexity n cellularly embedded in a surface S. We can
preprocess G in O(n) time, so that for any cycles c and d
on S represented as closed walks in G with k edges in total,
we can decide if c and d are freely homotopic in O(k) time.

As an immediate consequence of our two theorems, we

can solve the word problem and the conjugacy problem [10,

Section 6.1] in surface groups in optimal linear time. The

word problem has a long standing history starting a cen-

tury ago with Dehn’s seminal papers [11]. The famous

Dehn’s algorithm is based on the property that every freely

reduced word that is trivial in a surface group contains

more than half of a cyclic permutation of the defining

relator or its inverse. Replacing this piece of relator by its

complementary piece allows to reduce the size of the word

until it becomes empty. Dehn’s algorithm has been extended

to larger classes of groups through the theory of small
cancellation groups based on van Kampen diagrams (see [6,

Chap. V] and [12]). Most of the small cancellation groups

appear themselves to be hyperbolic groups [12], to which

a generalized Dehn’s algorithm apply. Recent developments

show that the word problem in such groups admits (linear)

real time solutions [13], [14], [15]. We emphasize that

such developments assume a multi-tape Turing machine

as a model of computation where the number of tapes is

related to the size of the symmetric set of defining relators.

In our case, this would incure a multiplicative factor in

the algorithm complexity proportional to the genus of the

surface. In contrast, our solutions consider the group itself

as part of the input and, after the preprocessing phase, the

decision problems have linear time solutions independent of
the genus of the surface. Although our main arguments are

reminiscent of basic properties of van Kampen diagrams,

such as Lyndon’s curvature formula [6, Chap. V] or linear

isoperimetric inequalities [16, Sec. III.2], it is not clear how

to establish a precise connection2. For complexity purposes

we are indeed working with graphs that can not be described

as Cayley graphs of groups in an obvious manner, that is

considering the group elements as vertices and indexing the

edges into a set of generators.

2At the time of printing, J. Erickson and K. Whittlesey have succeded
to establish this connection to obtain simpler algorithms.

Organization of the paper: We start recalling some

necessary terminology and properties of surfaces, coverings

and cellular embeddings of graphs in Section II. We solve

the contractibility test and prove Theorem 1 in Section III.

The proof of Theorem 2 for the free homotopy test is given

in Section IV. In the spirit of the first Dehn’s papers [11,

paper 4] we sometimes appeal to concise arguments from

hyperbolic geometry. Purely topological and combinatorial

arguments can be found in the full version of our paper.

II. BACKGROUND

We refer the reader to Massey [9] or Stillwell [10] for

further details on topological concepts.

Surfaces: A compact surface without boundary is

homeomorphic to a sphere where either:

• g ≥ 0 open disks are removed and a perforated torus

with one boundary component is attached

to each resulting circle, or

• g ≥ 1 open disks are removed and a Möbius band is

attached to each resulting circle.

The surface is called orientable in the former case and non-
orientable in the latter case. In both cases, g is the genus
of the surface. In the sequel, S designates a compact surface

of genus g.

Homotopy and fundamental group: A path in S is

a continuous map p : [0, 1] → S . A loop is a path p
whose endpoints p(0) and p(1) coincide. This common

endpoint is called the basepoint of the loop. Two paths

p, q in S with common basepoint are homotopic if one

can be continuously deformed into the other while fixing

the basepoint. The homotopy classes of loops with given

basepoint x ∈ S form the fundamental group π1(S, x)
of S. The homotopy class of a loop c is denoted by [c].
The loop c is contractible if it is homotopic to the constant

loop, i.e., if [c] is the identity of π1(S, x). A group defined

by a set A of generators and a set R of relators is denoted

by 〈A ; R〉. In particular, the fundamental group of the

orientable surface of genus g ≥ 1 is isomorphic to the pre-

sentation 〈a1, b1, . . . , ag, bg ; a1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g 〉.
Two loops c, d in S with respective basepoints x and y

are freely homotopic if one can be continuously deformed

into the other or, equivalently, if [c] and [u · d · u−1] are

conjugate in π1(S, x) for any path u linking x to y. Recall

that two group elements a, b (resp. two subgroups A,B) are

conjugate if b = gag−1 (resp. B = gAg−1) for some group

element g.

Covering spaces: A covering space of S is a surface S ′
together with a continuous surjective map π : S ′ → S
such that every x ∈ S lies in an open neighborhood U
such that π−1(U) is a disjoint union of open sets in S ′,
each of which is mapped homeomorphically onto U by π.

The map π induces a monomorphism π∗ : π1(S ′, y) →
π1(S, π(y)), so that π1(S

′, y) can be considered as a sub-

group of π1(S, π(y)). If p is a path in S and y ∈ S ′ with
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π(y) = p(0), there exists a unique path q : [0, 1] → S ′,
called a lift of p, such that π ◦ q = p and q(0) = y.

A morphism between the covering spaces

(S ′, π) and (S ′′, π′) of S is a continuous map ϕ : S ′ → S ′′
such that π′ ◦ ϕ = π. The universal cover S̃ of S is its

unique (up to isomorphism) simply connected covering

space. Unless S is a sphere or a projective plane S̃ has the

topology of a plane. More generally, for every subgroup G
of π1(S, x) there is a covering space of S, unique up to

isomorphism, whose fundamental group is conjugate to G
in π1(S, x). If G is cyclic and generated by the homotopy

class of a non-contractible loop c in S, this covering

space is called the c-cyclic cover and denoted by Sc. It

can be constructed as follows: take a lift c̃ of c in the

universal cover S̃ and let τ be the unique automorphism

of S̃ sending c̃(0) to c̃(1); then Sc is the quotient of the

action of the cyclic group 〈τ〉 generated by τ on S̃. When

S is orientable, Sc has the topology of a cylinder whose

generators project on S to loops that are freely homotopic

to c or its inverse. In Section IV we shall use the following

property.

Lemma 3. [See [17]] A self-intersecting generator of a
cylinder has a contractible closed subpath.

Cellular embeddings of graphs: All the considered

graphs may have loop edges and multiple edges. We denote

by V (G) and E(G) the set of vertices and edges of a

graph G, respectively. A graph G is cellularly embedded
on S if every open face of the embedding of G on S is

a disk. The embedding of G can be encoded by adjoining

to G a rotation system [18]. This encoding takes linear

space in the complexity of G, that is, in its total number of

vertices and edges. A facial walk of G is then obtained by

the face traversal procedure described in [18, p. 93]. Rotation

systems can be implemented efficiently [19], [20] so that

we can traverse the neighbors of a vertex or the edges of a

facial walk in time proportional to their degree. Any graph G
cellularly embedded in S has a dual graph denoted by G∗

whose vertices and edges are in one-to-one correspondence

with the faces and edges of G respectively; if two faces of G
share an edge e ∈ E(G) its dual edge e∗ ∈ E(G∗) links

the corresponding vertices of G∗. This dual graph can be

cellularly embedded on S so that each face of G contains the

matching vertex of G∗ and each edge e∗ dual of e ∈ E(G)
crosses only e, only once.

Let (S ′, π) be a covering space of S . The lifted graph
G′ = π−1(G) is cellularly embedded in S ′. The restriction

of π from the star of each vertex x ∈ V (G′) to the star

of π(x) ∈ V (G) is an isomorphism. The star of x is the set

of oriented edges with origin x, and G does not need to be

simple [21, Ch. 10].

Regular paths and crossing weights: For the free

homotopy test we use the cross metric surface model [4]

defined by a graph G cellularly embedded in S . A path

p in S is regular for G if every intersection point of p and G
is a transverse crossing, i.e., has a neighborhood in which

p∪G is homeomorphic to two perpendicular line segments

intersecting at their midpoint. The crossing weight with

respect to G of a regular path p is the number |p| of its

transverse crossings and is always finite.

Homotopy encoding in cellular graph embeddings:
If H is a subgraph of a cellularly embedded graph G in S,

we denote by S \\ H the surface obtained after cutting S
along H . If S \\H is a topological disk, H is called a cut
graph ; it defines a cellular embedding in S with a unique

face. A cut graph can be computed in linear time [22], [19].

Let T be a spanning tree of a cut graph H and consider

the set of edges A := E(H) \ E(T ). (In the particular

case where the cut graph H is also spanning the vertices

of G, the tree T and S \\ H correspond to a tree-cotree
decomposition [19].) Euler’s formula implies that A contains

2g edges if S is orientable and g edges otherwise. For

each vertex s ∈ H , we have π1(S, s) ∼= 〈A ; R〉, where

R denotes the restriction of the facial walk fH of the unique

face of H to the edges in A. Indeed, if we contract T to

the vertex s in S , the graph H becomes a bouquet of circles

whose complementary set in S is a disk bounded by the

facial walk R. The above group presentation then follows

from the Seifert-Van Kampen Theorem [9, Ch. IV].

Let c be a closed walk in G with basepoint x ∈ V (H).
Denote by T (s, x) the unique simple path in T from s to x.

We can express the homotopy class of the closed walk

c′ := T (s, x)·c·T (x, s) as follows. Let x = u0, u1, . . . , uk =
x be the sequence of vertices that belong to H , while

walking along c′. The subpath of c′ between ui−1 and ui is

homotopic to a subpath wi of the facial walk fH . Denote

by wi|A the restriction of wi to the edges in A. We have,

in the above presentation of π1(S, s):
[c′] = (w1|A) · (w2|A) · · · (wk|A)

We call such a product a term product representation of [c′]
of height k. If we encode each term wi|A implicitly by two

pointers corresponding to its first and last edges in R, the

above representation can be stored as a list of k pairs of

pointers.

Lemma 4 (See [1, Sec. 3.1]). Let G be a graph of complex-
ity n cellularly embedded on S. We can preprocess G and
its embedding in O(n) time such that the following holds.
For any closed walk c in G with k edges, we can compute in
O(k) time a term product representation of height at most k
of some closed walk freely homotopic to c.

III. THE CONTRACTIBILITY TEST

After reduction to a simplified framework, our con-

tractibility test for a closed curve p relies on the construction

of a relevant region Πp in a specific tiling of the uni-

versal cover S̃ of S . This relevant region, introduced by
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s

P S

Figure 1. When S is a torus, P is a 4-gon and r = 4. The black
edges of ∂P projects to G in S. Here G is composed of two loops with
basepoint s. The four radial edges in P projects to the s−t edges of the
radial graph which possesses two faces.

Colin de Verdière and Erickson [4], contains a lift of p and

we can decide whether p is contractible by checking if its

lift is a closed curve in Πp.

A. A simplified framework

Graphic interpretation of term products: Following

Lemma 4, we can assume that G is in reduced form, with

a single vertex s and a single face, and that the input

closed walks are given by their term product representations

in 〈E(G) ; fG〉. We denote by r the size of the facial

walk fG, so that r = 4g if S is orientable and r = 2g
otherwise. We can view S \\G as an open regular r-gon P
whose boundary sides are labelled by the edges in fG. The

boundary ∂P of P maps to G after gluing back the sides

of P , and its vertices all map to s. In order to represent

the terms of a product as walks of constant complexity, we

introduce an embedded graph H . For this, consider the radial

graph in P linking the center of P to each vertex of ∂P
along a straight segment; this graph has r + 1 vertices and

r edges. After gluing back the boundary of P we obtain

a bipartite graph H cellularly embedded on S with two

vertices {s, t} and r edges. Both vertices of H are r-valent;

each of the r/2 faces of H is of length 4 and is cut in

two “triangles” by the unique edge of G it contains — see

figure 1. We call H the radial graph of G. A rotation

system for H can be computed from that of G in O(r) time.

Any subpath of ∂P is now homotopic to the 2-walk with

the same extremities and passing through t. Consequently, if

[c] = w1 · · ·wk is a term product representation of height k
stored as a list of pointers then in O(k) time we can obtain

a closed walk of length 2k in H , homotopic to c.
Tiling of the universal cover: Let (S̃, π) be the univer-

sal cover of S . A loop of H is contractible if and only if

its lift in S̃ is a loop. We shall construct a finite part of S̃
large enough to contain that lift. To this end we rely on

a tiling of S̃ sharing similar properties with the octagonal

decomposition of [4]. The lifted graph H̃ := π−1(H) is

an infinite regular bipartite graph with r-valent vertices and

4-valent faces. Let H∗ be the rectification of G, i.e., the dual

of H on S chosen so that its vertices lie in the middle of the

edges of G. The lifted graph H̃∗ is the dual of H̃; it defines a

{r, 4}-tiling of S̃, i.e., four r-gon faces meet at every vertex

of H̃∗. We say that two edges of H∗ or H̃∗ are facing each

other if they share an endpoint x and are not consecutive

in the circular order around x. The four edges meeting at

any vertex form two pairs of facing edges. The line induced

by e∗ ∈ E(H̃∗) is the smallest set �e∗ ⊂ E(H̃∗) containing

e∗ and the facing edge of any of its edges. Every line is

an infinite lift of some cycle of facing edges of H∗, but

contrary to the tight cycles of the octagonal decomposition

in [4] this cycle may self-intersect. However, our set of lines

in H̃∗ share similar properties with the lines in [4].

Proposition 5. Suppose that S is orientable with genus ≥ 2
or non-orientable with genus ≥ 3. Then lines of H̃∗ do not
self-intersect nor are cycles and two distinct lines intersect
at most once. Moreover each line is separating in H̃∗.

Proof: Since H̃∗ is {r, 4}-regular with 1/r + 1/4 <
1/2, it can be realized as a regular geometric graph in the

hyperbolic plane. In particular, the lines of H̃∗ are realized

as hyperbolic lines.

Proposition 6. Moreover, the following properties hold.
• (triangle-free Property) Three pairwise distinct lines

cannot pairwise intersect.
• (quad-free Property) Four pairwise distinct lines can

neither form a quadrilateral.

Proof: We again view H̃∗ as a union of hyperbolic lines

defining a regular tiling of the hyperbolic plane. In particular

lines meet perpendicularly. The area of a hyperbolic k-gon

drawn in H̃∗ is [23, Section 5.6]: (k − 2)π − angle sum ≤
(k−2)π−k π

2 . Since the area is positive, this enforces k > 4.

B. The relevant region

Let p be a path in H̃ . Following [4] we denote by Πp,

and call the relevant region with respect to p, the union of

closed faces of H̃∗ reachable from p(0) by crossing only

lines crossed by p, in any order. In other words, if for

any line � we denote by �+ the component of S̃ \ � that

contains p(0), then Πp is the “convex polygon” of S̃ formed

by intersection of the sets �∪ �+ for all � not crossed by p.

See Figure 2.A. This region has interesting properties which

make it easy and efficient to build.

Lemma 7 ([4, lemma 4.1]). For any path p ⊂ H̃ and any
line � the intersection � ∩ Πp is either empty or a segment
of � whose relative interior is included in either the interior
or the boundary of Πp.

Lemma 8 ([4, lemma 4.3]). Πp contains at most
max(5 |p| , 1) faces of H̃ .

Lemma 9 ([4, lemma 4.2]). Let p be a path of H̃ and let
ẽ be an edge with p(1) as an endpoint. Suppose e crosses a
line � not already crossed by p. Then Πp∩ � is a segment of
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p

Λ
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ẽ0
ẽ2

ẽ1
ẽ

�

A B

Figure 2. (A) The Poincaré disk model of S̃ with lines represented as
hyperbolic geodesics. Remark that the union of (light blue) lines crossed
by p is not necessarily connected. (B) The path p is composed of two
edges. The graph Γp corresponding to its relevant region Πp has four

edges bounding a face of H̃ .

the boundary of Πp along a connected set of faces V ⊂ Πp.
Moreover Πp·ẽ = Πp ∪ Λ where Λ is the reflection of V
across �.

Following lemma 9 we build the relevant region of the

lift c̃ of a loop c incrementally as we lift its edges one at a

time. Let p be the subpath of c̃ already traversed, and let ẽ be

the edge following p in c̃. Although Πp contains O(|p|) faces

by Lemma 8, a naive representation of Πp with its faces

and edges would require O(r |p|) space. We rather store the

interior of Πp by its dual graph Γp, i.e., by the subgraph

of H̃ induced by the vertices dual to the faces of Πp.

Suppose Γp is already constructed and let vp be the

endpoint of p in Γp. If ẽ ∈ Γp, we have Γp·ẽ = Γp.

Otherwise, ẽ is exiting Πp and we need to enlarge Γp,

performing a mirror operation as suggested by Lemma 9.

We repeat this procedure until we reach the end of c,
i.e., when Γc̃ is constructed. We can then check that c is

contractible by comparing vc̃ with the first created vertex in

Γc̃.

The mirror operation: We say that two edges of H̃ are

siblings if their dual edges are facing each other in H̃∗. The

four edges bounding any face of H̃ thus form two pairs of

siblings. Let ẽ1 be one of the two siblings of ẽ. Denote by

ẽ0 and ẽ2 the other sibling pair bounding the same face as

ẽ and ẽ1, so that vp is an endpoint of ẽ0 — see Figure 2.B.

If ẽ1 has an endpoint in Πp, or equivalently if ẽ0 ∈ E(Γp),
then by lemma 9 the edges ẽ1 and ẽ2 need to be added

to Γp as well as their common endpoint. If on the contrary

ẽ0 /∈ E(Γp) then vp lies in a face of H̃∗ that is extremal in

the chain V of lemma 9, and the sibling ẽ1 should not be

added to Γp. We handle similarly the sibling of ẽ1 which is

not ẽ, and so on until we reach the end of V . There remains

to do the mirror in the other direction, starting from the still

unprocessed face bounded by ẽ. Eventually, every vertex

dual to a face in the chain Λ of Lemma 9 has been created,

as well as its links to existing vertices in Γp, and we have

constructed Γp·ẽ.

Complexity: Any of the above operations, such as

adding a vertex or an edge to Γp, takes constant time if we

represent this graph with indexed tables for the adjacency

lists. However the degree of a vertex in Γp may go up to r.

To avoid the initialization of these tables, we use a technique

inspired from [7, exercise 2.12 p. 71] taking advantage

of the RAM model to allocate in O(1) time an r-sized

segment of memory without initializing it. It is clear from the

description of the mirror subprocedure that the construction

of Γc̃ takes constant time per added vertex. Lemma 8 then

implies that our algorithm takes O(|c|) time. Taking into

account the precomputation of Lemma 4 we have proved

Theorem 1 when r ≥ 6. In the remaining cases, that is when

S is either a torus, a Klein bottle or a projective plane, we

can expand the term product representations in O(|c|) time

to obtain a word in the computed presentation of π1(S, s).
Testing if a word represents the unity in π1(S, s) has trivial

linear time solutions in those cases.

IV. THE FREE HOMOTOPY TEST

We now tackle the free homotopy test. We restrict to the

case where S is an orientable surface of genus at least two.

After fixing an orientation of S, we can associate with every

oriented edge e of H the dual edge of H∗ oriented from

the left face to the right face of e. This correspondence

between the embedded graph and its dual will be implicit

in the sequel.

We want to decide if two cycles c and d on S are

freely homotopic. After running our contractibility test on

c and d, we can assume that they are not contractible. From

Section III-A, we can also assume that c and d are given

as closed walks in the radial graph H . Let (Sc, πc) be the

c-cyclic cover of S. We view Sc as the orbit space of the

action of 〈τ〉 where τ is the automorphism of (S̃, π) sending

c̃(0) on c̃(1) for a given lift c̃ of c. We refer to τ as a

translation of S̃ , as it can indeed be realized as a translation

of the hyperbolic plane. Notice that S being orientable, τ is

orientation preserving. The projection ϕc sending a point

of S̃ to its orbit makes (S̃, ϕc) a covering space of Sc with

π = πc ◦ ϕc. We denote by Hc and H∗
c the respective lifts

of H and H∗ in (Sc, πc). Regularity of paths in S , S̃ or Sc
is considered with respect to H∗, H̃∗ and H∗

c respectively,

and so are their crossing weights.

A. Structure of the cyclic cover

Recall that a line in S̃ is an infinite sequence of facing

edges in H̃∗. We start by stating some structural properties

of lines.

τ -transversal and τ -invariant lines: Let � be a line such

that � ∩ τ(�) = ∅ and denote by B̊� the open band of S̃
bounded by � and τ(�). The line � is said τ -transversal
if B� := B̊� ∪ � is a fundamental domain3 for the action

of 〈τ〉 over S̃. In such a case we can obtain Sc by point-

wise identification of the boundaries � and τ(�) of B�. The

3i.e., every orbit of 〈τ〉 has a unique representative in B�.
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H∗
P

�

τ(�)

τ−1(�)

�τ
x

τ(x)

τ(y)

y
A B

Figure 3. (A) The regular hyperbolic r-gon P . (B) The non τ -transversal
line � and its translates. For z ∈ {x, y} the line � separates z from τ(z).
These two points are also separated by either τ(�) or τ−1(�).

following proposition gives a characterization of τ -transver-

sal lines whose existence are stated in Proposition 15.

Proposition 10. Let � be a line such that �∩τ(�) = ∅ and let
x ∈ S̃ be separated from τ(x) by �. Then, � is τ -transversal
if and only if neither τ−1(�) nor τ(�) separates x from τ(x).

Proof: As described in Section III-A, we view S as an

r-gon P whose sides are identified. We next endow S with

a hyperbolic metric by taking for P a regular hyperbolic r-

gon with angle sum 2π (see [23, Section 5.6]). We eventually

join the midpoints of consecutive sides of P with r geodesic

arcs (see Figure 3.A). After gluing P these arcs form an

embedding of H∗ in S and by symmetry of P , facing arcs

of H∗ make an angle of π. The lift H̃∗ of H∗ in the

hyperbolic plane S̃ is thus made of hyperbolic lines. The

translation τ is now a hyperbolic translation whose axis, �τ ,

is its unique globally invariant line. The action of τ on the

pencil determined by its axis [25, §7.34] shows that a line

is τ -transversal if and only if the line crosses �τ . Such a

line clearly satisfies the conditions in the lemma. On the

contrary, a line � that is not τ -transversal must be contained

in one of the two halfplanes bounded by �τ . Furthermore, if

� does not intersect its translate τ(�), it is easily seen that

for any point x separated from τ(x) by �, either τ(�) or

τ−1(�) also separates x from τ(x) (see Figure 3.B).

A line � such that τ(�) = � is said τ -invariant . Note that

this equality does not hold pointwise, but globally. The axis

of τ may or may not coincide with some line of H̃∗. In any

case:

Lemma 11. There is at most one τ -invariant line.

Lemma 12. A line � that intersects three consecutive trans-
lates of a τ -transversal λ is τ -invariant.

Proof: Otherwise, �, τ(�), τ(λ) and τ2(λ) would con-

tradict the quad-free Property.
Generators of the cyclic cover: A loop of Sc that is

regular (for H∗
c ) and freely homotopic to ϕc(c̃) is called

a generator of Sc. A generator is said minimal if its

crossing weight is minimal among generators; it projects

to a regular loop of minimal crossing weight in the free

homotopy class of c. By Lemma 3, we may consider that

all minimal generators are simple curves. The following

property is easily obtained by switching the sides of the

bigons of two intersecting minimal generators.

Lemma 13. Let μ and ν be two minimal generators. There
exist two disjoint minimal generators γ and σ such that γ∪σ
crosses the same set of edges as μ ∪ ν.

Consider a minimal generator γ and a lift γ̃ ⊂ S̃. The

reciprocal image �γ := ϕ−1
c (γ) is the simple curve obtained

by concatenation of all the translates τ i(γ̃), i ∈ Z. The

curve �γ behaves like a line in S̃:

Lemma 14. The curve �γ is separating in S̃ and each line
of H̃∗ intersect �γ at most once.

Proposition 15. Let γ be a minimal generator whose
basepoint is not on any line. Let γ̃ be a lift of γ in S̃ .
Any line � crossed by γ̃ is τ -transversal. In particular, there
exists a τ -transversal line that separates the endpoints of c̃
from each other.

B. The canonical generator

Since S is oriented we can speak of the left or right

side of a minimal generator. Our aim is to prove that the

set of minimal generators of Sc covers a bounded cylinder

allowing us to define its right boundary as a canonical

representative of the free homotopy class of c. By definition,

a τ -transversal line projects in Sc to a simple curve. We call

this projection a c-transversal . Lemma 14 easily implies

that each c-transversal � crosses exactly once every minimal

generator γ. Moreover, by Proposition 15, any minimal

generator is crossed by c-transversals only. The number of

c-transversals in Sc is thus equal to the length of the minimal

generators which is in turn no larger than |c|. Notice that the

orientation of S and of the minimal generators induce a left-

to-right orientation of the c-transversals.

We now consider two disjoint minimal generators γ and σ.

They bound an annulus A in Sc. Since γ and σ are crossed

by c-transversals only, a line � of S̃ whose projection ϕc(�)
intersects A is either τ -transversal or τ -invariant. Indeed,

if � is not τ -transversal, ϕc(�) must stay in the finite

subgraph of H∗
c interior toA; it follows that ϕc(�) uses some

edge twice, which can only happen if � is τ -invariant by

Proposition 5. In this latter case, ϕc(�) is a generator crossed

once by every c-transversal and composed of |γ| edges. By

analogy with the linear isoperimetric inequality for annular

diagrams in word hyperbolic groups [16, Prop. III.2.14], we

first bound the complexity of A.

Lemma 16. Let VI , EI and F be the respective numbers
of vertices, edges and faces of H∗

c intersected by A. Then
VI ≤ |γ|, EI ≤ 3|γ| and F ≤ 2|γ|.

Proof: We only treat the case where there is no τ -in-

variant line. In A, the c-transversals form an arrangement
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Figure 4. (A) fl is the left face of x in the annulus A. (B) The lines
u and v cut A into simply connected (open) faces.

of |γ| curves that pairwise cross at most twice by Lemma 12.

Together with γ and σ, this arrangement defines a subdivi-

sion of A whose number of boundary vertices is 2|γ|. We

distinguish two cases according to whether c-transversals

pairwise intersect at most once or twice.

Case 1: any two c-transversals intersect at most once:
Suppose A has an interior vertex x; it is the intersec-

tion of two c-transversals u and v (refer to Figure 4.A).

Call tγ(x) the triangle formed by u, v and γ. No c-transver-

sal can join u and v inside tγ(x). Otherwise u, v and

this c-transversal would contradict the triangle-free Property.

Moreover, a c-transversal w that crosses the u-side of tγ(x)
cannot be crossed inside tγ(x) by any w′, as w, w′, u
and v would then form a quadrilateral. If the u-side of tγ(x)
is indeed crossed, we let wu be the crossing curve closer

to x along the u-side. We define wv similarly for the

v-side of tγ(x). The c-transversal curves wu and wv , if any,

together with u, v and γ bound a face of the subdivision

of A. This is the only face incident to x in tγ(x). We call

it the left face of x; it has one side along γ and no side

along σ. Conversely, we can prove that every face f of the

subdivision of A with no side along σ is the left-face of

a unique interior vertex. We define right faces analogously

and remark that a face that is neither a left nor a right face

must have one side along γ and one side along σ.

We can now determine the complexity of the subdivision

of A. Denote by V and E its respective numbers of vertices

and edges. With the notations in the lemma, we have V =
VI+2|γ| and E = EI+2|γ|. By the preceding remark, every

face has a side on either γ or σ. It ensues that F ≤ 2|γ|.
Euler’s formula then implies 0 = V −E+F = VI−EI+F ,

whence EI ≤ VI+2|γ|. Since interior and boundary vertices

have respective degree 4 and 3, we get EI = 2VI + |γ| by

double-counting of the vertex-edge incidences. Combining

with the previous inequality we obtain VI ≤ |γ|, and finally

conclude that EI ≤ 3|γ|.
Case 2: at least two c-transversals intersect twice:

Let u and v be two c-transversals intersecting twice in A.

The curves γ, σ, u and v induce a subdivision of A where

u and v are each cut into three pieces, say u1, u2 and u3

for u and v1, v2 and v3 for v, and the two generators are

each cut into two pieces, say γ1, γ2 for γ and σ1, σ2 for σ
(see Figure 4.B). The triangle and quad-free Properties imply

that any c-transversal distinct from u and v must extend

between γ2 and σ2 and cut either u2 or v2. Moreover,

any two such c-transversals cannot cross without creating a

triangle or a quadrilateral bounded by c-transversals, which

is again forbidden. It follows that apart from u and v all

c-transversals are pairwise disjoint in A. We deduce that

every face has one side along γ or σ (but not both), whence

F = 2|γ|. Since any c-transversal distinct from u and v is

cut into two pieces we also get VI = |γ| and EI = 3|γ|.
An edge of H∗

c whose relative interior is crossed by a

minimal generator is said short .

Lemma 17. If A is crossed by c-transversal curves only,
then every edge of H∗

c in A is short.

Proof: If A contains no vertex of H∗
c then A crosses the

same edges as γ and σ and the lemma is trivial. Otherwise,

we show how to sweep the entire arrangement inside A
with a minimal generator from γ to σ. A simple induction

on |γ| shows that the subdivision of A induced by γ, σ
and H∗

c contains a triangle face t with one side along γ.

This triangle t has one vertex x interior to A and incident

to four edges u1, v1, u2, v2 where u1, v1 bound t. We can

now sweep x with γ by crossing v2, u2 instead of u1, v1
to obtain a new minimal generator. It bounds with σ a new

annulus A′ ⊂ A. Note that A′ crosses the same set of edges

as A except for u1, v1 that were crossed by γ. Moreover, the

number of interior vertices is one less in A′ than in A. We

conclude the proof with a simple recursion on this number.

Given two minimal generators μ and ν, there exists a

minimal generator that crosses the rightmost of the short

edges crossed by μ and ν along each c-transversal. Indeed,

the two disjoint minimal generators returned by Lemma 13

cannot invert their order of crossings along c-transversals.

Hence one of them uses all the rightmost short edges. By

a simple induction on the number of c-transversals, this

implies in turn that there exists a minimal generator γR that

crosses the rightmost short edge of each c-transversal. We

define the canonical generator with respect to c as the cycle

in Hc dual to the sequence of short edges crossed by γR.

The canonical belt: As for γR, there exists a minimal

generator γL crossing the leftmost short edges. We define

the canonical belt Bc as the union of the vertices, edges

and faces crossed by the annulus bounded by γL and γR.

By Lemma 17, the edges in Bc are the short edges and the

edges of the projection of the τ -invariant line, if any. All

the minimal generators are included in the canonical belt.

We consider the subgraph K̃∗ of H̃∗ induced by the

lines in H̃∗ that are neither τ -transversal nor τ -invariant.

The projection ϕc(K̃
∗) of K̃∗ in Sc is denoted by K∗

c .

The following lemma gives a simple characterization of the

canonical belt.
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Lemma 18. Bc is the unique component of Sc \ K∗
c that

contains a generator.

C. Computing the canonical generator

We now explain how to compute the canonical generator

associated with the loop c in time proportional to |c|.
Let Π be the relevant region of the loop c6 obtained by

six concatenations of c. According to Section III-B, we can

build the adjacency graph Γ of the faces of Π in O(|c|) time.

The edges dual to the edges of Γ are the edges of H̃∗

interior to Π. They induce a subgraph of H̃∗ which we

denote by Γ∗. The graph Γ∗ may have multiple components

(see Figure 2.A), and its vertices may have degree one or

four. Using the projection on H∗ we can easily compute

in constant time the circular list of the (one or four) edges

sharing a same vertex of Γ∗, or the facing edge of any edge

of Γ∗.
Identifying lines in Γ∗: From the preceding discussion

we can traverse Γ∗ to give a distinct tag to each maximal

component of facing edges in constant time per edge.

Lemma 7 ensures that each such component is supported

by a distinct line. We denote by �(ẽ) the identifying tag of

the line supporting the edge dual to ẽ. With a little abuse of

notation we will identify a line with its tag.

Let c1, . . . , c6 be the successive lifts of c in the lift

of c6 and let x0, x1, . . . , x6 be the successive lifts of c(0).
Let ẽi,j be the j-th edge of ci. Since τ(ci) = ci+1, we

have τ(�(ẽi,j)) = �(ẽi+1,j). This allows us to compute the

translate of any line crossing one of c1, . . . , c5 in constant

time per line. Notice that the interior of Π is crossed

by a τ -invariant line if and only if τ(�) = � for some

line � crossing one (thus any) of c1, . . . , c5. We can now

fill in O(|c|) time a table C[�] whose Boolean value is

true if � intersects τ(�) in Π and false otherwise. We first

identify the τ -transversals separating x2 from x3. We start

by filling a table P [�, i] counting the parity of the number

of intersections of each line � with ci for i ∈ {2, 3, 4}.
This can be done in O(|c|) time: we initialize all the entries

of the table P to 0 and, for each i ∈ {2, 3, 4} and each

edge ẽ of ci, we invert the current parity of P [�(ẽ), i]. By

Proposition 10, the τ -transversals separating x2 from x3 are

exactly those � for which C[�] is false, P [�, 3] is odd, and

P [�, 2] and P [�, 4] are even. We can now identify all the

τ -transversals separating xi from xi+1, for i ∈ [0, 5], by

translation of those separating x2 from x3. Proposition 15

ensures the existence of at least one transversal separating

x2 from x3; we choose one and denote it by � in the sequel.

We shall concentrate on the part of Π contained in the

closure B̄� of the fundamental domain of 〈τ〉 comprised

between � and τ(�). We put C := Π ∩ B̄�.

Finding a lift of the canonical generator: We can show

that C contains either a whole lift of the canonical belt or

half of it. In this latter case, Π is bounded by a τ -invariant

line.

Lemma 19. Exactly one of the two following situations
occurs

1) Π contains the intersection B̄� ∩ ϕ−1
c (Bc).

2) There exists a τ -invariant line λ, whose projec-
tion ϕc(λ) cuts the canonical belt into two open parts
BL and BR, each one containing a generator and in-
tersecting exactly one edge of each c-transversal. The
relevant region Π contains either (i) the intersection
B̄� ∩ ϕ−1

c (BL) or (ii) the intersection B̄� ∩ ϕ−1
c (BR),

and exclude the other one.

We now explain how to identify the lift of the canonical

belt, or half of it, contained in C.

Lemma 20. Let Σ∗ be the subgraph of Γ∗ ∩ C projecting
to the canonical belt. We can identify the edges of Σ∗ in
O(|c|) time.

Proof: From the preceding lemma, ϕc(C) ∩ Bc is con-

nected and contains a generator. Recall that K̃∗ is the union

of the lines that are neither τ -transversal nor τ -invariant,

and that K∗
c is its projection into Sc. Lemma 18 ensures

that ϕc(C) ∩ Bc is the only component of ϕc(C) \K∗
c that

contains a generator. Equivalently, C ∩ ϕ−1
c (Bc) is the only

component of C \ K̃∗ that contains an edge ẽ∗ ∈ � together

with its translate τ(ẽ∗).
Thanks to Lemma 12 and following the paragraph on line

identification, we can detect all the τ -transversal and τ -in-

variant lines crossing C. By complementarity, we identify

the edges of K̃∗ in C. We also identify by a simple traversal

the subgraph ΓC of Γ whose dual edges are contained

in C. We eventually select in time proportional to |c| the

component Σ of ΓC \ K that includes an edge ẽ together

with its translate τ(ẽ). We finally remark from the initial

discussion that the dual of the edges in Σ are the edges

of Σ∗.

Proposition 21. We can compute the canonical generator
in O(|c|) time.

Proof: We first compute Σ∗ as in Lemma 20. In situa-

tion 2(i) of Lemma 19 the canonical generator is composed

of the projection on Sc of the dual of the edges facing the

edges of Σ∗ to their right. In the other situations 1 and 2(ii),
the edges crossed by the lift of the canonical generator in B̄�

are the edges of Σ∗ that are supported by τ -transversal lines

and whose right endpoint is not a crossing with any other

τ -transversal or τ -invariant line. In other words, these are

the rightmost edges in Σ∗ of the pieces of τ -transversals

crossing Σ∗, unless they abut on � or τ(�). In either case, we

can clearly determine the sequence of edges of the canonical

generator in O(|c|) time.

D. End of the proof of Theorem 2

Let c and d be two non-contractible cycles represented

as closed walks in H . Assuming that S is orientable with
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genus at least two, we compute the canonical generators

γR and δR corresponding to c and d respectively. This takes

O(|c|+ |d|) time according to Proposition 21. Following the

discussion in the Introduction, c and d are freely homotopic

if and only if the projections πc(γR) and πc(δR) in S are

equal as cycles of H . This can be determined, under the

obvious constraint that these two projections have the same

length, in O(|c| + |d|) time using the Knuth-Morris-Pratt

algorithm [24] to check whether πc(γR) is a substring of the

concatenation πc(δR) · πc(δR). It remains to consider the

case of S being a torus. The fundamental group of S is then

commutative and the test reduces to the trivial contractibility

test.

We have thus solved the free homotopy test for closed

orientable surfaces. We finally consider the free homotopy

test when S is non-orientable. A possibly self-crossing cycle

c on S is two-sided if a consistent orientation of S can be

propagated all along c. The cycle is otherwise one-sided ,

which can easily be decided in O(|c|) time with the edge

signature of the combinatorial map encoding S [18, p. 101].

Since the square c2 of c is two-sided, we may assume

that the two given cycles c and d are two-sided. Indeed,

for non-orientable surfaces of genus ≥ 3, two one-sided

cycles are (freely) homotopic if and only if their square are

(freely) homotopic4. The automorphisms of S̃ associated to

c and d are thus orientation preserving and the corresponding

covering spaces Sc and Sd are again cylinders. Since S is

non-orientable there is no a priori way of orienting those

cylinders. We can nonetheless orient Sd arbitrarily and de-

fine γR as either one of the boundaries of the canonical belt

of Sc. We then carry out the whole algorithm as described

for orientable surfaces with both choices. This just multiply

the complexity of the free homotopy test by two.

We finally note that if S is a projective plane, its funda-

mental group is again commutative and the test is trivial. If

S is a Klein bottle, the test was already resolved by Max

Dehn [11, p.153] in linear time.
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APPENDIX

COUNTER-EXAMPLES TO DEY AND GUHA’S APPROACH

We refer to the paragraph Homotopy encoding in cellular
graph embeddings preceding Lemma 4 for the notations.

In a first stage, Dey and Guha [1] obtain a term product

representation of c and d as in the present Lemma 4.

Suppose R = a1a2 · · · a4g , then a term aiai+1 · · · aj
is denoted (i, j). This term is equivalent in 〈A ; R〉 to

the complementary term a−1
i−1a

−1
i−2 · · · a−1

j+1 going backward
along R. This complementary term is denoted (i− 1, j + 1).
The length |(i, j)| of a term (i, j) is the length of the

sequence aiai+1 · · · aj . The length of a complementary term

is defined analogously, so that |(i, j)|+|(i− 1, j + 1)| = 4g.

The length of a product of (possibly complementary) terms

is the sum of the lengths of its terms. Let us rename

the above term and complementary term as respectively a

forward term and a backward term . A term will now

designate either a forward or backward term. Note that a

term being equivalent to its complementary term, we may

use a forward or backward term in place of each term. By

convention, we will write a term in backward form only if

it is strictly shorter than its complementary forward term.

This convention will be implicitly assumed in this section

and corresponds to the notion of rectified term in [1].

Let us say that a product t1t2 of two terms

• 0-reacts if t1t2 = 1, the unit element in the

group 〈A ; R〉,
• 1-reacts if t1t2 = t in 〈A ; R〉, for a term t such that

|t| ≤ |t1|+ |t2|, and

• 2-reacts if t1t2 = t′1t
′
2 in 〈A ; R〉, for two terms t′1, t

′
2

such that |t′1|+ |t′2| < |t1|+ |t2|.
The aim of Dey and Guha is to apply reactions to a given

term product in order to reach a canonical form where no

two consecutive terms react in that form. For this, they define

a function apply that recursively applies reductions to a

product of terms. This function is in turn called by another

function canonical, supposed to produce a canonical

form.

The following claim appears as points 2 and 3 in Lemma 4

of [1] and aims at showing that the function apply does

terminate.

Let u, v, w be 3 terms such that uv does not react. If vw
1-reacts or 2-reacts with vw = v′ or vw = v′w′ (and
v′w′ does not react), then uv′ does not 1-react.

The non-existence of such 1-reactions is essential in the

proof that the function canonical indeed returns a

canonical form [1, Prop. 7]. However, this claim is false as

demonstrated by the following examples. Consider a genus 2
surface with R = abcda−1b−1c−1d−1. Put u = (2, 4), v =
(1, 7), and w = (7, 8). Then uv = bcd · a−1dc does not

react and vw = a−1dc · c−1d−1 1-reacts, yielding v′ =
a−1. But uv′ 1-reacts, in contradiction with the claim, since

uv′ = bcd · a−1 = (2, 5). Likewise, if we now set u =
(2, 4), v = (1, 8) and w = (4, 2), we have: uv does not react,

vw 2-reacts, yielding v′w′ = (5, 5) · (3, 2), and uv′ 1-reacts,

in contradiction with the claim, since uv′ = bcd · a−1 =
(2, 5).

Define the expanded word of a term product as the

word in the elements of A (and their inverses) obtained by

replacing each term in the product with the corresponding

factor of R or R−1. Again, R and R−1 should be considered

cyclically. Call a product of terms stable if no two consecu-

tive terms react. Another important claim [1, Lem. 8] states

that

The expanded word of a stable product of terms does not
contain a factor of length 2g + 1 that is also a factor of
R or R−1.

This claim is used to prove that the (supposed) canonical

form of a product is equivalent to 1 if and only if it is

the empty product [1, Prop. 6]. However this claim is again

false as demonstrated by the following example. Consider

the same genus 2 surface as in the previous examples. Then

the product (1, 7) · (2, 4) · (1, 7) = cba · bcd · a−1dc is stable

and contains the factor a · bcda−1 of length 2g+1 = 5 that

is also a factor of R.

Finally, the canonical form defined by Dey and Guha is

not canonical. By definition of the canonical function

in [1, p. 314], a stable (rectified) product w is canonical,

i.e.,
canonical(w) = w. Using the same genus 2 surface as

before, consider the products w1 = (8, 6) · (8, 6) = dcb · dcb
and w2 = (1, 4) · (2, 5) = abcd · bcda−1. It is easily

seen that none of these products react. It follows that

canonical(wi) = wi, i = 1, 2. However w1 = w2

in 〈A ; R〉. Indeed, since (8, 6) = (1, 5) in 〈A ; R〉, we have

w1 = abcda−1 · abcda−1 = abcd · bcda−1 = w2

This contradicts the fact that an element of 〈A ; R〉 can

be expressed as a unique canonical product of terms. In

particular, Proposition 7 in [1] is wrong.

The counterexamples easily generalize to genus g > 2
orientable surfaces with R = a1a2 · · · a2ga−1

1 a−1
2 · · · a−1

2g .

Similar counterexamples for non-orientable surfaces can also

be found starting with the product of squares as a (canonical)

relator. In a private communication, one of the authors of [1]

suggests to add an extra reaction rule that would take care of

the present counter-examples. It is plausible that this extra

rule leads to a linear time algorithm for the contractibility

test.
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