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Abstract—For a set of n points in IRd, and parameters k and
ε, we present a data structure that answers (1 + ε)-approximate
k nearest neighbor queries in logarithmic time. Surprisingly, the
space used by the data-structure is ˜O(n/k); that is, the space
used is sublinear in the input size if k is sufficiently large. Our
approach provides a novel way to summarize geometric data, such
that meaningful proximity queries on the data can be carried out
using this sketch. Using this we provide a sublinear space data-
structure that can estimate the density of a point set under various
measures, including: (i) sum of distances of k closest points to the
query point, and (ii) sum of squared distances of k closest points
to the query point. Our approach generalizes to other distance
based estimation of densities of similar flavor.

I. INTRODUCTION

Given a set of n points P in IRd, the nearest neighbor
problem is to construct a data structure, such that for any

query point q it (quickly) finds the point closest to q in

P. This is an important fundamental problem in computer

science [1], [2], [3], [4]. Applications of nearest neighbor

search include pattern recognition [5], [6], self-organizing

maps [7], information retrieval [8], vector compression [9],

computational statistics [10], clustering [11], data mining,

learning, and many others. If one is interested in guaranteed

performance and near linear space, there is no known way to

solve this problem efficiently (i.e., logarithmic query time) for

dimension d > 2.

A commonly used approach for this problem is to use

Voronoi diagrams. The Voronoi diagram of P is the decom-

position of IRd into interior disjoint closed cells, so that for

each cell C there is a unique single point p ∈ P such that

for any point q ∈ int(C) the nearest neighbor of q in P
is p. Thus, one can compute the nearest neighbor to q by a

point location query in the collection of Voronoi cells. In the

plane, this approach leads to O(log n) query time, using O(n)
space, and preprocessing time O(n log n). However, in higher

dimensions, this solution leads to algorithms with exponential
dependency on the dimension. The complexity of a Voronoi

diagram of n points in IRd is Θ
(
n�d/2�

)
in the worst case. By

requiring slightly more space, Clarkson [12] showed a data-

structure with query time O(log n), and O
(
n�d/2�+δ

)
space,

where δ > 0 is a prespecified constant (the O(·) notation here

hides constants that are exponential in the dimension). One

can tradeoff the space used and the query time [13]. Meiser

[14] provided a data-structure with query time O
(
d5 log n

)
(which has polynomial dependency on the dimension), where

∗Work on this paper was partially supported by NSF AF award
CCF-0915984.

the space used is O
(
nd+δ

)
. Therefore, even for moderate

dimension, the exact nearest neighbor data structure uses an

exorbitant amount of storage. It is believed that there is no

efficient solution for the nearest neighbor problem when the

dimension is sufficiently large [15]; this difficulty has been

referred to as the “curse of dimensionality”.

Approximate Nearest Neighbor (ANN): In light of the

above, major effort went into developing approximation algo-

rithms for nearest neighbor search [16], [17], [18], [1], [2], [3],

[4], [19]. In d dimensional Euclidean space, one can answer

ANN queries, in O(log n + 1/εd−1) time using linear space

[16], [20]. Because of the 1/εd−1 in the query time, this

approach is only good for low dimensions. Interestingly, for

this data-structure, the approximation parameter ε is not pre-

specified during the construction; one can provide it during the

query. An alternative approach is to use Approximate Voronoi

Diagrams (AVD), introduced by Har-Peled [21], which are

partitions of space into regions of low total complexity, with

a representative point for each region that is an ANN for

any point in the region. In particular, Har-Peled showed that

there is such a decomposition of size O
(
(n/εd) log2 n

)
.

This allows ANN queries to be answered in O(log n) time.

Arya and Malamatos [22] showed how to build AVDs of

linear complexity (i.e., O(n/εd)). Their construction uses

Well Separated Pair Decompositions [23]. Further tradeoffs

between query and space for AVDs were studied by Arya

et al. [24].

k-nearest neighbor: A more general problem is the k-

nearest neighbors problem where one is interested in finding

the k points in P nearest to the query point q. This is widely

used in pattern recognition, where the majority label is used

to label the query point. Here we are interested in the more

restricted problem of approximately computing the distance to

the kth-nearest neighbor and finding a data point achieveing

the approximation. This problem is widely used for density

estimation in statistics, with k ≈ √
n [25]. It is also used

in meshing (with k = d) to compute the local feature size

of a point set in IRd [26]. The problem also has applications

in non-linear dimensionality reduction – finding low dimen-

sional structures in data; more specifically low dimensional

submanifolds embedded in Euclidean spaces. Algorithms like

ISOMAP, LLE, Hessian-LLE, SDE and others, all use the k-

nearest neighbor as a subroutine [27], [28], [29], [30].

Density estimation: Given distributions μ1, . . . , μk de-

fined over IRd, and a query point q, we are interested in

computing the a posteriori probabilities of q being generated

by each of these distributions. This approach is used in
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unsupervised learning as a way to classify a new point.

Naturally, in most cases, the distributions are given implicitly;

that is, one is given a large number of points sampled from

each distribution. So, let μ be such a distribution, and P be a

set of n samples. To estimate the density of μ at q, a standard

Monte Carlo technique is to consider a ball B centered at q,

and count the number of points of P inside B. Naturally, if

P∩B is too small, this estimate is not stable. Similarly, if B is

too large, then the estimate is too “smoothed” out, taking into

account samples that are too far away. One possible approach

to address this issue, that is used in practice [11], is to find the

smallest ball centered at q that contains k points of P and use

this to estimate the density of μ. Choosing the right value of k
has to be done carefully – if it is too small, then the estimate

is unstable, and if it is too large, it either requires the set P
to be larger, or the estimate is too smoothed out to be useful

(values of k that are used in practice are Õ(
√
n)). See Duda

et al. [11] for more details. To do such density estimation, one

needs to be able to answer, approximate or exact, k-nearest

neighbor queries.

Sometimes one is interested not only in the radius of this

ball centered at the query point, but also in the distribution

of the points inside this ball. The average distance of a point

inside the ball to its center, can be estimated by the sum of

distances of the sample points inside the ball to the center.

Similarly, the variance of the distance can be esimated by the

sum of squared distances of the sample points inside the ball to

the center of the ball. As mentioned above, density estimation

is used in manifold learning and surface reconstruction. For

example, Guibas et al. [31] recently used a similar density

estimate to do manifold reconstruction.

Answering exact k-nearest neighbor queries: Given a

point set P ⊆ IRd, computing the partition of space into

regions where the k nearest neighbors do not change, is

equivalent to computing the kth order Voronoi diagram. Via

standard lifting, this is equivalent to computing the first k
levels in an arrangement of hyperplanes in IRd+1 [32]. More

precisely, if we are interested in the kth-nearest neighbor, we

need to compute the (k − 1)-level in this arrangement.

The complexity of the ≤ k levels in a hyperplane ar-

rangement in IRd+1 is Θ(n�(d+1)/2�(k + 1)�(d+1)/2�) [33].

The exact complexity of the kth-level is not well under-

stood and achieving tight bounds on its complexity is one

of the long-standing open problems in discrete geometry

[34]. In particular, via an averaging argument, in the worst

case the complexity of the kth-order Voronoi diagram is

Ω
(
n�(d+1)/2�(k + 1)�(d+1)/2�−1

)
. As such, the complexity

of kth-order Voronoi diagram is Ω(nk) in two dimensions,

and Ω(n2k) in three dimensions.

Thus, to provide a data-structure for answering k-nearest

neighbor queries exactly and quickly (i.e., logarithmic query

time) in IRd, requires computing the k-level of an arrangement

of hyperplanes in IRd+1. The complexity of this structure is

prohibitive even in two dimensions (this complexity deter-

mines the preprocessing and space needed by such a data-

structure). Furthermore, naturally, the complexity of this struc-

ture increases as k increases. On the other end of the spectrum

one can use partition-trees and parametric search to answer

such queries using linear space and query time (roughly)

O
(
n1−1/(d+1)

)
[35], [36]. One can get intermediate results

using standard space/time tradeoffs [37].

Known results on approximate k-order Voronoi diagram:
Similar to AVD, one can define a AVD for the k-nearest

neighbor. The case k = 1 is the regular approximate Voronoi

diagram [21], [22], [24]. The case k = n is the furthest

neighbor Voronoi diagram. It is not hard to see that it has

a constant size approximation (see [38], although it was

probably known before). Our results (see below) can be

interpreted as bridging between these two extremes.

Quorum clustering: Carmi et al. [39] describe how to

compute efficiently a partition of the given point set into

clusters of k points such that the clusters are compact. Specifi-

cally, this quorum clustering repeatedly computes the smallest

ball containing k points, removes this cluster and repeats,

see Section II-B1 for more details. Carmi et al. [39] also

describe a data-structure that can approximate the smallest

cluster. The space of their data structure is Õ(n/k), but it can

not be directly used for our purposes. Furthermore, their data-

structure is for two dimensions and it can not be extended

to higher dimensions, as it uses additive Voronoi diagrams

(which have high complexity in higher dimensions).

OUR RESULTS

We first show, in Section III, that one can build a data-

structure that answers k-nearest neighbor queries approxi-

mately, up to a constant factor, with query time O(log n),
where the input is a set of n points in IRd. Surprisingly,

the space used by this data-structure is O(n/k). This result

is surprising as the complexity decreases with k. This is in

sharp contrast to behavior in the exact version of the kth-

order Voronoi diagram (where the complexity increases with

k). Furthermore, for super-constant k the space used by this

data-structure is sublinear. For example, in some applications

the value of k used is Ω(
√
n), and the space used in this case

is a tiny fraction of the input size. This is a general reduction

showing that such queries can be reduced to proximity search

in an appropriate product space over n/k points computed

carefully.

In Section IV, we show how to construct approximate
k-order Voronoi diagram using space O(ε−d−1n/k) (here

ε > 0 is an approximation quality parameter specified in

advance). Using this data-structure one can answer (1 + ε)-
approximate k-nearest neighbor queries in O(log n) time. See

Theorem IV.9 for the exact result.

General density queries: We also show, in Section V,

as an application of our data-structure, how to answer more

robust kinds of queries. For example, one can approximate

(in roughly the same time and space as above) the sum of

distances (or squared distances) from a query point to its

k nearest neighbors. This is useful in approximating density

measures [11]. Surprisingly, our data-structure can be used

to estimate the sum of any function f(·) defined over the

k nearest neighbor points that depends only on the distance

of these points from the query point. Informally, we require

that f(·) is monotonically increasing with distance, and it is

(roughly) not super-polynomial. For example, for any constant

p > 0, our data-structure requires sublinear space (i.e.,
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Õ(n/k)), and given a query point q, it can (1+ε)-approximate

the quantity
∑

u∈X ‖u− q‖p, where X is the set of k nearest

points to q. The query time is logarithmic.

To facilitate this, in a side result, that might be of indepen-

dent interest, we show how to perform point-location queries

in I compressed quadtrees of total size m simultaneously in

O(logm + I) time (instead of the naive O(I logm) query

time) without asymptotically increasing the space needed.

If k is specified with the query: In Section VI, given

a set P of n points in IRd, we show how to build a data-

structure, in O(n log n) time and using O(n) space, such that

given a query point and parameters k and ε, the data-structure

can answer (1+ε)-approximate k-nearest neighbor queries in

O(log n + 1/εd−1) time. Unlike previous results, this is the

first data-structure where both k and ε are specified during the

query time. Previously, the data-structure of Arya et al. [40]

required knowing ε in advance. Using standard techniques

[16] to implement it, should lead to a simple and practical

algorithm for this problem.

If k is not important: A relevant question is how to

answer the approximate k-nearest neighbor query if one is

allowed to also approximate k. Inherently, this is a completely

different question that is considerably easier, and arguably

less interesting. Indeed, the problem then boils down to

using sampling carefully, and the problem loses much of its

geometric flavor. We sketch how to solve this easier variant

(this seems to be new) and discuss the difference with our

main problem in Section II-A1.

Techniques used: We use quorum clustering as a starting

point in our solution. In particular, we show how such clus-

tering can be used to get a constant factor approximation to

the approximate k-nearest neighbor distance using sublinear

space. Next, we extend this construction and combine it with

ideas used in the computation of approximate Voronoi dia-

grams. This results in an algorithm for computing approximate

k-nearest neighbor Voronoi diagram. To extend this data-

structure to answer the general density queries, as described

above, requires a way to estimate the function f(·) for very

few values (instead of k values) when answering a query. We

use a coreset construction to find out which values need to

be approximated. Overall, our work combines several known

techniques in a non-trivial fashion, together with some new

ideas, to get our new results.

Paper organization: In Section II we formally define the

problem and introduce some basic tools, including quorum

clustering, which is a key insight into the problem at hand. The

“generic” constant factor algorithm is described in Section III.

We describe the construction of the approximate k-order

Voronoi diagram in Section IV. In Section V we describe

how to construct a data-structure to answer density queries

of various types. In Section VI we present the data-structure

for answering k-nearest neighbor queries that does not require

knowing k and ε in advance. We conclude in Section VII.

II. PRELIMINARIES

A. Problem Definition

Given a set of n points P in IRd and a number 1 ≤ k ≤ n,

consider a point q and order the points of P by their distance

from q; that is,

‖q− u1‖ ≤ ‖q− u2‖ ≤ · · · ≤ ‖q− un‖ ,
where P = {u1, u2, . . . , un}. The point uk = nnk(q,P) is the

kth-nearest neighbor of q and dk(q,P) = ‖q− uk‖ is the

kth-nearest neighbor distance. The nearest neighbor distance

(i.e., k = 1) is d(q,P) = minu∈P ‖q− u‖. It is easy to

verify that the function dk(q,P) is 1-Lipschitz as stated in

the following.

Observation II.1. For any p, u ∈ IRd, k and a set P ⊆ IRd,
we have that dk(u,P) ≤ dk(p,P) + ‖p− u‖.

The problem at hand is to preprocess P such that given

a query point q one can compute uk quickly. The standard

nearest neighbor problem is this problem for k = 1. In the

(1+ ε)-approximate kth-nearest neighbor problem, given q,

k and ε > 0, one wants to find a point u ∈ P, such that

(1− ε) ‖q− uk‖ ≤ ‖q− u‖ ≤ (1 + ε) ‖q− uk‖.

1) An easier problem – if k is not important: Consider an-

other version of the approximate k-nearest neighbor problem

where one is allowed to approximate k. That is, given a query

point, one has to return the (perhaps approximate) distance

to a point which is a �-nearest neighbor to the query, where

k ≤ � ≤ (1+ ε)k. As mentioned in the introduction, this is a

completely different problem from the one we consider. Here

we quickly sketch a solution to this variant (which seems to

be new), and discuss the difference with the more interesting

problem we solve in the rest of the paper.

Indeed, one can sample the given point set, where each

point is picked with probability O(k−1ε−2 log n). It is easy

to verify that the O(ε−2 log n) nearest neighbor to the query

(in the sample) is the required approximation with high

probability. Using gradations one can precompute O(log n)
samples that are appropriate to any value of k. Furthermore,

one can easily reduce solving this problem to answering

polylogarithmic number of queries using standard approximate

nearest-neighbor data-structures [41], [20]. Nevertheless, the

resulting data-structure has both worse space and query time

than the data-structure we present here.

In particular, since we solve here the harder variant, it is not

clear why one should compromise on a weaker data-structure

with worse performance. Secondly, for some of the applica-

tions, like density estimation, there might be a phase change

in the distribution of distances and approximating k is not

acceptable. Conversely, for such applications approximating

the distances is acceptable. Finally, it is not clear how such

a fuzzy data-structure can be used for the density estimation

without some additional overheads, that make it inherently

less applicable for such problems.

B. Basic tools

For a real positive number α and a point p =
(p1, . . . , pd) ∈ IRd, define Gα(p) to be the grid point

(	p1/α
α, . . . , 	pd/α
α). We call α the width or sidelength
of the grid Gα. Observe that the mapping Gα partitions IRd

into cubic regions, which we call grid cells.

Definition II.2. A cube is a canonical cube if it is contained
inside the unit cube [0, 1]d, it is a cell in a grid Gr , and r is a
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power of two (i.e., it might correspond to a node in a quadtree
having [0, 1]d as its root cell). We will refer to such a grid Gr
as a canonical grid. Note, that all the cells corresponding to
nodes of a compressed quadtree are canonical.

For a ball b of radius r, and a parameter ψ, let �(b, ψ)
denote the set of all the canonical cells intersecting b,

when considering the canonical grid with sidelength 2�log2 ψ�.
Clearly, |�(b, ψ)| = O

(
(r/ψ)d

)
.

A ball b of radius r in IRd centered at a point p can be

interpreted as a point in IRd+1, denoted by b′ = (p, r). For

a regular point p ∈ IRd, its corresponding image under this

transformation is the mapped point p′ = (p, 0) ∈ IRd+1.

Given point u = (u1, . . . , ud) ∈ IRd we will denote

its euclidean norm by ‖u‖. We will consider a point u =
(u1, u2, . . . , ud+1) ∈ IRd+1 to be in the product metric of

IRd × IR and endowed with the product metric norm

‖u‖⊕ =
√

u21 + · · ·+ u2d + |ud+1| .

It is easy to see that the above defines a norm and the

following holds for it.

Lemma II.3. For any u ∈ IRd+1 we have ‖u‖ ≤ ‖u‖⊕ ≤√
2 ‖u‖.

The distance of a point to a set under the ‖·‖⊕ norm is denoted

by d⊕(u,P).
Simplifying assumption: In the following, we will assume

that k divides n; if not one can easily add fake points as

necessary at infinity. We also assume that the point set P is

contained in [1/2, 1/2 + 1/n]d, where n = |P|. This can

be achieved by scaling and translation (which does not effect

the distance ordering). We will assume that the queries are

restricted to the unit cube U = [0, 1]d.

1) Quorum Clustering: Given a set of n points in IRd and

a number k ≥ 1, where k|n ,we start with the smallest ball

b1 that contains k points of P. Let P1 = P∩b1. We continue

on the set of points P \ P1 by finding the smallest ball that

contains k points of the remaining set of points, and so on. Let

b1, b2, . . . , bn/k denote the set of balls found by the algorithm

and let Pi =(P \(P1 ∪ · · · ∪ Pi−1))∩bi. Let ci and ri denote

the center and radius, respectively, of bi, 1 ≤ i ≤ n/k.

A slight symbolic perturbation can guarantee that (i) each

ball bi contains exactly k points of P, and (ii) all the

centers c1, c2, . . . , ck are distinct points. It is easy to see that

r1 ≤ r2 ≤ · · · ≤ rn/k ≤ diam(P). Such a clustering of P into

n/k clusters is termed a quorum clustering and an algorithm

for computing it is provided in Carmi et al. [39]. We assume

we have a black-box procedure QuorumCluster(P, k) [39]

that computes an approximate quorum clustering. It returns a

list of balls, (ci, ri) , 1 ≤ i ≤ n/k. The algorithm of Carmi

et al. [39] provides such sequence of clusters, where each ball

is a 2-approximation to the smallest ball containing k points of

the remaining points. The following is an improvement over

the result of Carmi et al. [39].

Lemma II.4. Given a set P of n points in IRd and parameter
k, one can compute, in O(n log n) time, a sequence of n/k
balls such that:

(A) For every ball (ci, ri) there is an associated subset Pi
of k points of P \ (Pi ∪ . . . ∪ Pi−1) that it covers.

(B) The ball (ci, ri) is a 2-approximation to the smallest
ball covering k points in P \ (P1 ∪ . . . ∪ Pi−1).

Proof: The guarantee of Carmi et al. is slightly worse

– their algorithm running time is O(n logd n). They use a

dynamic data-structure for answering O(n) queries, that report

how many points are inside a query canonical square. Since

they use orthogonal range trees this requires O(logd n) time

per query. Instead, one can use dynamic quadtrees. More

formally, we store the points using linear ordering [20] using

any balanced data-structure. A query to decide the number of

points inside a canonical node corresponds to an interval query

(i.e., reporting the number of elements that are inside a query

interval) and can be performed in O(log n) time. Plugging this

data-structure into the algorithm of Carmi et al. [39] gives the

desired result.

III. A CONSTANT FACTOR APPROXIMATION

Lemma III.1. Let P be a set of n points in IRd, and let k ≥ 1
be a number such that k|n. Let (c1, r1) , . . . ,

(
cn/k, rn/k

)
be

the list of balls returned by QuorumCluster(P, k). Let x =
min1≤i≤n/k(‖q− ci‖+ ri). We have that x/5 ≤ dk(q,P) ≤
x.

Proof: For any 1 ≤ i ≤ n/k we have bi =
ball(ci, ri) ⊆ ball(q, ‖q− ci‖+ ri). Since |bi ∩ P| ≥ k, we

have dk(q,P) ≤ ‖q− ci‖ + ri. As such, dk(q,P) ≤ x =
min1≤i≤n/k(‖q− ci‖+ ri).

For the other direction, let i be the minimal integer such

that ball(q, dk(q,P)) contains a point of Pi. Then, we have

ri/2 ≤ dk(q,P) ,

as ri is a 2-approximation to the radius of the smallest ball

that contains k points of Pi∪Pi+1∪· · ·∪Pn/k. We also have

‖q− ci‖ − ri ≤ dk(q,P) ,

as the distance from q to any u ∈ ball(ci, ri) satisfies

‖q− u‖ ≥ ‖q− ci‖ − ri by the triangle inequality. Putting

the above together, we get

x = min
1≤j≤n/k

(‖q− cj‖+ rj)

≤ ‖q− ci‖+ ri = (‖q− ci‖ − ri) + 2ri

≤ 5dk(q,P) .
Theorem III.2. Given a set P of n points in IRd, and a
number k ≥ 1 such that k|n, one can build a data-structure,
in O(n log n) time that uses O(n/k) space, and given any
query point q ∈ IRd one can find a O(1)-approximation to
dk(q,P) in O(log(n/k)) time.

Proof: We invoke QuorumCluster(P, k) to compute the

clusters (ci, ri), for i = 1, . . . , n/k. For i = 1, . . . , n/k,

let b′i = (ci, ri) ∈ IRd+1. We preprocess the set B′ ={
b′1, . . . , b

′
n/k

}
for 2-ANN queries (in IRd+1). The prepro-

cessing time for the ANN is O((n/k) log(n/k)), the space

used is O(n/k) and the query time is O(log(n/k)) [20].

Given a query point q ∈ IRd the algorithm computes a 2-

ANN to q′ = (q, 0), denoted by b′j . The algorithm returns∥∥q′ − b′j
∥∥
⊕ as the approximate distance.
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Observe that, for any i, we have ‖q′ − b′i‖ ≤ ‖q′ − b′i‖⊕ ≤√
2 ‖q′ − b′i‖ by Lemma II.3. As such, the returned distance

to b′j is a 2-approximation to d(q′,B′); that is,

d⊕
(
q
′,B′) ≤ ∥∥q′ − b′j

∥∥
⊕ ≤

√
2
∥∥q′ − b′j

∥∥
≤ 2

√
2d

(
q
′,B′) ≤ 2

√
2d⊕

(
q
′,B′) .

By Lemma III.1, d⊕(q′,B′) /5 ≤ dk(P, q) ≤ d⊕(q′,B′).
Namely,

∥∥q′ − b′j
∥∥
⊕ /(10

√
2) ≤ dk(P, q) ≤

∥∥q′ − b′j
∥∥
⊕,

implying the claim.

Remark III.3. The algorithm of Theorem III.2 works for any

metric space. Given a set P of n points in a metric space,

one can compute n/k points in a the product space induced

by adding an extra coordinate, such that approximating the

distance to the kth nearest neighbor, is equivalent to answering

ANN queries on the reduced point set.

IV. APPROXIMATE VORONOI DIAGRAM FOR dk(q,P)

Here, we are given a set P of n points in IRd, and our

purpose is to build an AVD that approximates the k-ANN
distance, while using (roughly) O(n/k) space.

A. Construction

1) Preprocessing:
(A) Compute a quorum clustering for P using Lemma II.4.

Let the list of balls returned be bi = (ci, ri), for i =
1, . . . , n/k.

(B) Compute an exponential grid around each quorum cluster.

Specifically, let

X =

n/k⋃
i=1

�log(32/ε)+1�⋃
j=0

�
(
ball

(
ci, 2

jri
)
,
ε

ζ1d
2jri

)
(1)

be the set of grid cells covering the quorum clusters and

their immediate environ, where ζ1 is a sufficiently large

constant.

(C) Intuitively, X takes care of region of space immediately

next to the quorum clusters. For the other regions of

space, we can apply (intuitively) a construction of an

approximate Voronoi diagram for the centers of the

clusters (the details are somewhat more involved). To

this end, lift the quorum clusters into points in IRd+1,

as follows

B′ = {
b′1, . . . , b

′
n/k

}
,

where b′i = (ci, ri) ∈ IRd+1, for i = 1, . . . , n/k. Note,

that all points in B′ belong to U ′ = [0, 1]d+1. We now

build (1 + ε/8)-AVD for B′ using the algorithm of [22].

The AVD construction provides a list of canonical cubes

covering [0, 1]d+1 such that locating the smallest cube

containing the query point, has an associated point of B′
that is (1 + ε/8)-ANN to the query point. (Note, that

there cubes are not necessarily disjoint. In particular, the

smallest cube containing the query point q is the one

determines what is the ANN of q.)

We clip this collection of cubes to the hyperplane

xd+1 = 0 (i.e., we throw away cubes that do not have a

face on this hyperplane). For a cube � in this collection,

we denote by nn′(�) the point of B′ assigned to it. Let

S be this resulting set of canonical cubes.

(D) Let W be the space decomposition resulting from over-

laying the two collection of cubes X and S. Formally,

we compute a compressed quadtree T that has all the

canonical cubes of X and S as nodes, and W is the

resulting decomposition of space into cells. One can

overlay two compressed quadtrees representing the two

sets in linear time [42], [20]. Here a cell associated with

a leaf is a canonical cube, and a cell associated with a

compressed node is the set difference of two canonical

cubes. Each node in this compressed quadtree contains

two pointers – one to the smallest cube of X , and one to

the smallest cube of S that contains it. This information

can be easily computed by doing a BFS on the tree.

For each cell � ∈ W we store the following.

(I) An arbitrary representative point �rep ∈ �.

(II) The point nn′(�) ∈ B′ that is associated with

the smallest cell of S that contains this cell.

(III) A number βk(�rep) that satisfies

dk(�rep,P) ≤ βk(�rep) ≤ (1 +
ε/4)dk(�rep,P).

2) Answering a query: Given a query point q, compute the

leaf cell (equivalently the smallest cell) from W that contains

q by performing a point-location query in T. Let � be the

leaf cell that contains q. Return

min
(∥∥q′ − nn′(�)

∥∥
⊕ , βk(�rep) + ‖q−�rep‖

)
, (2)

as the approximate value to dk(q,P).
One can also compute a representative point that corre-

sponds to the returned kth-nearest neighbor distance. To this

end, together with nn′(�) we associate an arbitrary point p
that is associated with this quorum cluster. Similarly, with

βk(�rep) one stores the kth-nearest neighbor (or approximate

k-nearest neighbor) to �rep. One returns the point correspond-

ing to the distance selected as the desired approximate kth-

nearest neighbor.

B. Correctness

Lemma IV.1. Let � ∈ W and q ∈ �. Then the number
computed by the algorithm is an upper bound on dk(q,P).

Proof: By Observation II.1, dk(q,P) ≤ dk(�rep,P) +
‖q−�rep‖ ≤ βk(�rep) + ‖q−�rep‖. Now, let nn′(�) =
(c, r). We also have, by Lemma III.1, that dk(q,P) ≤
‖q− c‖ + r = ‖q′ − nn′(�)‖⊕ . As the returned value is

the minimum of these two numbers, the claim holds.

Lemma IV.2. Consider any query point q ∈ [0, 1]d, and let
� be the smallest cell of W that contains the query point.
Then, d(q′,B′) ≤ ‖q′ − nn′(�)‖ ≤ (1 + ε/8)d(q′,B′).

Proof: Observe, that space decomposition generated by

W is a refinement of the decomposition of space (which

is an AVD of B′) generated by the Arya and Malamatos

[22] construction when applied to B′ and restricted to the

d dimensional subspace we are interested in (i.e., xd+1 = 0).

As such, nn′(�) is exactly the point returned by the AVD
for this query point before the refinement, thus implying the

claim.

434



1) The query point is close to a quorum cluster of the right
size:

Lemma IV.3. Consider a query point q, and let � ⊆ IRd be
any subset with q ∈ � such that diam(�) ≤ εdk(q,P). Then,
for any u ∈ �, we have

(1− ε)dk(q,P) ≤ dk(u,P) ≤ (1 + ε)dk(q,P) .

Proof: By Observation II.1, we have

dk(q,P) ≤ dk(u,P) + ‖u− q‖ ≤ dk(u,P) + diam(�)

≤ dk(u,P) + εdk(q,P) .

The other direction follows by a symmetric argument.

Lemma IV.4. If the smallest � ∈ W that contains q has
diameter diam(�) ≤ εdk(q,P) /4 then the algorithm returns
a distance which is between dk(q,P) and (1 + ε)dk(q,P).

Proof: Let �rep be the representative stored with the

cell. Let α be the number returned by the algorithm. By

Lemma IV.1 we have that dk(q,P) ≤ α. Since the algo-

rithm returns the minimum of two numbers one of which is

βk(�rep) + ‖q−�rep‖ we have by Lemma IV.3,

α ≤ βk(�rep) + ‖q−�rep‖
≤ (1 + ε/4)dk(�rep,P) + ‖q−�rep‖
≤ (1 + ε/4)(dk(q,P) + ‖q−�rep‖) + εdk(q,P) /4

≤ (1 + ε/4)(dk(q,P) + εdk(q,P) /4) + εdk(q,P) /4

= (1 + ε/4)2dk(q,P) + εdk(q,P) /4 ≤ (1 + ε)dk(q,P) ,

establishing the claim.

Definition IV.5. Consider a query point q ∈ IRd. The
first quorum cluster bi = ball(ci, ri) that intersects
ball(q, dk(q,P)) is the anchor cluster of q. The corresponding
anchor point is (ci, ri) ∈ IRd+1.

The proof of the following lemma appears in the full version

[43].

Lemma IV.6. For any query point q, we have that
(i) the anchor point (c, r) is well defined,

(ii) r ≤ 2dk(q,P),
(iii) for b = ball(c, r) we have b∩ball(q, dk(q,P)) = ∅, and
(iv) ‖q− c‖ ≤ 3dk(q,P).

Lemma IV.7. Consider a query point q. If there is a clus-
ter ball(c, r) in the quorum clustering computed, such that
‖q− c‖ ≤ 6dk(q,P) and εdk(q,P) /4 ≤ r ≤ 6dk(q,P) then
the output of the algorithm is correct.

Proof: We have

32r

ε
≥ 32(εdk(q,P) /4)

ε
≥ 8dk(q,P) ≥ ‖q− c‖ .

Thus, by construction, the expanded environ of the quorum

cluster ball(c, r) contains the query point, see Eq. (1). As such

the smallest quadtree cell � that contains q has sidelength at

most

ε

ζ1d
·max(r, 2 ‖q− c‖) ≤ ε

ζ1d
·max

(
6dk(q,P) , 12dk(q,P)

)
≤ ε

4d
dk(q,P) ,

by Eq. (1) and if ζ1 ≥ 48. As such, diam(�) ≤ εdk(q,P) /4,

and the claim follows by Lemma IV.3.

2) The general case:

Lemma IV.8. The data-structure constructed above returns
(1 + ε)-approximation to dk(q,P), for any query point q.

Proof: Consider the query point q and its anchor point

(c, r). By Lemma IV.6, we have r ≤ 2dk(q,P) and ‖q− c‖ ≤
3dk(q,P). This implies that

d
(
q
′,B′) ≤ ∥∥q′ − (c, r)

∥∥ ≤ ‖q− c‖+ r ≤ 5dk(q,P) . (3)

Let the returned point, which is a (1 + ε/8)-ANN for q′

in B′, be (cq, rq) = nn′(�), where q′ = (q, 0). We have

that ‖q′ − (cq, rq)‖ ≤ (1 + ε/8)d(q′,B′) ≤ 6dk(q,P). In

particular, ‖q− cq‖ ≤ 6dk(q,P) and rq ≤ 6dk(q,P).
Thus, if rq ≥ εdk(q,P) /4 or r ≥ εdk(q,P) /4 then we are

done, by Lemma IV.7. Otherwise, We have∥∥q′ −(cq, rq)
∥∥ ≤ (1 + ε/8)

∥∥q′ −(c, r)
∥∥ ,

as (cq, rq) is a (1+ ε/8) approximation to d(q′,B′). As such,

‖q′ −(cq, rq)‖
1 + ε/8

≤ ∥∥q′ −(c, r)
∥∥ ≤ ‖q− c‖+ r. (4)

As ball(c, r) ∩ ball(q, dk(q,P)) = ∅ we have, by the triangle

inequality, that

‖q− c‖ − r ≤ dk(q,P) . (5)

By Eq. (4) and Eq. (5) we have

‖q′ −(cq, rq)‖
1 + ε/8

− 2r ≤ ‖q− c‖ − r ≤ dk(q,P) .

By the above and as max(r, rq) < εdk(q,P) /4, we have

‖q− cq‖+ rq

≤ ∥∥q′ −(cq, rq)
∥∥+ rq

≤(1 + ε/8)(dk(q,P) + 2r) + rq

≤(1 + ε/8)(dk(q,P) + εdk(q,P) /2) + εdk(q,P) /4

≤(1 + ε)dk(q,P) .

Since the algorithm returns for q a value that is at most

‖q− cq‖+ rq the result is correct.

C. The result

Theorem IV.9. Given a set P of n points in IRd, a number
k ≥ 1 such that k|n, and 0 < ε sufficiently small, one
can preprocess P, in O

(
n log n+

n

k
Cε log n+

n

k
C′ε

)
time,

where Cε = O
(
ε−d log ε−1

)
and C′ε = O

(
ε−2d+1 log ε−1

)
.

The space used by the data-structure is O(Cεn/k). This data
structure answers (1 + ε)-approximate k-nearest neighbor
query in O

(
log

n

kε

)
time. The data-structure also returns a

point of P that is approximately the desired k approximate
nearest neighbor.

Proof: Computing the quorum clustering takes time

O(n log n) by Lemma II.4. It is easy to see that |X | =
O
(
n
kεd

log 1
ε

)
. From the construction in [22] we have

|S| = O
(
n
kεd

log 1
ε

)
(note, that since we clip the con-

struction to a hyperplane, we get 1/εd in the bound and

not 1/εd+1). A careful implementation of this stage takes
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time O
(
n log n+ |W|(log n+ 1

εd−1

))
. Overlaying the two

compressed quadtrees representing them takes linear time in

their size, that is O(|X |+ |S|).
The most expensive remaining step is to perform the k ap-

proximate nearest neighbor query for each cell in the resulting

decomposition of W , see Eq. (2) (i.e., computing βk(�rep)
for each cell � ∈ W). Using the data-structure of Section VI

(see Theorem VI.3) each query takes O
(
log n+ 1/εd−1

)
time

(alternatively, we could use the data-structure of Arya et al.
[40]), As such, this takes

O

(
n log n+ |W|

(
log n+

1

εd−1

))
=

O

(
n log n+

n

kεd
log

1

ε
log n+

n

kε2d−1
log

1

ε

)
time, and this bounds the overall construction time.

The query time is a point location query and is easily seen

to take time O
(
log

(
n
kε

))
.

Finally, one needs to argue that the returned point of P is

indeed the desired approximate k-nearest neighbor. It follows

by going through our correctness proof and applying it to the

returned point that the distance to it is indeed a 1 + O(ε)
approximation to the k-nearest neighbor distance. We omit

the tedious but straightforward details of doing so.

1) Using a single point for each AVD cell: The AVD
generated can be viewed as storing two points in each cell

� of the AVD. These two points are in IRd+1, and for a cell

�, they are

(i) the point nn′(�) ∈ B′, and

(ii) the point (�rep, βk(�rep)).
The algorithm for dk(q,P) can be viewed as computing the

nearest neighbor of(q, 0) to one of the above two points using

the ‖·‖⊕ norm to define the distance. Furthermore, we can

use the regular ‖·‖ to resolve which one of the points to

use. Using standard AVD algorithms we can subdivide each

such cell � into O
(
1/εd+1 log ε−1

)
cells to answer this query

approximately. By using this finer subdivision we can have a

single point inside each cell for which the closest distance is

the approximation to dk(q,P). This incurs an increase by a

factor of O
(
1/εd+1 log ε−1

)
in the number of cells.

V. DENSITY ESTIMATION

Given a point set P ⊆ IRd, and a query point q ∈ IRd

consider the point v(q) =(d1(q,P) , . . . , dn(q,P)). This is a

point in IRn and several problems in computational geometry

can be viewed as computing some interesting function of v(q).
For example one could view the nearest neighbor distance as

the function that projects along the first dimension. Another

motivating example is a geometric version of discrete density

measures from [31]. In their problem one is interested in

computing gk(q) =
∑k
i=1 di(q,P). In this section, we show

that a broad class of functions (that include gk), can be

approximated to within (1 ± ε) by a data structure requiring

space Õ(n/k).

A. Basic tools

Definition V.1. A monotonic increasing function f : IR+ →
IR is said to be slowly growing if there is a constant c > 0
such that for ε sufficiently small we have (1−ε)f(x) ≤ f((1−

ε/c)x) ≤ f((1+ε/c)x) ≤ (1+ε)f(x), for all x ∈ IR+. The
constant c is the growth constant of f . The family of slowly
growing functions is denoted by Fsg.

It is easy to see that the class Fsg includes polynomial

functions, but it does not include, for example, the function

ex. We assume that given a x we can evaluate the function

f(x) in constant time. In this section, we show how we can

use the AVD construction to approximate any function Fk,f (·)
that can be expressed as

Fk,f (q) =
k∑
i=1

f
(
di(q,P)

)
,

where f ∈ Fsg. As f(x) = x2 is slowly growing we have the

function above gk = Fk,f . The proof of the following lemma

appears in the full version [43].

Lemma V.2. Let f≈k,f (q) =
∑k
i=�kε/8� f(di(q,P)). Then,

for any query point q, we have that f≈k,f (q) ≤ Fk,f (q) ≤
(1 + ε/4)f≈k,f (q).

The next lemma exploits a coreset idea, so that we have to

evaluate only few terms of the summation.

Lemma V.3. There is a set of indices I ⊆
{
�kε/8� , . . . , k

}
,

and integer weights wi ≥ 0, for i ∈ I, such that:

(A) |I| = O
(
log k
ε

)
.

(B) For any query point q, we have that F≈k,f (q) =∑
i∈I wif(di(q,P)) is a good estimate for f≈k,f (q);

that is, (1 − ε/4)F≈k,f (q) ≤ f≈k,f (q) ≤ (1 +
ε/4)F≈k,f (q).

Furthermore, the set I can be computed in O(|I|) time.

Proof: Given a query point q consider the function

gq : {1, 2, . . . , n} → IR+ defined as gq(i) = f
(
di(q,P)

)
.

Clearly, since f ∈ Fsg, it follows that gq is a mono-

tonic increasing function. The existence of I follows from

Lemma 3.2 of [44], when (1 ± ε/4)-approximating the

function f≈k,f (q) =
∑k
i=�kε/8� f(di(q,P)); that is, (1 −

ε/4)F≈k,f (q) ≤ f≈k,f (q) ≤ (1 + ε/4)F≈k,f (q).
1) Performing point-location in several quadtrees simulta-

neously:

Lemma V.4. Consider a rooted tree T with m nodes, where
the nodes are colored by I colors (i.e., a node might have
several colors). Overall, assume there are O(m) pairs of
such (node, color) associations. One can preprocess the tree
in O(m) time and space, such that given a query leaf v of
T , one can report the nodes v1, . . . , vI in O(I) time. Here,
vi is the lowest node in the tree along the path from the root
to v that is colored with color i.

Proof: Let us start with the naive solution – perform a

DFS on T , and keep an array X of I entries storing the latest

node of each color encountered so far along the path from

the root to the current node. Storing a snapshot of this array

X at each node would require O(mI) space. But then one

can answer a query in O(I) time. As such, the challenge is

to reduce the required space.

To this end, interpret the DFS to be a Eulerian traversal

of the tree. The traversal has length 2m− 2, and every edge
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traveled contains updates to the array X . Indeed, if the DFS
traverses down from a node u to a child node w, the updates

would be updating all the colors that are stored in w, to

indicate that w is the lowest node for these colors. Similarly, if

the DFS goes up from w to u, we restore all the colors stored

in w to their value just before the DFS visited w. Now, the

DFS traversal of T becomes a list of O(m) updates. For each

leaf we know its location in this list of updates, and we are

interested in the last update before it in the list for each one

of the I colors.

So, let L be this list of updates. At each kth update, for

k = tI for some integer t, store a snapshot of the array of

colors as updated if we scan the list from the beginning till

this point. Clearly, all these snapshots can be computed in

O(m) time, and require O((m/I)I) = O(m) space.

Now, given a query leaf v, we go to its location in the list

L, and jump back to the last snapshot stored. We copy this

snapshot, and then we scan the list from the snapshot till v.

This would require updating the array of colors at most O(I)
times, and can be done in O(I) time overall.

Lemma V.5. Given I compressed quadtrees D1, . . . ,DI of
total size m in IRd, one can preprocess them in O(m log I)
time, using O(m) space, such that given a query point q,
one can perform a point-location queries in all I quadtrees,
simultaneously for q, in O(logm+ I) time.

Proof: Overlay all these compressed quadtrees together.

Since we are overlaying together I quadtrees, and this is

equivalent to merging I sorted lists [20], this takes O(m log I)
time. Let D denote the resulting compressed quadtree. Note,

that any node of Di, for i = 1, . . . , I , must be a node in D.

Given a query point q, we need to extract the I nodes in

the original quadtrees Di, for i = 1, . . . , I , that contain the

query point (these nodes can be compressed nodes). So, let �
be the leaf node of D containing the query point q. Consider

the path π from the root to the node of �. We are interested

in the lowest node of π that belongs to Di, for i = 1, . . . , I .

To this end, color all the nodes of Di that appear in D by

color i, for i = 1, . . . , I . Now, we build the data-structure of

Lemma V.4 for D. We can use this data-structure to answer

the desired query in O(I) time.

B. The data-structure

We are given P ⊆ IRd set of n points, a function f ∈ Fsg,

an integer 1 ≤ k ≤ n, and ε > 0 sufficiently small. Here we

describe how to build a data-structure to approximate Fk,f (·).
1) Construction: In the following, let α = O(c) be a suffi-

ciently large constant, where c is the growth constant of f (see

Defnition V.1). Consider the coreset I from Lemma V.3. For

each i ∈ I we compute, using Theorem IV.9, a data structure

(i.e., a compressed quadtree) Di for answering (1 + ε/α)-
approximate ith nearest neighbor distance queries for P. We

then overlay all these quadtrees into a single quadtree, using

Lemma V.5.

Answering a Query.: Given a query point q, we perform

simultaneous point-location query in D1, . . . ,DI , by using

D, as described in Lemma V.5. This results in a (1 + ε/4c)
approximation zi to di(q,P), for i ∈ I, and takes O(logm+
I) time, where m is the size of D, and I = |I|. We return

z =
∑
i∈I wif(zi) where wi are the weights associated with

the members of the coreset from Lemma V.3.

Bounding the quality of approximation.: We only prove

the upper bound on z. The proof for the lower bound is similar.

As the zi are (1± ε/4c) approximations to di(q,P) we have,

(1 − ε/4c)zi ≤ di(q,P), for i ∈ I, and it follows from

definitions that,

(1− ε/4)wif
(
zi
)
≤ wif

(
(1− ε/4c)zi

)
≤ wif

(
di(q,P)

)
,

for i ∈ I. Therefore,

(1−ε/4)z = (1−ε/4)
∑
i∈I

wif(zi) ≤
∑
i∈I

wif
(
di(q,P)

)
= F≈k,f (q).
(6)

Using Eq. (6) and Lemma V.3 it follows that,

(1− ε/4)2z ≤ (1− ε/4)F≈k,f (q) ≤ f≈k,f (q). (7)

Finally, by Eq. (7) and Lemma V.2 we have,

(1− ε/4)2z ≤ f≈k,f (q) ≤ Fk,f (q).

Therefore we have, (1 − ε)z ≤ (1 − ε/4)2z ≤ Fk,f (q), as

desired (i.e., this is equivalent to z ≤ Fk,f (q)/(1− ε)).
Preprocessing space and time analysis.: We have that

I = |I| = O
(
ε−1 log k

)
. Let Cx = O

(
x−d log x−1

)
. By

Theorem IV.9 the total size of all the Dis (and thus the size

of the resulting data-structure) is

S =
∑
i∈I

O
(
Cε/α

n

i

)
= O

(
Cε/α

n log k

kε2

)
. (8)

Indeed, the maximum of the terms involving n/i is O(n/kε)
and I = O

(
ε−1 log k

)
. By Theorem IV.9 the total time taken

to construct all the Di is∑
i∈I

O
(
n log n+

n

i
Cε/α log n+

n

i
C′ε/α

)
=

O

(
n log n log k

ε
+
n log n log k

kε2
Cε/α +

n log k

kε2
C′ε/α

)
,

where C′x = O
(
x−2d+1 log x−1

)
. The time to construct the

final quadtree is O(S log I), but this is subsumed by the

construction time above.

2) The result: Summarizing the above, we get the follow-

ing result.

Theorem V.6. For P be a set of n points in IRd. Given any
f ∈ Fsg, an integer 1 ≤ k ≤ n and ε > 0, one can build a
data-structure to approximate Fk,f (·). Specifically, we have:

(A) The construction time is O(C1n log n log k), where
C1 = O

(
ε−2d−1 log ε−1

)
.

(B) The space used is O
(
C2
n

k
log k

)
, where C2 =

O
(
ε−d−2 log ε−1

)
.

(C) For any query point q, the data-structure computes a
number z, such that (1−ε)z ≤ Fk,f (q) ≤ (1+ε)z.

(D) The query time is O
(
log n+

log k

ε

)
.

(The O notation here hides constants that depends on f .)
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VI. ANN QUERIES WHERE k AND ε ARE PART OF THE

QUERY

We present here a data-structure with query time

O
(
log n+ 1/εd−1

)
that does not require knowing either k

or ε during the preprocessing stage, and both are specified

during query time (together with the query point). Unlike our

main result, this data-structure requires linear space. Previous

data-structures required knowing ε in advance [40].

A. Rough approximation

Observe that a fast constant approximation to dk(q,P) is

implied by Theorem III.2 if k is known in advance. We next

describe a polynomial approximation when k is not available

during preprocessing. The proof of the following lemma

appears in the full version [43].

Lemma VI.1. Given a set P of n points in IRd, one can
preprocess it, in O(n log n) time, such that given any query
point q and 1 ≤ k ≤ n, one can find a number R satisfying,
dk(q,P) ≤ R ≤ ncdk(q,P) in O(log n) time. The result is
correct with high probability i.e. at least 1− 1/nc−2 for any
constant c ≥ 4.

The following lemma, whose proof appears in the full version

[43], refines this approximation.

Lemma VI.2. Given a set P of n points in IRd, one can
preprocess it, in O(n log n) time, so that given a query point q
and an estimate R satisfying dk(q,P) ≤ R ≤ nO(1)dk(q,P),
then one can output a number β satisfying, dk(q,P) ≤ β ≤
(1 + ε)dk(q,P), in O

(
log n+ 1/εd−1

)
time. Furthermore,

one can return a point p ∈ P such that (1 − ε)dk(q,P) ≤
‖q− p‖ ≤ (1 + ε)dk(q,P).

B. The result

Theorem VI.3. Given a set of n points P in IRd, one can
preprocess them, in O(n log n) time, into a data structure of
size O(n), such that given a query point q, an integer 1 ≤
k ≤ n and a ε > 0 one can compute, in O

(
log n+ 1/εd−1

)
time, a number β such that dk(q,P) ≤ β ≤ (1 + ε)dk(q,P).
The data-structure also returns a point p ∈ P such that (1−
ε)dk(q,P) ≤ ‖q− p‖ ≤ (1 + ε)dk(q,P).

C. A generalization – Weighted version of k ANN

We consider a generalization of the k ANN problem where

as usual we are given a set of points P ⊆ IRd, weights wp ≥ 0
for each p ∈ P and a number ε > 0. A query consists of a

point q and a number x ≥ 0 and we are required to output

a distance d, where d ≤ (1 + ε)D. Where D is the smallest

distance such that such that∑
‖q−p‖≤D

wp ≥ x.

The usual k ANN problem is just the specialization with wp =
1 for all p and x = k. We remark that the algorithm for k
ANN presented in this section, works with minor changes for

this generalization as well, even when ε is supplied with the

query point. Furthermore, the run time and space complexity

remain unchanged and do not depend on the weights wp.

VII. CONCLUSIONS

In this paper, we presented a data-structure for answering

approximate k nearest neighbor queries in IRd (here d is a

constant). Our data-structure has the surprising property that

the space required is Õ(n/k). It is easy to verify that up

to noise this is the best one can do for this problem. This

data-structure also suggests a natural way of compressing

geometric data, such that the resulting sketch can be used

to answer meaningful proximity queries on the original data.

We then used this data-structure to answer various proximity

queries using roughly the same space and query time.

We also presented a data-structure for answering such

queries where both k and ε are specified during query time.

This data-structure is simple and practical.

There are many interesting questions for further research.

(A) In the vein of the authors recent work [45], it is to

easy to verify that our results extends in a natural

way to metrics of low doubling dimensions ([45]

describes what an approximate Voronoi diagram is

for doubling metric). It also seems believable that

the result would extend to the problem where the

data is high dimensional but the queries arrive from

a low dimensional manifold.

(B) It is natural to ask what one can do for this problem

in high dimensional Euclidean space. In particular,

can one get query time close to the one required

for approximate nearest neighbor [17]. Of particular

interest is getting a query time that is sublinear

in k and n while having subquadratic space and

preprocessing time.

(C) The dependency on ε in our data-structures is prob-

ably not optimal. One can probably get space/time

tradeoffs, as done by Arya et al. [24].
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