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Abstract—Let P be a set of n points in R
d. We present a

linear-size data structure for answering range queries on P
with constant-complexity semialgebraic sets as ranges, in time
close to O(n1−1/d). It essentially matches the performance of
similar structures for simplex range searching, and, for d ≥ 5,
significantly improves earlier solutions by the first two authors
obtained in 1994. This almost settles a long-standing open
problem in range searching.

The data structure is based on the polynomial-partitioning
technique of Guth and Katz [arXiv:1011.4105], which shows that
for a parameter r, 1 < r ≤ n, there exists a d-variate polynomial
f of degree O(r1/d) such that each connected component of
R

d \ Z(f) contains at most n/r points of P , where Z(f) is the
zero set of f . We present an efficient randomized algorithm for
computing such a polynomial partition, which is of independent
interest and is likely to have additional applications.

Index Terms—Range searching, semialgebraic sets, polynomial
partition, ham-sandwich cuts

I. INTRODUCTION

Range searching. Let P be a set of n points in R
d, where

d is a small constant. Let Γ be a family of geometric “re-

gions,” called ranges, in R
d, each of which can be described

algebraically by some fixed number of real parameters. For

example, Γ can be the set of all axis-parallel boxes, balls,

simplices, or cylinders, or the set of all intersections of pairs

of ellipsoids. The Γ-range searching problem can be defined

as: Preprocess P into a data structure so that the number of
points of P lying in a query range γ ∈ Γ can be counted
efficiently. Actually, we consider a more general setting, where

one assumes a weight function on the points in P and asks

for the cumulative weight of the points in P ∩ γ. The weights

are assumed to belong to a semigroup, i.e., subtractions are

not allowed. We assume that the semigroup operation can be

executed in constant time.

In this paper we consider the case in which Γ is a set of

constant-complexity semialgebraic sets. We recall that a semi-
algebraic set is a subset of Rd obtained from a finite number of

sets of the form {x ∈ R
d | g(x) ≥ 0}, where g is a d-variate

polynomial with integer coefficients, by Boolean operations

(unions, intersections, and complementations). Specifically, we

let Γd,Δ,s denote the family of all semialgebraic sets in R
d
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defined by at most s polynomial inequalities of degree at most

Δ each. If d,Δ, s are all regarded as constants, we refer to the

sets in Γd,Δ,s as constant-complexity semialgebraic sets (such

sets are sometimes also called Tarski cells). By semialgebraic
range searching we mean Γd,Δ,s-range searching for some

parameters d,Δ, s (although in most applications the actual

collection γ of ranges is only a restricted subset of such a

collection Γd,Δ,s). Besides being interesting in its own right,

semialgebraic range searching also arises in a wide range of

geometric searching problems, such as searching for a point

nearest to a query geometric object, counting the number of

input objects intersecting a query object, and many others.

This paper focuses on the low storage version of range

searching with constant-complexity semialgebraic sets—the

data structure is allowed to use only linear or near-linear

storage, and the goal is to make the query time as small

as possible. As it is typical in computational geometry, we

will use the real RAM model of computation, where we

can compute exactly with arbitrary real numbers and each

arithmetic operation is executed in constant time.

Previous work. Motivated by a wide range of applications,

several variants of range searching have been studied in com-

putational geometry and database systems for more than three

decades. See [1], [23] for comprehensive surveys of this topic.

The early work focused on the so-called orthogonal range
searching, where the ranges are axis-parallel boxes. After three

decades of extensive work on this particular case, some basic

questions still remain open. However, geometry plays almost

no role in the known data structures for orthogonal range

searching.

The most basic and most studied truly geometric instance

of range searching is with halfspaces, or more generally

simplices, as ranges. Studies in the early 1990s have essentially

determined the optimal trade-off between the worst-case query

time and the storage (and preprocessing time) required by

any data structure for simplex range searching. Lower bounds

for this trade-off have been given by Chazelle [7] under

the semigroup model of computation, where subtraction of

the point weights is not allowed. We also refer to [19] and

references therein for recent lower bounds for the case where

subtractions are also allowed.

The data structures proposed for simplex range search-

ing over the last two decades [21], [22] match the known

lower bounds within polylogarithmic factors. The state-of-

the-art upper bounds are by (i) Chan [6], who, building

on many earlier results, provides a linear-size data structure
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with O(n log n) expected preprocessing time and O(n1−1/d)
query time, and (ii) Matoušek [22], who provides a data

structure with O(nd) storage, O((log n)d+1) query time, and

O(nd(log n)ε) preprocessing time.1 A trade-off between space

and query time can be obtained by combining these two data

structures [22].

Yao and Yao [32] were perhaps the first to consider range

searching in which ranges were delimited by graphs of poly-

nomial functions. Agarwal and Matoušek [2] have introduced

a systematic study of semialgebraic range searching. Building

on the techniques developed for simplex range searching, they

presented a linear-size data structure with O(n1−1/b+ε) query

time, where b = max(d, 2d − 4). For d ≤ 4, this almost

matches the performance for the simplex range searching, but

for d ≥ 5 there is a gap in the exponents of the corresponding

bounds. See also [28] for some recent developments.

The bottleneck in the performance of the just mentioned

range-searching data structure of [2] is a combinatorial geom-

etry problem, known as the decomposition of arrangements
into constant-complexity cells. Here, we are given a set Σ
of r algebraic surfaces in R

d (i.e., zero sets of d-variate

polynomials), with degrees bounded by a constant Δ0, and

we want to decompose each cell of the arrangement A(Σ) into

subcells that are constant-complexity semialgebraic sets, i.e.,

belong to Γd,Δ,s for some constants Δ (bound on degrees) and

s (number of defining polynomials), which may depend on d
and Δ0, but not on r. The crucial quantity is the total number

of the resulting subcells over all cells of A(Σ); namely, if

one can construct such a decomposition with O(rb) subcells,

with some constant b, for every r and Σ, then the method of

[2] yields query time O(n1−1/b+ε). The only known general-

purpose technique for producing such a decomposition is the

so-called vertical decomposition [8], [27], which decomposes

A(Σ) into roughly n2d−4 Tarski cells, for d ≥ 4 [18], [27].

An alternative approach, based on linearization, was also

proposed in [2]. It maps the semialgebraic ranges in R
d to

simplices in some higher-dimensional space and uses simplex

range searching there. However, its performance depends on

the specific form of the polynomials defining the ranges.

In some special cases (e.g. when ranges are balls in R
d),

linearization yields better query time than the decomposition-

based technique mentioned above but for general constant-

complexity semialgebraic ranges, linearization yields worse

query time.

Our results. In a recent breakthrough, Guth and Katz [12]

have presented a new space decomposition technique, called

polynomial partitioning. For a set P ⊂ R
d of n points and a

real parameter r, 1 < r ≤ n, an r-partitioning polynomial
for P is a nonzero d-variate polynomial f such that each

connected component of Rd\Z(f) contains at most n/r points

of P , where Z(f) := {x ∈ R
d | f(x) = 0} denotes the

zero set of f . The decomposition of R
d into Z(f) and the

1Here and in the sequel, ε denotes an arbitrarily small positive constant.
The implicit constants in the asymptotic notation may depend on it, generally
tending to infinity as ε decreases to 0.

connected components of R
d \ Z(f) is called a polynomial

partition (induced by f ). Guth and Katz show that an r-

partitioning polynomial of degree O(r1/d) always exists, but

their argument does not lead to an efficient algorithm for

constructing such a polynomial, mainly because it relies on

ham-sandwich cuts in high-dimensional spaces, for which

no efficient construction is known. Our first result is an

efficient randomized algorithm for computing an r-partitioning

polynomial.

Theorem I.1. Given a set P of n points in R
d, for some fixed

d, and a parameter r ≤ n, an r-partitioning polynomial for P
of degree O(r1/d) can be computed in randomized expected
time O(nr + r3).

Next, we use this algorithm to bypass the arrangement-

decomposition problem mentioned above. Namely, we use

partitions induced by partitioning polynomials to construct par-

tition trees that answer range queries with constant-complexity

semialgebraic sets in near-optimal time, using linear storage.

While there have already been several combinatorial applica-

tions of the Guth-Katz technique (the most impressive being

the original one in [12], which solves the famous Erdős’s

distinct distances problem, and others presented in [14], [15],

[29], [34]), ours seems to be the first algorithmic application.

We establish two range-searching results, both based on

polynomial partitions. For the first result, we need to introduce

the notion of D-general position, for an integer D ≥ 1. We

say that a set P ⊂ R
d is in D-general position if no k points

of P are contained in the zero set of a nonzero d-variate

polynomial of degree at most D, where k :=
(
D+d
d

)
. This

is the number one expects for a “generic” point set. Indeed,

d-variate polynomials of degree at most D have at most k−1
distinct nonconstant monomials, from which it follows that

any set of k− 1 points in R
d is contained in the zero set of a

d-variate polynomial of degree at most D; e.g., see [10], [11].

Theorem I.2. Let d,Δ, s and ε > 0 be constants. Let
P ⊂ R

d be an n-point set in D0-general position, where
D0 is a suitable constant depending on d,Δ, and ε. Then
the Γd,Δ,s-range searching problem for P can be solved with
O(n) storage, O(n log n) expected preprocessing time, and
O(n1−1/d+ε) query time.

Of course, we would like to handle arbitrary point sets, not

only those in D0-general position. This can be achieved by

an infinitesimal perturbation of the points of P . A general

technique known as “simulation of simplicity” (in the version

considered by Yap [33]) ensures that the perturbed set P ′ is

in D0-general position. If a point p ∈ P lies in the interior

of a query range γ, then so does the corresponding perturbed

point p′ ∈ P ′, and similarly for p in the interior of R
d \ γ.

However, for p on the boundary of γ, we cannot be sure if p′

ends up inside or outside γ.

Let us say that a boundary-fuzzy solution to the Γd,Δ,s-

range searching problem is a data structure that, given a query

γ ∈ Γd,Δ,s, returns an answer in which all points of P in the

interior of γ are counted and none in the interior of Rd \ γ is
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counted, while each point p ∈ P on the boundary of γ may

or may not be counted. In some applications, we can think of

the points of P being imprecise anyway (e.g., their coordinates

come from some imprecise measurement), and then boundary-

fuzzy range searching may be adequate.

Corollary I.3. Let d,Δ, s, and ε > 0 be constants. Then for
every n-point set in R

d, there is a boundary-fuzzy Γd,Δ,s-
range searching data structure with O(n) storage, O(n log n)
expected preprocessing time, and O(n1−1/d+ε) query time.

We next present a different data structure that, at a somewhat

higher preprocessing cost, not only gets rid of the boundary-

fuzziness condition but also has a slightly improved query time

(in terms of n). The main idea is that we build an auxiliary

recursive data structure to handle the potentially large subset

of points that lie in the zero set of the partitioning polynomial.

Theorem I.4. Let d,Δ, s, and ε > 0 be constants. Then the
Γd,Δ,s-range searching problem for an arbitrary n-point set
in R

d can be solved with O(n) storage, O(n1+ε) expected
preprocessing time, and O(n1−1/d logB n) query time, where
B is a constant depending on d,Δ, s and ε.

We remark that the dependence of B on Δ, s, and ε is

reasonable, but its dependence on d is of the form dO(d).

II. POLYNOMIAL PARTITIONS

In this section we briefly review the Guth-Katz technique

for later use. We begin by stating their result.

Theorem II.1 (Guth-Katz [12]). Given a set P of n points
in R

d and a parameter r ≤ n, there exists an r-partitioning
polynomial for P of degree at most O(r1/d) (for d fixed).

The degree in the theorem is asymptotically optimal in the

worst case because the number of connected components of

R
d \ Z(f) is O((deg f)d) for every polynomial f (see, e.g.,

Warren [31, Theorem 2]).

The Guth-Katz proof uses the following (discrete version

of the) polynomial ham sandwich theorem of Stone and

Tukey [30]: If A1, . . . , Ak are finite sets in R
d and D is an

integer satisfying
(
D+d
d

)− 1 ≥ k, then there exists a nonzero
polynomial f of degree at most D that simultaneously bisects
all the sets Ai. Here “f bisects Ai” means that f > 0 in at

most �|Ai|/2� points of Ai and f < 0 in at most �|Ai|/2�
points of Ai; f might vanish at any number of the points of

Ai, possibly even at all of them.

Guth and Katz inductively construct collections

P0,P1, . . . ,Pm of subsets of P . For j = 0, 1, . . . ,m,

Pj consists of at most 2j pairwise-disjoint subsets of P ,

each of size at most n/2j ;
⋃

Pj may not contain all points

of P . Initially, we have P0 = {P}. The algorithm stops

when each subset in Pm has at most n/r points. By the

invariant, m ≤ 	log2 r
. Having constructed Pj−1, we

use the polynomial ham-sandwich theorem to construct

a polynomial fj that bisects each set of Pj−1, with

deg fj = O(2j/d) (this is indeed an asymptotic upper

bound for the smallest D satisfying
(
D+d
d

) − 1 ≥ 2j−1,

assuming d to be a constant). For every subset Q ∈ Pj−1, let

Q+ = {q ∈ Q | fj(q) > 0} and Q− = {q ∈ Q | fj(q) < 0}.
We set Pj := {Q+, Q− | Q ∈ Pj−1}; empty subsets are not

included in Pj .

The desired r-partitioning polynomial for P is then f :=
f1f2 · · · fm. We have

deg f =
m∑
j=1

deg fj =
m∑
j=1

O(2j/d) = O(r1/d).

By construction, the points of P lying in a single connected

component of R
d \ Z(f) belong to a single member of Pm,

which implies that each connected component contains at most

n/r points of P .

For the sake of completeness, we recall the proof of the

Stone-Tukey polynomial ham-sandwich theorem. We begin by

observing that
(
D+d
d

) − 1 is the number of all nonconstant

monomials of degree at most D in d variables. Thus, we

fix a collection M of k ≤ (
D+d
d

) − 1 such monomials. Let

Φ: Rd → R
k be the corresponding Veronese map, which maps

a point x = (x1, . . . , xd) ∈ R
d to the k-tuple of the values

at (x1, . . . , xd) of the monomials from M. For example, for

d = 2, D = 3, and k = 8 ≤ (
3+2
2

) − 1, we may use

Φ(x1, x2) = (x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2) ∈ R

8.

Let Bi := Φ(Ai) ⊂ R
k , i = 1, . . . , k. By the standard ham-

sandwich theorem (see, e.g., [24]), there exists a hyperplane h
in R

k that simultaneously bisects all the Bi’s, in the sense that

each open halfspace bounded by h contains at most half of the

points of each of the sets Bi. In a more algebraic language,

there is a nonzero k-variate linear polynomial, which we also

call h, that bisects all the Bi’s, in the sense of being positive

on at most half of the points of each Bi, and being negative on

at most half of the points of each Bi. Then f := h ◦Φ is the

desired d-variate polynomial of degree at most D bisecting all

the Ai’s.

III. CONSTRUCTING A PARTITIONING POLYNOMIAL

In this section we present an efficient randomized algorithm

that, given a point set P and a parameter r < n, constructs an

r-partitioning polynomial. The main difficulty in converting

the above Guth-Katz proof into an efficient algorithm is the

use of the (standard) ham-sandwich theorem in a possibly

high-dimensional space R
k. A straightforward algorithm for

computing ham-sandwich cuts in R
k inspects all possible ways

of splitting the input point sets by a hyperplane, and has

running time about nk. Compared to this easy upper bound,

the best known ham-sandwich algorithms can save a factor of

about n [20], but this is insignificant in higher dimensions. A

recent result of Knauer, Tiwari, and Werner [17] shows that a

certain incremental variant of computing a ham-sandwich cut

is W [1]-hard (where the parameter is the dimension), and thus

one perhaps should not expect much better exact algorithms.

We observe that the exact bisection of each Ai is not needed

in the Guth-Katz construction—it is sufficient to replace the

Stone–Tukey polynomial ham-sandwich theorem by a weaker

result, as described below.
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Constructing a well-dissecting polynomial. We say that a

polynomial f is well-dissecting for a point set A if f > 0
on at most 7

8 |A| points of A and f < 0 on at most 7
8 |A|

points of A. Given point sets A1, . . . , Ak in R
d with n points

in total, we present a Las-Vegas algorithm for constructing a

polynomial f of degree O(k1/d) that is well-dissecting for at

least 	k/2
 of the Ai’s.

As in the above proof of the Stone–Tukey polynomial ham-

sandwich theorem, let D be the smallest integer satisfying(
D+d
d

) − 1 ≥ k. We fix a collection M of k distinct

nonconstant monomials of degree at most D, and let Φ be

the corresponding Veronese map. For each i = 1, 2, . . . , k,

we pick a point ai ∈ Ai uniformly at random and compute

bi := Φ(ai). Let h be a hyperplane in R
k passing through

b1, . . . , bk, which can be found by solving a system of linear

equations, in O(k3) time.

If the points b1, . . . , bk are not affinely independent, then h
is not determined uniquely (this is a technical nuisance, which

the reader may want to ignore on first reading). In order to han-

dle this case, we prepare in advance, before picking the ai’s,

auxiliary affinely independent points q1, . . . , qk in R
k, which

are in general position with respect to Φ(A1), . . . ,Φ(Ak); here

we mean the “ordinary” general position, i.e., no unnecessary

affine dependences, that involve some of the qi’s and the other

points, arise. The points qi can be chosen at random, say,

uniformly in the unit cube; with high probability, they have

the desired general position property. (If we do not want to

assume the capability of choosing a random real number, we

can pick the qi’s uniformly at random from a sufficiently large

discrete set.) If the dimension of the affine hull of b1, . . . , bk
is k′ < k− 1, we choose the hyperplane h through b1, . . . , bk
and q1, . . . , qk−k′−1. If h is not unique, i.e., q1, . . . qk−k′−1

are not affinely independent with respect to b1, . . . bk, which

we can detect while solving the linear system, we restart the

algorithm by choosing q1, . . . , qk anew and then picking new

a1, . . . , ak. In this way, after a constant expected number of

iterations, we obtain the uniquely determined hyperplane h
through b1, . . . , bk and q1, . . . , qk−k′−1 as above, and we let

f = h ◦Φ denote the resulting d-variate polynomial. We refer

to these steps as one trial of the algorithm. For each Ai,

we check whether f is well-dissecting for Ai. If f is well-

dissecting for only fewer than k/2 sets, then we discard f and

perform another trial.

We now analyze the expected running time of the algorithm.

The intuition is that f is expected to well-dissect a significant

fraction, say, at least half, of the sets Ai. This intuition is

reflected in the next lemma. Let Xi be the indicator variable

of the event: Ai is not well-dissected by f .

Lemma III.1. For every i = 1, 2, . . . , k, E[Xi] ≤ 1/4.

Proof: Let us fix i and the choices of aj (and thus of bj =
Φ(aj)) for all j 
= i. Let k0 be the dimension of F0, the affine

hull of {bj | j 
= i}. Then the resulting hyperplane h passes

through the (k−2)-flat F spanned by F0 and q1, . . . , qk−k0−2,

irrespective of which point of Ai is chosen. If ai, the point

chosen from Ai, is such that bi = Φ(ai) lies on F0, then h

also passes through qk−k0−1.

Put Bi := Φ(Ai), and let us project the configuration

orthogonally to a 2-dimensional plane π orthogonal to F . Then

F appears as a point F ∗ ∈ π, and Bi projects to a (multi)set

B∗i in π. The random hyperplane h projects to a random line

h∗ in π, whose choice can be interpreted as follows: pick

b∗i ∈ B∗i uniformly at random; if b∗i 
= F ∗, then h∗ is the

unique line through b∗i and F ∗; otherwise, when b∗i = F ∗, h∗

is the unique line through F ∗ and q∗k−k0−1; by construction,

q∗k−k0−1 
= F ∗. The indicator variable Xi is 1 if and only if

the resulting h∗ has more than 7
8 |B∗i | points of B∗i (strictly)

on one side.

The special role of q∗k−k0−1 can be eliminated if we first

move the points of B∗i coinciding with F ∗ to the point

q∗k−k0−1, and then slightly perturb the points so as to ensure

that all points of B∗i are distinct and lie at distinct orientations

from F ∗; it is easy to see that these transformations cannot

decrease the probability of Xi = 1. Finally, we note that

whether a point b∗ ∈ B∗i lies below or above h∗ only depends

on the orientation of the vector
−−−→
F ∗b∗, so we can also assume

the points of B∗i to lie on the unit circle around F ∗.
Using the standard planar ham-sandwich theorem, we par-

tition B∗i into two subsets L∗i and R∗i of equal size by a line

through the center F ∗. Then we bisect L∗i by a ray from F ∗,
and we do the same for R∗i . It is easily checked (see Figure 1)

that there always exist two of the resulting quarters, one of

L∗i and one of R∗i (the ones whose union forms an angle

≤ π between the two bisecting rays), such that every line

connecting F ∗ with a point in either quarter contains at least
1
4 |B∗i | points of B∗i on each side. Referring to these quarters

as “good”, we now take one of the bisecting rays, say that

of L∗i , and rotate it about F ∗ away from the good quarter of

L∗i . Each of the 1
8 |B∗i | points that the ray encounters has the

property that the line supporting the ray has at least 1
8 |B∗i |

points of B∗i on each side. This implies that, for at least half

of the points in each of the two remaining quarters, the line

connecting F ∗ to such a point has at least 1
8 |B∗i | points of B∗i

on each side. Hence at most 1
4 |Bi| points of Bi can lead to a

cut that is not well-dissecting for Bi.

L∗i

R∗i

F ∗

Fig. 1. Illustration to the proof of Lemma III.1.

We conclude that, still conditioned on the choices of aj ,

j 
= i, the event Xi = 1 has probability at most 1/4. Since

this holds for every choice of the aj , j 
= i, the unconditional

probability of Xi = 1 is also at most 1/4, and thus E[Xi] ≤
1/4 as claimed.

Hence, the expected number of sets Ai that are not well-
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dissected by f is

E
[ k∑
i=1

Xi

]
=

k∑
i=1

E[Xi] ≤ k/4.

By Markov’s inequality, with probability at least 1/2, at least

half of the Ai’s are well-dissected by f . We thus obtain a

polynomial that is well-dissecting for at least half of the Ai’s

after an expected constant number of trials.
It remains to estimate the running time of each trial. The

points b1, . . . , bk can be chosen in O(n) time. Computing h
involves solving a k × k linear system, which can be done in

O(k3) time using Gaussian elimination, or even faster using

fast matrix multiplication. Note that we do not need to actually

compute the entire sets Φ(Ai). No computation is needed for

passing from h to f—we just re-interpret the coefficients. To

check which of A1, . . . Ak are well-dissected by f , we evaluate

f at each point of A =
⋃

i Ai. First we evaluate each of

the k monomials in M at each point of A. If we proceed

incrementally, from lower degrees to higher ones, this can

be done with O(1) operations per monomial and point of A,

in O(nk) time in total. Then, in additional O(nk) time, we

compute the values of f(q), for all q ∈ A, from the values

of the monomials. Putting everything together we obtain the

following lemma.

Lemma III.2. Given point sets A1, . . . , Ak in R
d (for fixed

d) with n points in total, a polynomial f of degree O(k1/d)
that is well-dissecting for at least 	k/2
 of the Ai’s can be
constructed in O(nk + k3) randomized expected time.

Constructing a partitioning polynomial. We now describe

the algorithm for computing an r-partitioning polynomial f .

We essentially imitate the Guth–Katz proof, with Lemma III.2

replacing the polynomial ham-sandwich theorem, but with an

additional twist.
The algorithm works in phases. At the end of the j-th phase,

for j ≥ 1, we have a family f1, . . . , fj of j polynomials and

a family Pj of at most 2j pairwise-disjoint subsets of P , each

of size at most (7/8)jn. Pj is not necessarily a partition of

P , since the points of P ∩ Z(f1f2 · · · fj) do not belong to⋃
Pj . Initially, P0 = {P}. The algorithm stops when each set

in Pj has at most n/r points. In the j-th phase, the algorithm

constructs fj and Pj as follows.
At the beginning of the j-th phase, let Lj = {Q ∈ Pj−1 |

|Q| > (7/8)jn} be the family of the “large” sets in Pj−1,

and set κj = |Lj | ≤ (8/7)j . We also initialize the collection

Pj to Pj−1 \ Lj , the family of “small” sets in Pj−1. Then

we perform at most 	log2 κj
 dissecting steps, as follows:

After s steps, we have a family g1, . . . , gs of polynomials,

the current set Pj , and a subfamily L
(s)
j ⊆ Lj of size at

most κj/2
s, consisting of the members of Lj that were not

well-dissected by any of g1, . . . , gs. If L
(s)
j 
= ∅ we choose,

using Lemma III.2, a polynomial gs+1 of degree at most

c(κj/2
s)1/d (with a suitable constant c that depends only on

d) that well-dissects at least half of the members of L
(s)
j .

For each Q ∈ L
(s)
j , let Q+ = {q ∈ Q | gs+1(q) > 0}

and Q− = {q ∈ Q | gs+1(q) < 0}. If Q is well-dissected,

i.e., |Q+|, |Q−| ≤ 7
8 |Q|, then we add Q+, Q− to Pj , and

otherwise, we add Q to L
(s+1)
j . Note that in the former case

the points q ∈ Q satisfying gs+1(q) = 0 are “lost” and do

not participate in the subsequent dissections. By Lemma III.2,

|L(s+1)
j | ≤ |L(s)

j |/2 ≤ κj/2
s+1.

The j-th phase is completed when L
(s)
j = ∅, in which case

we set fj :=
∏s

�=1 g�. By construction, each point set in Pj

has at most (7/8)jn points, and every point not in ∪Pj lies

in Z(f1 · · · fj). Furthermore,

deg fj ≤
∑
s≥0

c(κj/2
s)1/d = O(κ

1/d
j ),

where again the constant of proportionality depends only on

d. Since every set in Pj−1 is split into at most two sets before

being added to Pj , |Pj | ≤ 2|Pj−1| ≤ 2j .

If Pj contains subsets with more than n/r points, we

begin the (j + 1)-st phase with the current Pj ; otherwise the

algorithm stops and returns f := f1f2 · · · fj . This completes

the description of the algorithm.

Clearly, the number m of phases of the algorithm is at most

	log8/7 r
. Following the same argument as in [12], it can be

shown that all points lying in a single connected component

of Rd \Z(f) belong to a single member of Pm, and thus each

connected component contains at most n/r points of P . Since

the degree of fj is O(κ
1/d
j ), κj ≤ (8/7)j , and m ≤ 	log8/7 r
,

we conclude that

deg f = O

( m∑
j=1

κ
1/d
j

)
= O

( m∑
j=1

(8/7)j/d
)
= O(r1/d).

As for the expected running time of the algorithm, the s-th

step of the j-th phase takes O(nκj/2
s + (κj/2

s)3) expected

time, so the j-th phase takes a total of O(nκj + κ3
j ) expected

time. Substituting κj ≤ (8/7)j in the above bound and

summing over all j, the overall expected running time of

the algorithm is O(nr + r3). This completes the proof of

Theorem I.1.

Remark. It is a challenging open problem to improve the

expected running time in Theorem I.1 to O(n polylog(n))
when r is a small fractional power of n, say, r = n0.001.

The bottleneck in the current algorithm is the subproblem

of evaluating a given d-variate polynomial f of degree D =
O(r1/d) at n given points; everything else can be performed

in O(n polylog(r) + rO(1)) expected time. Finding the signs

of f at those points would actually suffice, but this probably

does not make the problem any simpler.

This problem of multi-evaluation of multivariate real poly-

nomials has been considered in the literature, and there is a

nontrivial improvement over the straightforward O(nr) algo-

rithm, due to Nüsken and Ziegler [25]. However, its running

time is still a far cry from what we are aiming at. Let us

remark that in a different setting, for polynomials over finite

fields (and over certain more general finite rings), there is

a remarkable method for multi-evaluation by Kedlaya and
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Umans [16] achieving O(((n +Dd) log q)1+ε) running time,

where q is the cardinality of the field.

IV. CROSSING A POLYNOMIAL PARTITION WITH A RANGE

In this section we define the crossing number of a poly-

nomial partition and describe an algorithm for computing

the cells of a polynomial partition that are crossed by a

semialgebraic range, both of which will be crucial for our

range-searching data structures. We begin by recalling a few

results on arrangements of algebraic surfaces.

Let Σ be a set of algebraic surfaces in R
d. The arrangement

of Σ, denoted by A(Σ), is the partition of R
d into maximal

relatively open connected subsets, called cells, such that all

points within each cell lie in the the same subset of Σ. If F

is a set of d-variate polynomials, then with a slight abuse of

notation, we use A(F) to denote the arrangement A({Z(f) |
f ∈ F}). We need the following result on arrangements:

Lemma IV.1 (Basu, Pollack and Roy [5, Theorem 16.18]).
Let F = {f1, . . . , fs} be a set of d-variate polynomials, each
of degree at most Δ. Then the arrangement A(F) in R

d has at
most (sΔ)O(d) cells, and it can be computed in time at most
T = sd+1ΔO(d4). Each cell is described as a semialgebraic
set using at most T polynomials of degree bounded by ΔO(d3).
Moreover, the algorithm supplies adjacency information for
the cells, indicating which cells are contained in the boundary
of each cell, and it also supplies an explicitly given point in
each cell.

The following recent result of Barone and Basu [4] is a

refinement of a series of previous studies; e.g., see [5]:

Lemma IV.2. Let V be a k-dimensional algebraic surface in
R

d defined by a set G of d-variate polynomials, each of degree
at most Δ, and let F be a set of s polynomials of degree at
most D ≥ Δ. Then at most O(1)dΔd−k(sD)k cells (of all
dimensions) of A(F ∪ G) lie in V .

The crossing number of polynomial partitions. Let P ⊂ R
d

be a set of n points in R
d, and let f be an r-partitioning

polynomial for P . Recall that the polynomial partition Ω =
Ω(f) induced by f is the partition of R

d into the zero set

Z(f) and the connected components ω1, ω2, . . . , ωt of R
d \

Z(f). As already noted, Warren’s theorem [31] implies that

t = O(r). We call ω1, . . . , ωt the cells of Ω (although they

need not be cells in the sense typical, e.g., in topology; they

need not even be simply connected). Ω also induces a partition

P ∗, P1, · · · , Pt of P , where P ∗ = P ∩Z(f) is the exceptional
part, and Pi = P ∩ ωi, for i = 1, . . . , t, are the regular parts.

By construction, |Pi| ≤ n/r for every 1 ≤ i ≤ t, but we have

no control over the size of P ∗—this will be the source of most

of our technical difficulties.

Next, let γ be a range in Γd,Δ,s. We say that γ crosses a

cell ωi if neither ωi ⊆ γ nor ωi∩γ = ∅. The crossing number
of γ is the number of cells of Ω crossed by γ, and the crossing
number of Ω (with respect to Γd,Δ,s) is the maximum of the

crossing numbers of all γ ∈ Γd,Δ,s. Similar to many previous

range-searching algorithms [6], [21], [22], the crossing number

of Ω will determine the query time of our range searching

algorithms described in Sections V and VII.

Lemma IV.3. If Ω is a polynomial partition induced by an r-
partitioning polynomial of degree at most D, then the crossing
number of Ω with respect to Γd,Δ,s, with Δ ≤ D, is at most
CsΔDd−1, where C is a suitable constant depending only
on d.

Proof: Let γ ∈ Γd,Δ,s; then γ is a Boolean combination of

up to s sets of the form γj := {x ∈ R
d | gj(x) ≥ 0}, where

g1, . . . , gs are polynomials of degree at most Δ. If γ crosses a

cell ωi, then at least one of the ranges γj also crosses ωi, and

thus it suffices to establish that the crossing number of any

range γ, defined by a single d-variate polynomial inequality

g(x) ≥ 0 of degree at most Δ, is at most CΔDd−1.

We apply Lemma IV.2 with V := Z(g), which is a surface

of dimension k ≤ d− 1, and with s = 1 and F = {f}, which

is the r-partitioning polynomial. Then, for each cell ωi crossed

by γ, ωi ∩ Z(g) is a nonempty union of some of the cells in

A(F ∪ {g}) that lie in V . Thus, the crossing number of γ is

at most O(1)dΔDd−1, and multiplying this bound by s yields

the bounded asserted in the lemma.

Algorithmic issues. We need to perform the following

algorithmic primitives (for d fixed as usual) for the range-

searching algorithms:

(A1)Given an r-partitioning polynomial f of degree D =
O(r1/d), compute (a suitable representation of) the parti-

tion Ω and the induced partition of P into P ∗, P1, . . . , Pt.

By computing A({f}), using Lemma IV.1, and then

testing the membership of each point p ∈ P in each

cell ωi in time polynomial in r, the above operation

can be performed in O(nrc) time,where c is a constant

depending only on d.
(A2)Given (a suitable representation of) Ω as in (A1) and

a query range γ ∈ Γd,Δ,1, i.e., a range defined by a

single d-variate polynomial g of degree Δ ≤ D, compute

which of the cells of Ω are crossed by γ and which are

completely contained in γ.

By computing the arrangement A({f, g}) and deducing

the required classification of the cells ωi from the combi-

natorial information about the cells of this arrangement,

using Lemma IV.1, the above task can be accomplished

in time O(rc), with c as in (A1).

V. CONSTANT FAN-OUT PARTITION TREE

We are now ready to describe our first data structure for

Γd,Δ,s-range searching, which is a constant fan-out (branching

degree) partition tree, and works for points in general position.

For points not in general position, it provides a boundary-fuzzy

output count, as discussed in the Introduction.

Let P be a set of n points in R
d, and let Δ, s be constants.

We choose r as a (large) constant depending on d,Δ, and

ε. We assume P to be in D0-general position for some

sufficiently large constant D0 � r1/d. We construct a partition

tree T of fan-out O(r) as follows. We first construct an
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r-partitioning polynomial f for P using Theorem I.1, and

compute the partition Ω of R
d induced by f , as well as the

corresponding partition P = P ∗ ∪ P1 ∪ · · · ∪ Pt of P , where

t = O(r). Since r is a constant, the (A1) operation, discussed

in Section IV, performs this computation in O(n) time. Since

P is in D0-general position, and since we choose D0 to be at

least deg f , the size of P ∗ = P ∩ Z(f) is bounded by D0.

We set up the root of T, where we store the partition

polynomial f , a suitable representation of the partition Ω, a

list of the points of the exceptional part P ∗, and w(Pi), the

sum of weights of all points of Pi, for each i = 1, 2, . . . , t. The

regular parts Pi are not stored explicitly at the root. Instead,

for each Pi we recursively build a subtree representing it. The

recursion terminates, at leaves of T, as soon as we reach point

sets of size smaller than a suitable constant n0. The points of

each such set are stored explicitly at the corresponding leaf of

T.

Since each node of T requires only a constant amount of

storage and each point of P is stored at only one node of T, the

total size of T is O(n). The preprocessing time is O(n log n)
since T has depth O(logr n) and each level is processed in

O(n) time.

To process a query range γ ∈ Γd,Δ,s, we start at the root

of T and maintain a global counter which is initially set to 0.

Among the cells ω1, . . . , ωt of the partition Ω stored at the

root, we find, using the (A2) operation, those cells completely

contained in γ, and those crossed by γ. Actually, we compute

a superset of the cells that γ crosses, namely, the cells crossed

by the zero set of at least one of the (at most s) polynomials

defining γ. For each cell ωi ⊆ γ, we add the weight w(Pi)
to the global counter. We also add to the global counter the

weights of the points in P ∗ ∩ γ, which we find by inspecting

each point of P ∗ separately. Then we recurse in each subtree

corresponding to a cell ωi crossed by γ. The leaves, with point

sets of size O(1), are processed by inspecting their points

individually. By Lemma IV.3, the number of cells crossed by

any of the polynomials defining γ at any interior node of T is

at most CsΔDd−1 ≤ C ′r1−1/d, where C ′ = C ′(d, s,Δ) is a

constant independent of r.

The query time Q(n) obeys the following recurrence:

Q(n) ≤
{

C ′r1−1/dQ(n/r) +O(1) for n > n0,

O(n) for n ≤ n0,

It is well known (e.g., see [21]), and easy to check, that the

recurrence solves to Q(n) = O(n1−1/d+ε), for every fixed

ε > 0, with an appropriate sufficiently large choice of r as a

function of C ′ and ε, and with an appropriate choice of n0.

This concludes the proof of Theorem I.2.

If the points of P are not in D0-general position, we perturb

them infinitesimally using the general perturbation scheme of

Yap [33], so that the perturbed set is in D0-general position.

Then we construct the above data structure on the perturbed

point set. By answering the query for this perturbed set,

we obtain a boundary-fuzzy answer for the original point

set. The preprocessing cost, storage, and query time remain

asymptotically the same as in Theorem I.2. This concludes

the proof of Corollary I.3.

VI. DECOMPOSING A SURFACE INTO MONOTONE PATCHES

As mentioned in the Introduction, if we construct an r-

partitioning polynomial f for an arbitrary point set P , the

exceptional set P ∗ = P ∩Z(f) may be large, as is schemati-

cally indicated in Fig. 2 (left). Since P ∗ is not partitioned by

f in any reasonable sense, it must be handled differently, as

described below.

Following the terminology in [13], [26], we call a direction

v ∈ S
d−1 good for f if, for any a ∈ R

d, the polynomial

p(t) = f(a + vt) does not vanish identically, that is, any

line in direction v intersects Z(f) at finitely many points.

As argued in [26], a random direction is good for f with

high probability. By choosing a good direction and rotating the

coordinate system, we assume that the xd-direction, referred

to as the vertical direction, is good for f .

In order to deal with P ∗, we partition Z(f) into finitely

many pieces, called patches, in such a way that each of the

patches is monotone in the vertical direction, meaning that

every line parallel to the xd-axis intersects it at most once

(in Fig. 2 (middle), there are five one-dimensional patches

π1, . . . , π5). Then we treat each patch π separately: We project

the point set P ∗∩π orthogonally to the coordinate hyperplane

H := {xd = 0}, and we preprocess the projected set, denoted

P ∗π , for range searching with suitable ranges. These ranges are

projections of ranges of the form γ ∩ π, where γ ∈ Γd,Δ,s is

one of the original ranges. In Fig. 2 (middle), the patch π1

is drawn thick, a range γ is indicated as a gray disk, and the

projection γπ1 of γ ∩ π1 is shown as a thick segment in H .

The projected range γπ is typically more complicated than

the original range γ (it involves more polynomials of larger

degrees), but crucially, it is only (d − 1)-dimensional, and

(d−1)-dimensional queries can be processed somewhat more

efficiently than d-dimensional ones, which makes the whole

scheme work. We will discuss this in more detail in Sec-

tion VII below, but first we recall the notion of cylindrical
algebraic decomposition (CAD, or also Collins decomposi-
tion), which is a tool that allows us to decompose Z(f)
into monotone patches, and also to compute the projected

ranges γπ .

Given a finite set F = {f1, . . . , fs} of d-variate polynomi-

als, a cylindrical algebraic decomposition adapted to F is a

way of decomposing R
d into a finite collection of relatively

open cells, which have a simple shape (in a suitable sense),

and which refine the arrangement A(F). We refer, e.g., to [5,

Chap. 5,12] for a definition and construction of the “standard”

CAD. Here we will use a simplified variant, which can be

regarded as the “first stage” of the standard CAD, and which

is captured by [5, Theorem 5.14, Algorithm 12.1]. We also

refer to [26, Appendix A] for a concise treatment, which is

perhaps more accessible at first encounter.

Let F consist of polynomials in R[x1, . . . , xd]. To obtain the

first-stage CAD, one constructs a suitable collection E = E(F)
of polynomials in the variables x1, . . . , xd−1 (denoted by
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π21

Fig. 2. Left: the zero set of the partitioning polynomial. Middle: a partition of the zero set into monotone patches that project to the hyperplane H bijectively.
Right: a schematic illustration of the first-stage cylindrical algebraic decomposition; the zero sets of the polynomials in E are indicated by the dots in H , and
the vertical walls are drawn by dashed lines.

ElimXk
(F) in [5]). Roughly speaking, the zero sets of the

polynomials in E, viewed as subsets of the coordinate hyper-

plane H (which is identified with R
d−1), contain the projection

onto H of all intersections Z(fi) ∩ Z(fj), 1 ≤ i < j ≤ s, as

well as the projection of the loci in Z(fi) where Z(fi) has a

vertical tangent hyperplane, or a singularity of some kind. The

actual construction of E is somewhat more complicated, and

we refer to the aforementioned references for more details.

Having constructed E, the single-stage CAD is obtained as

the arrangement A(F ∪ E) in R
d, where the polynomials in

E are now considered as d-variate polynomials (in which the

variable xd is not present). In geometric terms, we erect a

“vertical wall” in R
d over each zero set within H of a (d−1)-

variate polynomial from E, and the CAD is the arrangement

of these vertical walls plus the zero sets of f1, . . . , fs. The

first-stage CAD is illustrated in Fig. 2 (right), for the same

(single) polynomial as in Fig. 2 (left).

In our algorithm, we are interested in the cells of the CAD

that are contained in some of the Z(fi); these are going to be

the monotone patches alluded to above. The following lemma

summarizes the properties of the first-stage CAD that we will

need; we refer to [5, Theorem 5.14, Algorithm 12.1] for a

proof.

Lemma VI.1 (Single-stage CAD). Given a set F =
{f1, . . . , fs} ⊂ R[x1, . . . , xd], each of degree at most D, there
is a set E = E(F) of O(s2D3) polynomials in x1, . . . , xd−1,
each of degree O(D2), which can be computed in time
s2DO(d), such that the first-stage CAD defined by these
polynomials, i.e., the arrangement A(F ∪ E) in R

d, has the
following properties:

(i) (“Cylindrical” cells) For each cell σ of A(F ∪ E),
there exists a unique cell τ of the (d − 1)-dimensional
arrangement A(E) in H , such that one of the following
possibilities occur:
(a) σ = {(x, ξ(x)) | x ∈ τ}, where ξ : τ → R is

a continuous semialgebraic function (that is, σ is
the graph of ξ above τ ).

(b) σ = {(x, t) | x ∈ τ, t ∈ (ξ1(x), ξ2(x))}, where
each ξi, i = 1, 2, is either a continuous semial-
gebraic function τ → R, or the constant function
τ → {∞}, or the constant function τ → {−∞},
and ξ1(x) < ξ2(x) for all x ∈ τ (that is, σ is

a portion of the “cylinder” τ × R between two
consecutive graphs).

(ii) (Refinement property) If F′ ⊆ F, then E′ = E(F′) ⊆ E,
and thus each cell of A(F∪E) is fully contained in some
cell of A(F′ ∪ E′).

Returning to the problem of decomposing the zero set of the

partitioning polynomial f into monotone patches, we construct

the first-stage CAD adapted to F = {f}, and the patches are

the cells of A(F∪E) contained in Z(f). If the xd-direction is

good for f , every cell of A(F∪E) lying in Z(f) is of type (a),

so if any cell of type (b) lies in Z(f), we choose another

random direction and construct the first-stage CAD in that

direction. Putting everything together and using Lemma IV.1

to bound the complexity of A(F∪E), we obtain the following

lemma.

Lemma VI.2. Let f be a d-variate polynomial of degree D
and v a good direction for f . Then f can be decomposed, in
DO(d4) time, into DO(d) patches each of which is monotone
in direction v and can be represented semialgebraically by
DO(d4) polynomials of degree DO(d3).

The first-stage CAD can also be used to compute the

projection of the intersection of a range in Γd,Δ,s with a

monotone patch of f . Essentially, this is done by forming

the arrangement of f and the polynomials defining γ, and by

collecting the monotone patches in this arrangement that are

contained in Z(f); see the full version [3] for more details.

Lemma VI.3. Let Π be the decomposition of the zero set of
a d-variate polynomial f of degree D into monotone patches
with respect to a good direction v, as described in Lemma VI.2,
and let γ be a semialgebraic set in Γd,Δ,s, with Δ ≤ D. For
any patch π ∈ Π, the projection of γ∩π in direction v can be
represented as a member of Γd−1,Δ1,s1 , where Δ1 = DO(d3)

and s1 = (Ds)O(d4). The representation can be computed in
(Ds)O(d4) time.

VII. LARGE FAN-OUT PARTITION TREE

We now describe our second data structure for Γd,Δ,s-

range searching. Compared to the first data structure from

Section V, this one works on arbitrary point sets, without the

D0-general position assumption, or, alternatively, without the

fuzzy boundary constraint on the output, and has slightly better
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performance bounds. The data structure is built recursively,

and this time the recursion involves both n and d.

A. The data structure

Let P be a set of n points in R
d, and let Δ and s be

parameters (not assumed to be constant). The data structure

for Γd,Δ,s-range searching on P is obtained by constructing

a partition tree T on P recursively, as above, except that now

the fan-out of each node is larger (and non-constant), and each

node also stores an auxiliary data structure for handling the

respective exceptional part. If n ≤ n0, where n0 = n0(d,Δ, s)
is a suitable parameter (again, not necessarily a constant)

whose choice will be specified later, T consists of a single leaf

that simply stores the points of P . Otherwise (i.e., n > n0),

we set r suitably (typically to a tiny power of n)— the choice

of r will also be specified later.

We construct an r-partitioning polynomial f of degree D =
O(r1/d), the partition Ω of Rd induced by f , and the partition

of P into the exceptional part P ∗ and regular parts P1, . . . , Pt,

where t = O(r). Set n∗ = |P ∗| and ni = |Pi|, for i = 1, . . . , t.
The root of T stores f , Ω, and the total weight w(Pi) of each

regular part Pi of P , as before. Still in the same way as before,

we recursively preprocess each regular part Pi for Γd,Δ,s-range

searching (or stop if |Pi| ≤ n0), and attach the resulting data

structure to the root as a respective subtree.

Handling the exceptional part. A novel feature of the second

data structure is that we also preprocess the exceptional set P ∗

into an auxiliary data structure, which is stored at the root.

Here we recurse on the dimension, exploiting the fact that P ∗

lies on the algebraic surface Z(f) of dimension at most d−1.

We choose a random direction v and rotate the coordinate

system so that v becomes the direction of the xd-axis. We

construct the first-stage CAD adapted to {f}, according to

Lemmas VI.1 and IV.1. We check whether all the patches are

xd-monotone, i.e., of type (a) in Lemma VI.1(i); if it is not the

case, we discard the CAD and repeat the construction, with

a different random direction. This yields a decomposition of

Z(f) into a set Π of DO(d) monotone patches, and the running

time is DO(d4) with high probability.

Next, we distribute the points of P ∗ among the patches: for

each patch π ∈ Π, let P ∗π denote the projection of P ∗∩π onto

the coordinate hyperplane H : xd = 0. We preprocess each set

P ∗π for Γd−1,Δ1,s1 -range searching. Here s1 = (Ds)O(d4) is

the number of polynomials defining a range and Δ1 = DO(d3)

is their maximum degree; the constants hidden in the O(·)
notation are the same as in Lemma VI.3.

The preprocessing of the sets P ∗π is done recursively, using

an r1-partitioning polynomial in R
d−1, for a suitable value

of r1. The exceptional set at each node of the resulting

“(d − 1)-dimensional” tree is handled in a similar manner,

constructing an auxiliary data structure in d − 2 dimensions,

based on a single-stage CAD of the above kind, and storing it

at the corresponding node. The recursion on d bottoms out at

dimension 1, where the structure is simply a standard binary

search tree over the resulting set of points on the x1-axis.

This completes the description of the data structure, except

for the choice of r which will be provided later.

Answering a query. Assume that, for a given P , the data

structure for Γd,Δ,s-range searching, as described above, has

been constructed, and consider a query range γ ∈ Γd,Δ,s. The

query is answered in the same way as before, by visiting the

nodes of the partition tree T in a top-down manner, except that,

at each node that we visit, we also query with γ the auxiliary

data structure constructed on the exceptional set P ∗ for that

node.

Specifically, for each patch π ∈ Π, we compute wπ , the

weight of P ∗ ∩ (γ ∩ π). If γ ∩ π = ∅ then wπ = 0, and if

γ ∩ π = π then wπ is the total weight of P ∗ ∩ π. Otherwise,

i.e., if γ crosses π then wπ is the same as the weight of P ∗π∩γπ
because π is xd-monotone; γπ is the xd-projection of γ ∩ π.

By Lemma VI.3, γπ ∈ Γd−1,Δ1,s1 and can be constructed in

(Ds)O(d4) time. We can therefore find the weight of γπ∩P ∗π by

querying the auxiliary data structure for P ∗π with γπ . We then

add wπ to the global count maintained by the query procedure.

This completes the description of the query procedure.

B. Performance analysis

A straightforward analysis shows that the size of the data

structure is linear and that it can be constructed in time

O(n1+ε), for any constant ε > 0, by choosing r sufficiently

large, so we focus on analyzing the query time.

Let Qd(n,Δ, s) denote the maximum overall query time for

Γd,Δ,s-range searching on a set of n points in R
d. For d = 1,

Q1(n,Δ, s) = O(Δs log n) because any range in Γ1,Δ,s is

the union of at most Δs intervals. For n ≤ n0, Qd(n,Δ, s) =
O(n). For d > 1 and n > n0, an analysis similar to the one

in Section V gives the following recurrence for Qd(n,Δ, s):

Qd(n,Δ, s) ≤ CΔsr1−1/dQd(n/r,Δ, s)

+
∑
π∈Π

Qd−1(nπ,Δ1, s1) + rc, (1)

where the constants C and c depend on d,
∑

π nπ ≤ n,

D = O(r1/d), and |Π|,Δ1s1 ≤ (Ds)ad with ad = O(d4)
(these are rather crude estimates, but we prefer simplicity).

The leading term of the recurrence relies on the crossing-

number bound given in Lemma IV.3. In order to apply that

lemma, we need that r ≥ Δd, which will be ensured when

choosing r. The second term corresponds to querying the

auxiliary data structures for the exceptional set P ∗, and the

last term corresponds to the time spent in computing the cells

of the polynomial partition crossed by the query range γ and

for computing the projections γπ for every π ∈ Π; here we

assume that the choice of r will be such that r ≥ (Δs)d.

Ultimately, we want to derive that if Δ, s are constants, the

recurrence (1) implies

Qd(n,Δ, s) ≤ n1−1/d logB(d,Δ,s) n, (2)

where B(d,Δ, s) is a constant depending on d,Δ, s.

However, as was already mentioned, even if Δ, s are con-

stants initially, they are chosen as tiny powers of n in the
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recursion for the exceptional parts, and this makes it hard to

obtain a direct inductive proof of (2). Instead, we proceed in

two stages. First we derive a weaker bound for Qd(n,Δ, s)
without assuming Δ, s to be constants. Namely, we prove that

for every constant ν > 0 there exists a constant Ad,ν such

that, with a suitable choice of r and n0,

Qd(n,Δ, s) ≤ (Δs)Ad,νn1−1/d+ν (3)

for all d, n,Δ, s (with Δs ≥ 2, say). We can assume that

ν ≤ 1/d because otherwise the query time is trivially O(n).
We choose r = (2CΔs)1/ν , which ensures that r ≥ (Δs)d.

Next, we derive the stronger bound (2) for constant values

of Δ, s by using this weaker bound for the (d−1)-dimensional

queries on the projected exceptional parts, i.e., for the second

term in the recurrence (1). In this stage, we choose r = nδ

for a sufficiently small constant δ > 0. Our choice of δ and

Ad,ν implies that B = dO(d). Additional details can be found

in the full version [3].

This concludes the proof of Theorem I.4.

VIII. OPEN PROBLEMS

We conclude this paper by mentioning a few open prob-

lems: A very interesting and challenging problem is, in our

opinion, the fast-query case of range searching with constant-

complexity semialgebraic sets, where the goal is to answer a

query in O(log n) time using roughly nd space.

The range-searching data structure for arbitrary point sets—

the one with large fan-out—is so complex and has very

high exponent in the polylogarithmic factor because we have

difficulty with handling highly degenerate point sets, where

many points lie on low-degree algebraic surfaces. It would be

nice to find a construction of suitable “multilevel polynomial

partitions”, as touched upon in [15], [34].

Another open problem, related to the construction of poly-

nomial partitions, is the fast evaluation of a multivariate

polynomial at many points, as briefly discussed at the end

of Section III.
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[24] J. Matoušek, Using the Borsuk-Ulam Theorem, Lectures on Topological
Methods in Combinatorics and Geometry Series, Springer Verlag,
Heidelberg, 2003.
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