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Abstract—This paper proves that an “old dog”, namely –
the classical Johnson-Lindenstrauss transform, “performs new
tricks” – it gives a novel way of preserving differential privacy.
We show that if we take two databases, D and D′, such
that (i) D′ − D is a rank-1 matrix of bounded norm and
(ii) all singular values of D and D′ are sufficiently large,
then multiplying either D or D′ with a vector of iid normal
Gaussians yields two statistically close distributions in the sense
of differential privacy. Furthermore, a small, deterministic and
public alteration of the input is enough to assert that all singular
values of D are large.

We apply the Johnson-Lindenstrauss transform to the task
of approximating cut-queries: the number of edges crossing a
(S, S̄)-cut in a graph. We show that the JL transform allows
us to publish a sanitized graph that preserves edge differential
privacy (where two graphs are neighbors if they differ on
a single edge) while adding only O(|S|/ε) random noise to
any given query (w.h.p). Comparing the additive noise of our
algorithm to existing algorithms for answering cut-queries in
a differentially private manner, we outperform all others on
small cuts (|S| = o(n)).

We also apply our technique to the task of estimating the
variance of a given matrix in any given direction. The JL
transform allows us to publish a sanitized covariance matrix
that preserves differential privacy w.r.t bounded changes (each
row in the matrix can change by at most a norm-1 vector) while
adding random noise of magnitude independent of the size of
the matrix (w.h.p). In contrast, existing algorithms introduce
an error which depends on the matrix dimensions.

I. INTRODUCTION

The celebrated Johnson Lindenstrauss transform [22] is

widely used across many areas of Computer Science. A very

non-exhaustive list of related applications include metric

and graph embeddings, computational speedups, machine

learning, information retrieval, nearest-neighbor search, and

compressed sensing. This paper unveils a new application

of the Johnson Lindenstrauss transform – it also preserves

differential privacy.

Consider a scenario in which a trusted curator gath-

ers personal information from n individuals, and wishes

to release statistics about these individuals to the public

without compromising any individual’s privacy. Differential
privacy [11] provides a robust guarantee of privacy for such

data releases. It guarantees that for any two neighboring
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databases (databases that differ on the details of any single

individual), the curator’s distributions over potential outputs

are statistically close (see formal definition in Section II). By

itself, preserving differential privacy is not hard, since the

curator’s answers to users’ queries can be so noisy that they

obliterate any useful data stored in the database. Therefore,

the key research question in this field is to provide tight

utility and privacy tradeoffs.

The most basic technique that preserves differential pri-

vacy and gives good utility guarantees is to add relatively

small Laplace or Gaussian noise to a query’s true answer.

This simple technique lies at the core of an overwhelming

majority of algorithms that preserve differential privacy. In

fact, many differentially private algorithms follow a common

outline. They take an existing algorithm and revise it by

adding such random noise each time the algorithm operates

on the sensitive data. Proving that the revised algorithm

preserves differential privacy is immediate, because differ-

ential privacy is composable. On the other hand, providing

good bounds on the revised algorithm’s utility follows from

bounding the overall noise added to the algorithm, which is

often difficult. This work takes the complementary approach.

We show that an existing algorithm preserves differential

privacy provided we slightly alter the input in a reversible

way. Our analysis of the algorithm’s utility is immediate,

whereas proving privacy guarantees is non-trivial.

We prove that by multiplying a given database with a

vector of iid normal Gaussians, we can output the result

while preserving differential privacy (assuming the database

has certain properties, see “our technique”). This technique

is no other than the Johnson-Lindenstrauss transform, and

it is guaranteed to preserve w.h.p the L2 norm of the

given database up to a small multiplicative factor. Therefore,

whenever answers to users’ queries can be formalized as

the length of the product between the given database and a

query-vector, utility bounds are straight-forward.

For example, consider the case where our input is com-

posed of n points in Rd given as a n× d matrix. We define

two matrices as neighbors if they differ on a single row and

the norm of the difference is at most 1.1 Under this notion

1This notion of neighboring inputs, also considered in [24], [18], is
weaker than allowing any individual to change her attributes arbitrarily,
but is natural in a graph or matrix context.
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of neighbors, a simple privacy preserving mechanism allows

us to output the mean of the rows in A, but what about the

covariance matrix ATA? We prove that the JL transform

gives a (ε, δ)-differentially private algorithm that outputs

a sanitized covariance matrix. Furthermore, for directional
variance queries, where users give a unit-length vector x
and wish to know the variance of A along x (see definition

in Section II), we give utility bounds that are independent
of d and n. In contrast, all other differentially private algo-

rithms that answer directional variance queries have utility

guarantees that depend on d or n. Observe that our utility

guarantees are somewhat weaker than usual. Recall that the

JL lemma guarantees that w.h.p lengths are preserved up to a

small multiplicative error, so for each query our algorithm’s

estimation has w.h.p small multiplicative error and additional

additive error.

A special case of directional variance queries is cut-
queries of a graph. Suppose our database is a graph G
and users wish to know how many edges cross a (S, S̄)-
cut. Such a query can be formalized by the length of the

product EG1S , where EG is the edge-matrix of G and 1S

is the indicator vector of S (see Section II). We prove that

the JL transform allows us to publish a perturbed Laplacian

of G while preserving (ε, δ)-differential privacy, w.r.t two

graphs being neighbors if they differ only on a single edge.

Comparing our algorithm to existing algorithms, we show

that we add (w.h.p) O(|S|) random noise to the true answer

(alternatively: w.h.p we add only constant noise to the query
1T
SET

GEG1S

1T
S1S

). In contrast, all other algorithms add noise

proportional to the number of vertices (or edges) in the

graph.

Our technique. It is best to demonstrate our technique on

a toy example. Assume D is a database represented as a

{0, 1}n-vector, and suppose we sample a vector Y of n
iid normal Gaussians and publish X = Y TD. Our output

is therefore distributed like a Gaussian random variable

of 0 mean and variance σ2 = ‖D‖2. Assume a single

entry in D changes from 0 to 1 and denote the new

database as D′. Then X ′ = Y TD′ is distributed like

a Gaussian of 0-mean and variance λ2 = ‖D‖2 + 1.

Comparing PDFX(x) = (2πσ2)−1/2 exp(−x2/(2σ2)) to

PDFX′(x) = (2πλ2)−1/2 exp(−x2/(2λ2)) we have that

∀x, √
λ2/σ2PDFX′(x) ≥ PDFX(x) ≥ exp(− x2

2σ2 ·
1
λ2 )PDFX′(x). Using concentration bounds on Gaussians

we deduce that if λ2 > σ2 = Ω(log(1/δ)/ε), then w.p

≥ 1− δ both PDFs are within multiplicative factor of e±ε.

We now repeat this process r times (setting ε, δ accordingly)

s.t. the JL lemma assures that (after scaling) w.h.p we output

a vector of norm (1± η)‖D‖2 for a given η. We get utility

guarantees for publishing the number of ones in D while

preserving (ε, δ)-differential privacy.

Keeping with our toy example, one step remains – to

convert the above analysis so that it will hold for any

database, and not only databases with w
def
= log(1/δ)/ε

many ones. One way is to append the data with w one

entries, but observe: this ends up in outputting X+N where

N is random Gaussian noise! In other word, appending the

data with ones makes the above technique worse (noisier)

than the classical technique of adding random Gaussian

noise. Instead, what we do is to “translate the database”.

We apply a simple deterministic affine transformation s.t. D
turns into a {√w

n , 1}n-vector. Applying the JL algorithm

to the translated database, we output a vector whose norm

squared is ≈ (1±η)(‖D‖2+w). Clearly, users can subtract

w from the result, and we end up with ηw additive random

noise (in addition to the multiplicative noise).2

It is tempting to think the above analysis suffices to show

that privacy is also preserved in the multidimensional case.

After all, if we multiply the edge matrix of a graph G with

a vector of iid normal Gaussians, we get a vector with

each entry distributed like a Gaussian; and if we replace

G with a neighboring G′, we affect only two entries in this

vector. Presumably, applying the previous analysis to both

entries suffices to prove we preserve differential privacy.

But this intuition is false. Multiplying EG with a random

vector does not result in n independent Gaussians, but rather

in one multivariate Gaussian. This is best illustrated with

an example. Suppose G is a graph and S is a subset of

nodes s.t. no edge crosses the (S, S̄)-cut. Therefore EG1S

is the zero-vector, and no matter what random projection

we pick, Y TEG1S = 0. In contrast, by adding a single

edge that crosses the (S, S̄)-cut, we get a graph G′ s.t.

Pr[Y TEG′1S �= 0] = 1.

Organization. Next we detail related work. Section II

details important notations and preliminaries. In Sections III

and IV we convert the above univariate intuition to the

multivariate Gaussian case. Section III describes our results

for graphs and cut-queries, and Section IV details the result

for directional queries (the general case). Due to space

limitations, the comparison of our algorithms with existing

algorithms is deferred to the full version of this work [3].

Even though there are clear similarities between the analyses

in Sections III and IV, we provide both because the graph

case is simpler and analogous to the univariate Gaussian

case. Suppose G and G′ are two graphs without and with a

certain edge resp., then G induces the multivariate Gaussian

with the “smaller” variance, and G′ induces the multivariate

Gaussian with the “larger” variance. In contrast, in the

general case there is no notion of “smaller” and “larger”

variances. Also, the noise bound in the general case is

larger than the one for the graph case, and the theorems our

analysis relies on are more esoteric. Section V concludes

2Observe that in this toy example, our O(log(1/δ)/ε) noise bound is

still worse than the noise bound of O(
√

log(1/δ)/ε) one gets from adding
Gaussian noise. However, in the applications detailed in Sections III and IV,
the idea of changing the input will be the key ingredient in getting noise
bounds that are independent of n and d.
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with a discussion and open problems.

A. Related Work

Differential privacy was developed through a series of

papers [8], [11], [6], [4]. Dwork et al [11] gave the first

formal definition and the description of the basic Laplace

mechanism. Its Gaussian equivalent was defined in [10].

Other mechanisms for preserving differential privacy include

the Exponential Mechanism of McSherry and Talwar [25],

[5]; the recent Multiplicative Weights mechanism of Hardt

and Rothblum [19] and its various extensions [17], [14],

[15]; the Median Mechanism [28] and a boosting mechanism

of Dwork et al [12]. In addition, the classical Randomized

Response (see [30]) preserves differential privacy as dis-

cussed in recent surveys [13], [9]. The task of preserving

differential privacy when the given database is a graph

or a social network was studied by Hay et al [20] who

presented a privacy preserving algorithm for publishing the

degree distribution in a graph. They also introduced and

compared between multiple notions of neighboring graphs,

one of which is for the change of a single edge. Nissim

et al [27] (see full version) studied the case of estimating

the number of triangles in a graph, and Karwa et al [23]

extended this result to other graph structures. Gupta et

al [15] studied the case of answering (S, T )-cut queries,

for two disjoint subsets of nodes S and T . All latter works

use the same notion of neighboring graphs as we do. In

differential privacy it is common to think of a database

as a matrix, but seldom one gives utility guarantees for

queries regarding global properties of the input matrix.

Blum et al [4] approximate the input matrix with the PCA

construction by adding O(d2) noise to the input. The work

of McSherry and Mironov [24] (inspired by the Netflix prize

competition) defines neighboring databases as a change in a

single entry, and introduces O(k2) noise while outputting a

rank-k approximation of the input. The work of Hardt and

Roth [18] gives a low-rank approximation of a given input

matrix while adding min{√d,
√
n} noise by following the

elegant framework of Halko et al [16]. According to [18],

a recent and not-yet-published work of Kapralov, McSherry

and Talwar preserves rank-1 approximations of a given PSD

matrix with error O(n).
The body of work on the JL transform is by now so

extensive that only a book may survey it properly [29]. In the

context of differential privacy, the JL lemma has been used

to reduce dimensionality of an input prior to adding noise or

other forms of privacy preservation. Blum et al [5] gave an

algorithm that outputs a sanitized dataset for learning large-

margin classifiers by appealing to JL related results of [1].

Hardt and Roth [18] gave a privacy preserving version of an

algorithm of [16] that uses randomize projections onto the

image space of a given matrix. The way the JL lemma was

applied in these works is very different than the way we use

it.

II. BASIC DEFINITIONS, PRELIMINARIES AND

NOTATIONS

Privacy and utility. In this work, we deal with two types of

inputs: [0, 1]-weighted graphs over n nodes and n × d real

matrices. (We treat wa,b = 0 as no edge between a and b).
Trivially extending the definition in [27], [23], two weighted

n-nodes graphs G and G′ are called neighbors if they differ

on the weight of a single edge (a, b). Like in [18], two n×d-

matrices are called neighbors if all the coordinates on which

A and A′ differ lie on a single row i, s.t. ‖A(i)−A′(i)‖2 ≤ 1,

where A(i) denotes the i-th row of A.

Definition II.1. An algorithm ALG which maps inputs into
some range R maintains (ε, δ)-differential privacy if for all
pairs of neighboring inputs I, I ′ and for all subsets S ⊂ R
it holds that

Pr[ALG(I) ∈ S] ≤ eεPr[ALG(I ′) ∈ S] + δ

For each type of input we are interested in answering a

different type of query. For graphs, we are interesting in

cut-queries: given a nonempty subset S of the vertices of

the graph, we wish to know what is the total weight of

edges crossing the (S, S̄)-cut. We denote this as ΦG(S) =∑
u∈S,v/∈S wu,v .

Definition II.2. We say an algorithm ALG gives a (η, τ, ν)-
approximation for cut queries, if for every nonempty S w.p.
≥ 1− ν we have that

[(1− η)ΦG(S)− τ ≤ ALG(S) ≤ (1 + η)ΦG(S) + τ ]

For n × d matrices, we are interested in directional
variance queries: given a unit-length direction x, we wish

to know what is the variance of A along the x direction:

ΦA(x) = xTATAx. (Our algorithm normalizes A s.t. the

mean of its n rows is 0.)

Definition II.3. We say an algorithm ALG gives a (η, τ, ν)-
approximation for directional variance queries, if for every
unit-length vector x w.p. ≥ 1− ν we have that

[(1− η)ΦA(x)− τ ≤ ALG(x) ≤ (1 + η)ΦA(x) + τ ]

Some Linear Algebra. Given a m×n matrix M its Singular

Value Decomposition (SVD) is M = UΣV T where U ∈
Rm×m and V ∈ Rn×n are unitary matrices, and Σ has non-

zero values only on its main diagonal. Furthermore, there

are exactly rank(M) positive values on the main diagonal,

denoted σ1(M) ≥ . . . ≥ σrank(M)(M), called the singular
values. This allows us to write M as the sum of rank(M)

rank-1 matrices: M =
∑rank(M)

i=1 σiuiv
T
i . Because Σ has

non-zero values only on its main diagonal, the notation Σi

denotes a matrix whose non-zero values lie only on the main

diagonal and are σi
1(M), σi

2(M), . . . , σi
rank(M)(M). Using

the SVD, it is clear that if M is of full-rank, then M−1 =
V Σ−1U T, and that if n = m = rank(M) then det(M) =
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∏n
i=1 σi(M). Furthermore, even when M is not full-rank,

the SVD allows us to use similar notation to denote the

generalizations of the inverse and of the determinant: The

Moore-Penrose inverse of M is M† = V Σ−1U T; and the

pseudo-determinant of M is d̃et(M) =
∏rank(M)

i=1 σi(M).
A n × n symmetric matrix is called positive semidefinite
(PSD) if it holds that xTMx ≥ 0 for every x ∈ Rn. Given

two PSDs M and N we denote the fact that (N −M) is

PSD by M � N . For further details, see [21].

Gaussian distribution. Given a r.v. X , we denote by

X ∼ N (μ, σ2) the fact that X has normal distribution

with mean μ and variance σ2. Recall that PDFX(x) =
1√

2πσ2
exp(−(x−μ)2/2σ2). We repeatedly apply the linear

combination rule: for any two i.i.d normal random variables

s.t. X ∼ N (μX , σ2
X) and Y ∼ N (μY , σ

2
Y ), we have

that their linear combination Z = aX + bY is distributed

according to Z ∼ N (aμX + bμY , a
2σ2

X + b2σ2
Y ). This in

turn allows us to identify a random variable R ∼ N (0, σ2)
with the random variable σR′, where R′ ∼ N (0, 1). Classic

concentration bounds on Gaussians give that Pr[|x−μ|2 >
log(1/δ)σ2] ≤ 2δ.

The multivariate normal distribution is the multi-

dimension extension of the univariate normal distribution.

X ∼ N (μ,Σ) denotes a m-dimensional multivariate r.v.

whose mean is μ ∈ Rm, and variance is the PSD matrix

Σ = E [(X − μ)(X − μ)T]. If Σ has full rank (Σ is positive

definite) then PDFX(x) = 1√
(2π)m det(Σ)

exp(− 1
2x

TΣ−1x),

a well defined function. If Σ has non-trivial kernel space

then PDFX is technically undefined (since X is defined

only on a subspace of volume 0, yet
∫
Rm PDFX(x)dx = 1).

However, if we restrict ourselves only to the subspace V =
(Ker(Σ))⊥, then PDFVX is defined over V and PDFVX(x) =

1√
(2π)rank(Σ)d̃et(Σ)

exp(− 1
2x

TΣ†x). From now on, we omit

the superscript from the PDF and refer to the above function

as the PDF of X . Observe that using the SVD, we can

denote Σ = U diag(σ2
1 , σ

2
2 , . . . , σ

2
r , 0, . . . , 0) U T, and so

V is the subspace spanned by the first r rows of U . The

multivariate extension of the linear combination rule is as

follows. If A is a n × m matrix, then the multivariate r.v.

Y = AX is distributed as though Y ∼ N (Aμ,AΣAT). For

further details regarding multivariate Gaussians see [26].

Finally, we conclude these Gaussian preliminaries with

the famous Johnson-Lindenstrauss Lemma, our main tool in

this paper.

Theorem II.4 (The Johnson Lindenstrauss transform [22]).
Fix any 0 < η < 1/2. Let M be a r × m matrix whose
entries are iid samples from N (0, 1). Then ∀x ∈ Rm.

PrM

[
1

r
‖Mx‖2 /∈ (1± η)‖x‖2

]
≤ 2 exp(−η2r/8)

Laplacians and edge-matrices. An undirected weighted

graph G = (V (G), E(G)) can be represented in various

ways. One representation is by the adjacency matrix A,

where Au,v = wu,v . Another way is by the
(
n
2

) × n edge
matrix of the graph, EG. We assume that the vertices of G
are ordered arbitrarily, and for each pair of vertices {u, v}
where u < v, there exists a row in EG. The entries of EG

are
(
EG

)
({u,v},x) =

⎧⎪⎨
⎪⎩
√
wu,v, if u ∼G v and x = u

−√wu,v, if u ∼G v and x = v

0, o/w

.

where u ∼G v denotes that (u, v) is an edge in G.

Alternatively, one can represent G using the Laplacian of

the graph LG = ET

GEG. Formally, the matrix LG is the

matrix whose diagonal entries are (LG)u,u =
∑

x∼Gu wx,u

and non diagonal entries are (LG)u,v = −wu,v . It is

simple to verify that for any x, the following equality holds:

xTLGx =
∑

u∼Gv wu,v(xu − xv)
2. As a corollary, if we

take any nonempty S � V (G) and denote its {0, 1}n-

indicator vector as 1S , then 1T

S LG 1S = ‖EG1S‖2 =∑
u∈S,v/∈S wu,v = ΦG(S).

Additional notations. We denote by ea the indicator vector

of a. We denote by ea,b = ea− eb. It follows that the n×n
matrix La,b = ea,be

T

a,b is the matrix whose projection over

coordinates a, b is

(
1 −1
−1 1

)
, while every other entry is

0. We also denote Ea,b as the
(
n
2

)× n matrix, whose rows

are all zeros except for the row indexed by the (a, b) pair,

which is eT

a,b. Observe: La,b = ea,be
T

a,b = ET

a,bEa,b.

III. PUBLISHING A PERTURBED LAPLACIAN

A. The Johnson-Lindenstrauss Algorithm

We now show that the Johnson Lindenstrauss transform

preserves differential privacy. We first detail our algorithm,

then analyze it.

Theorem III.1. Algorithm 1 preserves (ε, δ)-differential
privacy w.r.t to edge changes in G.

Algorithm 1: Outputting the Laplacian of a Graph while
Preserving Differential Privacy

Input: A n-node graph G, parameters: ε, δ, η, ν > 0
Output: A Laplacian of a graph L̃

1 Set r = 8 ln(2/ν)
η2 , and w =

√
32r ln(2/δ)

ε ln(4r/δ)

2 For every u �= v, set wu,v ← w
n +

(
1− w

n

)
wu,v .

3 Pick a matrix M of size r × (
n
2

)
, whose entries are iid

samples of N (0, 1).

4 return L̃ = 1
rE

T

GM
TMEG

Algorithm 2: Approximating ΦG(S)

Input: A non empty S � V (G), parameters n, w and
Laplacian L̃ from Algorithm 1.

return R(S) = 1
1−w

n

(
1T

SL̃1S − w s(n−s)
n

)

413



Theorem III.2. For every η, ν > 0 and
a nonempty S of size s, Algorithm 2 gives
a (η, τ, ν)-approximation for cut queries, for

τ = O
(
s ·
√

ln(1/δ) ln(1/ν)

ε

(
ln(1/δ) + ln(ln(1/ν)/η2)

) )
.

Clearly, once Algorithm 1 publishes L̃, any user interested

in estimating ΦG(S) for some nonempty S � V (G) can

run Algorithm 2 on her own. We comment that L̃ is a

Laplacian of graph which might have negative edge-weight.

Also, observe that w is independent of n, which we think

of as large number, so we assume throughout the proofs

of both theorems that both w
n ,

1
w are < 1/2. The proof of

Theorem III.2 is immediate from the JL lemma. Since it is

no more than a mere computation we omit it, deferring the

interested reader to the full version of this paper [3].

Comment. The guarantee of Theorem III.2 is not to be

mistaken with a weaker guarantee of providing a good

approximation to most cut-queries. Theorem III.2 guarantees

that any set of k predetermined cuts is well-approximated

by Algorithm 2, assuming Algorithm 1 sets ν < 1/2k. In

contrast, giving a good approximation to most cuts can be

done by a very simple (and privacy preserving) algorithm:

by outputting the number of edges in the graph (with small

Laplacian noise). After all, most cuts are concentrated about

the expectation.

We turn our attention to the proof of Theorem III.1. We

fix any two graphs G and G′, which differ only on a single

edge, (a, b). We think of (a, b) as an edge in G′ which

is not present in G, and in the proof of Theorem III.1, we

identify G with the manipulation Algorithm 1 performs over

G, and assume that the edge (a, b) is present in both graphs,

only it has weight w
n in G, and weight 1 in G′. Clearly, this

analysis carries on for a smaller change, when the edge (a, b)
is present in both graphs but with different weights. (Recall,

we assume all edge weights are bounded by 1.)

Now, the proof follows from assuming that Algorithm 1

outputs the matrix O = MEG, instead of L̃ = 1
rO

TO.

(Clearly, outputting O allows one to reconstruct L̃.) Observe

that O is composed of r identically distributed rows: each

row is created by sampling a
(
n
2

)
-dimensional vector Y

whose entries ∼ N (0, 1), then outputting Y TEG. Therefore,

we prove Theorem III.1 by showing that each row maintain

(ε0, δ0)-differential privacy, for the right parameters ε0, δ0.

To match standard notion, we transpose row vectors to

column vectors, and compare the distributions ET

GY and

ET

G′Y .

Claim III.3. Set ε0 = ε√
4r ln(2/δ)

, δ0 = δ
2r . Then,

∀x, PDFET
GY (x) ≤ eε0PDFET

G′Y (x) (1)

Denote S = {x : PDFET
GY (x) ≥ e−ε0PDFET

G′Y (x)}.
Then

Pr[S] ≥ 1− δ0 (2)

Proof of Theorem III.1 based on Claim III.3: Apply

the composition theorem of [12] for r iid samples each

preserving (ε0, δ0)-differential privacy.
To prove Claim III.3, we denote X = ET

GY and

X ′ = ET

G′Y . From the preliminaries it follows that

X is a multivariate Gaussian distributed according to

N (0, ET

GI(n2)×(
n
2)
EG) = N (0, LG), and similarly, X ′ ∼

N (0, LG′). In order to analyze the two distributions,

N (0, LG) and N (0, LG′), we now discuss several of the

properties of LG and LG′ , then turn to the proof of

Claim III.3.
First, it is clear from definition that the all ones vector, 1,

belongs to the kernel space of EG and EG′ , and therefore

to the kernel space of LG and LG′ . Next, we establish a

simple fact.

Fact III.4. If G is a graph s.t. for every u �= v we have
that wu,v > 0, then 1 is the only vector in the kernel space
of EG and LG.

Proof: Any non-zero x ⊥ 1 has at least one positive co-

ordinate and one negative coordinate, thus the non-negative

sum ‖EGx‖2 = xTLGx =
∑

u�=v wu,v(xu − xv)
2 is strictly

positive.
Therefore, the kernel space of both LG and of LG′ is

exactly the 1-dimensional span of the 1 vector (for every

possible outcome y of Y we have that ET

Gy · 1 = ET

G′y ·
1 = 0). Alternatively, both X and X ′ have support which

is exactly V = 1⊥. Hence, we only need to prove the

inequalities of Claim III.3 for x ∈ V . Secondly, observe that

LG′ = LG + (1− w
n )La,b. Therefore, it holds that for every

x ∈ Rn we have xTLG′x = xTLGx+ (1− w
n )(xa − xb)

2 ≥
xTLGx. In other words, LG � LG′ , a fact that yields several

important corollaries.
We now introduce notation for the Singular Value De-

composition of both LG and LG′ . We denote ET

G = UΣV T

and EG′T = U ′ΛV ′T, resulting in LG = UΣ2U T, LG′ =
U ′Λ2U ′T, L†G = UΣ−2U T and L†G′ = U ′Λ−2U ′T. We

denote the singular values of LG as σ2
1 ≥ . . . ≥ σ2

n−1 >
σ2
n = 0, and the singular values of LG′ as λ2

1 ≥ . . . ≥
λ2
n−1 > λ2

n = 0. Weyl’s inequality allows us to deduce the

following fact. Its and other facts’ proofs appear in the full

version of this work [3].

Fact III.5. Since LG � LG′ then for every i we have that
λ2
i ≥ σ2

i .

In addition, since Algorithm 1 alters the input graphs s.t.

the complete graph w
nLKn

is contained in G, then it also

holds that w
nLKn � LG, and so Fact III.5 gives that for every

1 ≤ i ≤ n − 1 we have that σ2
i ≥ w = w

n · n. (It is simple

to see that the eigenvalues of Kn are {n, n, . . . , n, 0}.)
Furthermore, as LG′ = LG + (1− w

n )La,b and the singular

values of La,b are {2, 0, 0, . . . , 0}, then we have that∑
i

λ2
i = tr(LG′) ≤ tr(LG)+tr

(
(1− w

n )La,b

) ≤∑
i

σ2
i+2
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Another fact we can deduce from LG � LG′ , is the

following.

Fact III.6. Since the kernels of LG and of LG′ are identical,
then for every x it holds that xTL†G′x ≤ xTL†Gx. Symboli-
cally, LG � LG′ ⇒ L†G′ � L†G.

Having established the above facts, we can turn to the

proof of privacy.

Proof of Claim III.3: We first prove the upper bound

in (1). As mentioned, we focus only on x ∈ V = 1⊥, where

PDFET
GY (x) =

(
(2π)n−1d̃et(LG)

)−1/2

exp(−1

2
xTL†Gx)

PDFET
G′Y (x) =

(
(2π)n−1d̃et(LG′)

)−1/2

exp(−1

2
xTL†G′x)

As noted above, we have that for every x it holds that

xTL†G′x ≤ xTL†Gx, so exp(− 1
2x

TL†Gx) ≤ exp(− 1
2x

TL†G′x).

It follows that for every x we have that
PDF

ET
G

Y
(x)

PDF
ET

G′Y
(x) ≤(

d̃et(LG′ )
d̃et(LG)

)1/2

=
(∏n−1

i=1
λ2
i

σ2
i

)1/2

. Denoting Δi = λ2
i−σ2

i ≥
0, and recalling that

∑
i Δi ≤ 2 and that ∀i, σ2

i ≥ w > ε−1
0

it holds that

PDFET
GY (x)

PDFET
G′Y (x)

≤
√√√√n−1∏

i=1

(
1 +

Δi

σ2
i

)
≤ e(

1
2w

∑
i Δi) ≤ e

1
w

We now turn to the lower bound of (2). We start with

analyzing the term xTL†Gx that appears in PDFETY (x).
Again, we emphasize that x ∈ V , justifying the very first

equality below.

xTL†Gx = xTL†GLG′L†G′x

= xTL†G
(
LG + (1− w

n )Lab

)
L†G′x

= xTL†G′x + (1− w
n )x

TL†GLa,bL
†
G′x

= xTL†G′x + (1− w
n )x

TL†Gea,b · eT

a,bL
†
G′x

Therefore, if we show that

Prx∼ET
GY

[
xTL†Gea,b · eT

a,bL
†
G′x >

2

1− w
n

ε0

]
< δ0 (3)

then it holds that w.p. > 1− δ0 we have

PDFET
GY (x)

PDFET
G′Y (x)

≥ 1 · exp
(
−1

2
xT(L†G − L†G′)x

)
≥ e−ε0

which proves the lower bound of (2). We turn to proving (3).

Denote term1 = eT

a,bL
†
Gx and term2 = eT

a,bL
†
G′x. Since

x = ET

Gy where y ∼ Y then termi is distributed like vecTiY
where vec1 = EGL

†
Gea,b and vec2 = EGL

†
G′ea,b. The naı̈ve

bound, ‖vec1‖ ≤ ‖EG‖ ‖L†G‖‖ea,b‖ gives a bound on the

size of vec1 which is dependent on the ratio σ1

σ2
n−1

. We can

improve the bound, on both ‖vec1‖ and ‖vec2‖, using the

SVD of EG and EG′ .

‖vec1‖ = ‖EGL
†
Gea,b‖ = ‖V ΣU TUΣ−2U Tea,b‖

= ‖V Σ−1U Tea,b‖ ≤ ‖V ‖ ‖Σ−1‖ ‖U‖ ‖ea,b‖
= 1 · σ−1

n−1 · 1 ·
√
2 =

√
2/w

‖vec2‖ = ‖EGL
†
G′ea,b‖

= ‖(EG′ − (1− w
n )Ea,b)L

†
G′ea,b‖

< ‖EG′L†G′ea,b‖+ ‖Ea,bL
†
G′ea,b‖

(∗)
≤ λ−1

n−1 ·
√
2 + ‖Ea,bL

†
G′ea,b‖

(∗∗)
=

√
2
w + eT

a,bL
†
G′ea,b ≤

√
2
w + 2

w ≤ 2√
w

where the bound in (∗) is derived just like in vec1 (using

EG′L†G′ea,b = V ′ΛU ′TU ′Λ−2U ′Tea,b) , and the equality in

(∗∗) follows from the fact that all coordinates in the vector

Ea,bL
†
G′ea,b are zero, except for the coordinate indexed by

the (a, b) pair.
We now use the fact that term1 and term2 are both linear

combinations of i.i.d N (0, 1) random variables. Therefore

for i = 1, 2 we have that termi ∼ N (0, ‖veci‖2) so

Pr[|termi| >
√
log(2/δ0)‖veci‖] ≤ e

− ‖veci‖2 log(2/δ0)

‖veci‖2 <
δ0
2 . It follows that w.p > 1 − δ0 both |term1| <√
log(2/δ0)

√
2
w and |term2| ≤ √

log(2/δ0)
√

4
w , so

term1 · term2 ≤
√
8 log(2/δ0)/w. Plugging in the value

of w, we have that Pr[term1 · term2 ≤ 2ε0] ≥ 1 − δ0
which concludes the proof of (3) and of Claim III.3.

To conclude this section, we attach a summarized com-

parison between our own technique and various other tech-

niques in Table I. Due to space limitations, we do not

elaborate further on this comparison, and refer the interested

reader to the full version of this paper [3].

IV. PUBLISHING A COVARIANCE MATRIX

In this section, we are concerned with the question of

allowing users to estimate the covariance of a given sample

data along an arbitrary direction x. We think of our input

as a n × d matrix A, and we maintain privacy w.r.t to

changing the coordinates of a single row s.t. a vector v
of size 1 is added to A(i). We now detail our algorithm

for publishing the covariance matrix of A. Observe that

in addition to the variance, we can output μ = 1
nA

T1,

the mean of all samples in A, in a differentially private

manner by adding random Gaussian noise. (We merely

output μ̃ = μ+N (0, 4 log(1/δ)
n2ε2 Id×d).) We denote by In×d the

n× d matrix whose main diagonal has 1 in each coordinate

and all other coordinates are 0. We detail the algorithms here,

but prove their privacy and utility in Appendix A, along with

comparing Algorithm 3 to existing algorithms.

Theorem IV.1. Algorithm 3 preserves (ε, δ)-differential pri-
vacy.

Theorem IV.2. Algorithm 4 is a (η, τ, ν)-
approximation for directional variance queries, where
τ = O

(
ln(1/δ) ln(1/ν)

ε2η ln2
(

ln(1/ν)
δη2

))
.

Again, the proof of Theorem IV.2 is straight-forward, and

so it is deferred to the full version of this paper [3].
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Method
Additive Error

for any k
Additive Error

for all Cuts
Multi-
plicative
Error?

Inter-
active?

Tract-
able?

Comments

Laplace Noise [11] O(
√
k/ε) O(2n/2ε) � � �

Randomized
Response

O(
√

sn log(k)/ε) O(n
√
s/ε) � � � Can be distributed;

answers (S, T )-cut
queries

Exponential Mecha-
nism [25], [5]

O(n log(n)/ε) O(n log(n)/ε) � � � Error ind. of k

MW [19]
IDC [15]

Õ(
√|E| log(k)/ε)

Õ(
√|E| log(k)/ε)

Õ(n
√|E|/ε)

Õ(
√

n|E|/ε) � � � Answers (S, T )-cut
queries

JL O(s
√

log(k)/ε) Õ(s
√
n/ε) � � � Can be distributed

Table I
COMPARISON BETWEEN MECHANISMS FOR ANSWERING CUT-QUERIES. ε – PRIVACY PARAMETER; n AND |E| – NUMBER OF VERTICES AND EDGES

RESP.; s – NUMBER OF VERTICES IN A QUERY; k – NUMBER OF QUERIES.

Comment. We wish to clarify that Theorem IV.2 does not
mean that we publish a matrix C̃ which is a low-rank

approximation to ATA. It is also not a matrix on which

one can compute an approximated PCA of A, even if we
set ν = 1/poly(d). The matrix C̃ should be thought of as a

“test-matrix” – if you believe A has high directional variance

along some direction x then you can test your hypothesis on

C̃ and (w.h.p) get the good approximated answer. However,

we do not guarantee that the singular values of ATA and

of C̃ are close or that the eigenvectors of ATA and C̃ are

comparable. (See discussion in Section V.)

Comment. Comparing Algorithms 1 and 3, we have that

in LG = ET

GEG we “translate” the spectral values by w,

and in ATA we “translated” the spectral values by w2. This

is an artifact of the ability to directly compare the spectal

values of LG and LG′ in the first analysis, whereas in the

second analysis we compare the spectral values of A and A′

(vs. ATA and A′TA′). This is why the noise bounds in the

general case are Õ(1/εη) times worse than for graphs.

We conclude this section as well with a comparison of

our technique to other techniques, summarize in Table II.

As before, the details of the comparison can be found in the

full version of this paper [3].

Algorithm 3: Outputting a Covariance Matrix while
Preserving Differential Privacy

Input: A n× d matrix A. Parameters ε, δ, η, ν > 0.

1 Set r = 8 ln(2/ν)
η2 and w =

16
√

r ln(2/δ)

ε ln(16r/δ).

2 Subtract the mean from A by computing

A← A− 1
n11

TA.
3 Compute the SVD of A = UΣV T.

4 Set A← U(
√
Σ2 + w2In×d)V

T.
5 Pick a matrix M of size r × n whose entries are iid

samples of N (0, 1).

6 return C̃ = 1
rA

TM TMA.

V. DISCUSSION AND OPEN PROBLEMS

The fact that the JL transform preserves differential

privacy is likely to have more theoretical and practical

applications than the ones detailed in this paper. Below we

detail a few of the open questions we find most compelling.

Error dependency on r. Our algorithm projects the edge-

matrix of a given graph on r random directions, then

publishes these projections. The value of r determines the

probability we give a good approximation to a given cut-

query, and provided that we wish to give a good approx-

imation to all cut-queries, our analysis requires us to set

r = Ω(n). But is it just an artifact of the analysis? Could

it be that a better analysis gives a better bound on r? It

turns out that the answer is “no”. In fact, the direction on

which we project the data now have high correlation with the

published Laplacian. We demonstrate this with an example.

Assume our graph is composed of a single perfect match-

ing between 2n nodes, where node i is matched with node

n + i. Focus on a single random projection – it is chosen

by picking
(
2n
2

)
iid random values xi,j ∼ N (0, 1), and

for the ease of exposition imagine that the values of the

edges in the matching are picked first, then the values of

all other pairs of vertices. Now, if we pick the value xi,n+i

for the 〈i, n+ i〉 edge, then node i is assigned xi,n+i while

node n+ i is assigned −xi,n+i. So regardless of the sign of

xi,n+i, exactly one of the two nodes {i, n + i} is assigned

the positive value |xi,n+i| and exactly one is assigned the

negative value −|xi,n+i|. Define S as the set of n nodes that

are assigned the positive values and S̄ as the set of n nodes

that are assigned the negative values. The sum of weight

Algorithm 4: Approximating ΦA(x)

Input: A unit-length vector x, parameter w and a
Covariance matrix C̃ from Algorithm 3.

return R(x) = xTC̃x− w2.
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Method Additive Error Multi-
plicative
Error?

Inter-
active?

Tract-
able?

Laplace Noise [11] O(
√
k/ε) � � �

Randomized
Response

Õ(
√

d log(k)/ε) � � �

MW [19]
IDC [15]

Õ(d
√
n log(k)/ε)

Õ(d
√

n log(k)/ε)
� � �

JL O(log(k)/ε2) � � �

Table II
COMPARISON BETWEEN MECHANISMS FOR ANSWERING DIRECTIONAL VARIANCE QUERIES.

crossing the (S, S̄)-cut is distributed like (X+ w
nY )2 where

X =
∑

i |xi,n+i| and Y =
∑

i

∑
j �=n+i xi,j . Indeed, Y is

the sum of n(n−1) random normal iid Gaussians, but X is

the sum of n absolute values of Gaussians. So w.h.p. both

X and Y are proportional to n. Therefore, in the direction

of this particular random projection we estimate the (S, S̄)-
cut as Ω((n ± w)2) = Ω(n2) rather than O(n). (If X was

distributed like the sum of n iid normal Gaussians, then the

estimation would be proportional to (
√
n)2 = n.)

Assuming that the remaining r−1 projections estimate the

cut as O(n), then by averaging over all r random projections

our estimation of the (S, S̄)-cut is ω(n), as long as r = o(n).

Error amplification or error detection. Having established

that we do err on some cuts, we pose the question of

error amplification. Can we introduce some error-correction

scheme to the problem without increasing r significantly?

Error amplification without increasing r will allow us to

keep the additive error fairly small. One can view L̃ as a

coding of answers to all 2n cut-queries which is guaranteed

to have at least 1−ν fraction of the code correct, in the sense

that we get a (η, τ)-approximation to the true cut-query

answer. As such, it is tempting to try some self-correcting

scheme – like adding a random vector x to the vector 1S ,

then finding the estimation to xTLGx and (1s+x)TLGx and

inferring 1T

SLG1S . We were unable to prove such scheme

works due to the dot-product problem (see next paragraph)

and to query dependencies.

Other Versions of JL. The analysis in this works deals with

the most basic JL transform, using normal Gaussians. We

believe that qualitatively the same results should apply for

other versions of the JL transform (e.g., with entries taken

in U[−1,1]). However, we are not certain whether the same

results hold for sparse transforms (see [7]).
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APPENDIX A.
COVARIANCE MATRICES: MISSING PROOF

Proof of Theorem IV.1: Fix two neighboring A and A′. We
often refer to the gap matrix A′−A as E. Observe, E is a rank-1
matrix, which we denote as the outer-product E = eiv

T (ei is the
indicator vector of row i and v is a vector of norm 1). As such,
the singular values of E are exactly {1, 0, . . . , 0}.3

3For convenience, we ignore the part of the algorithm that subtracts the
mean of the rows of A. Observe that if E = A−A′ then after subtracting
the mean from each row, the difference between the two matrices is ẽi

Tv
where ẽi is simply subtracting 1/n from each coordinate of ei. Since
‖ẽi‖ < ‖ei‖, this has no effect on the analysis.

The proof of the theorem is composed of two stages. The first
stage is the simpler one. We ignore step 4 of Algorithm 3 (shifting
the singular values), and work under the premise that both A and
A′ have singular values no less than w. In the second stage we
denote B and B′ as the results of applying step 4 to A and A′

resp., and show what adaptations are needed to make the proof
follow through.

Stage 1.
We assume step 4 was not applied, and all singular values of A
and A′ are at least w.

As in the proof of Theorem III.1, the proof follows from the
assumption that Algorithm 3 outputs OT = ATM (which clearly
allows us to reconstruct C̃ = 1

r
OTO). Again OT is composed of r

columns each is an iid sample from ATY where Y ∼ N (0, In×n).
We now give the analogous claim to Claim III.3.

Claim A.1. Fix ε0 = ε√
4r ln(2/δ)

and δ0 = δ
2r

. Denote S = {x :

e−ε0PDFA′TY (x) ≤ PDFATY (x) ≤ e−ε0PDFA′TY (x)}. Then
Pr[S] ≥ 1− δ0.

Again, the composition theorem of [12] along with the choice
of r gives that overall we preserve (ε, δ)-differential privacy.

Proof of Claim A.1: The proof mimics the proof of
Claim III.3, but there are two subtle differences. First, the problem
is simpler notation-wise, because A and A′ both have full rank due
to Algorithm 3. Secondly, the problem becomes more complicated
and requires we use some heavier machinery, because the singular
values of A′ aren’t necessarily bigger than the singular values of
A. Details follow.

First, let us formally define the PDF of the two distributions.
Again, we apply the fact that ATY and A′TY are linear transfor-
mations of N (0, In×n).

PDFATY (x) =
1√

(2π)d det(ATA)
exp(− 1

2
xT(ATA)−1x)

PDFA′TY (x) =
1√

(2π)d det(A′TA′)
exp(− 1

2
xT(A′TA′)−1x)

Our proof proceeds as follows. First, we show

e−ε0/2 ≤
√

det(A′TA′)
det(ATA)

≤ eε0/2 (4)

Then we show that no matter whether we sample x from ATY or
from A′TY , we have that

Prx

[
1

2

∣∣∣xT
(
(ATA)−1 − (A′TA′)−1

)
x
∣∣∣ ≥ ε0/2

]
≤ δ0 (5)

Clearly, combining both (4) and (5) proves the claim.
Let us prove (4). Denote the SVD of A = UΣV T and A′ =

U ′ΛV ′T, where the singular values of A are σ1 ≥ σ2 ≥ . . . ≥
σd > 0 and the singular values of A′ are λ1 ≥ λ2 ≥ . . . ≥
λd > 0. Therefore we have ATA = V Σ2V T, A′TA′ = V ′Λ2V ′T

and also (ATA)−1 = V Σ−2V T, (A′TA′)−1 = V ′Λ−2V ′T. Thus

det(ATA) =
∏d

i=1 σ
2
i and det(A′TA′) =

∏d
i=1 λ

2
i .

This time, in order to bound the gap
∑

i(λ
2
i − σ2

i )/σ
2
i it is not

sufficient to use the trace of the matrices. Instead, we invoke an
application of Lindskii’s theorem (Theorem 9.4 in [2]).

Fact A.2 (Linskii). For every k and every 1 ≤ i1 < i2 < . . . <
ik ≤ n we have that

∑k
j=1 λij ≤

∑k
j=1 σij +

∑k
i=1 svi(E) where

{svi(E)}ni=1 are the singular values of E sorted in a descending
order.

As a corollary, because E has only 1 non-zero singular value, we
denote Big = {i : λi > σi} and deduce that

∑
i∈Big λi−σi ≤ 1.
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Similarly, since the singular values of E and of (−E) are the
same, we have that

∑
i/∈Big σi − λi ≤ 1. Using this, prov-

ing (4) is straight-forward:

√∏
i

λ2
i

σ2
i
≤ ∏

i∈Big

(
1 + λi−σi

σi

)
≤

e

(
1
w

∑
i∈Big

λi−σi

)
≤ e

1
w and similarly,

√∏
i

σ2
i

λ2
i
≤ e

1
w ≤ eε0/2.

We turn to proving (5). We start with the following derivation.

xT(ATA)−1x− xT(A′TA′)−1x
= xT(ATA)−1(A′TA′)(A′TA′)−1x− xT(A′TA′)−1x
= xT(ATA)−1((A+ E)T(A+ E))(A′TA′)−1x

−xT(A′TA′)−1x
= xT(ATA)−1(ATE + ETA′)(A′TA′)−1x

and using the SVD and denoting E = eiv
T, we get

xT(ATA)−1x− xT(A′TA′)−1x

= xT
(
V Σ−1UT

)
ei · vT

(
V ′Λ−2V ′T

)
x

+xT
(
V Σ−2V T

)
v · eT

i

(
U ′Λ−1V ′T

)
x

So now, assume x is sampled from ATY . (The case of A′TY is
symmetric. In fact, the names A and A′ are interchangeable.) That
is, assume we’ve sampled y from Y ∼ N (0, In×n) and we have
x = ATy = V ΣUTy and equivalently x = (A′T − ET)y =
V ′ΛU ′Ty − veT

i y. The above calculation shows that∣∣∣xT(ATA)−1x− xT(A′TA′)−1x
∣∣∣ ≤ t1 · t2 + t3 · t4

where for i = 1, 2, 3, 4 we have ti = |v̄i · y| and

v̄1 = UΣV TV Σ−1Uei = ei, so ‖v̄1‖ = 1

v̄2 = U ′Λ−1V ′Tv − eiv
TV ′Λ−2V ′Tv, so ‖v̄2‖ ≤ λd + 1

λ2
d

v̄3 = UΣ−1V Tv, so ‖v̄3‖ ≤ 1
σd

v̄4 = ei − eiv
TV ′Λ−1U ′Tei, so ‖v̄4‖ ≤ 1 + 1

λd

Recall that all singular values, both of A and A′, are greater than
w and that veci · y ∼ N (0, ‖veci‖2), so w.p. ≥ 1 − δ0 we have

that for every i it holds that ti ≤
√

ln(4/δ0)‖v̄i‖. So to conclude
the proof of the first stage, we have that∣∣xT(ATA)−1x− xT(A′TA′)−1x

∣∣ ≤ 2(
1

w
+

1

w2
) ln(4/δ0)

≤ 4 ln(4/δ0)

w
≤ ε0

Stage 2.
We assume step 4 was applied, and denote B =
U(
√
Σ2 + w2I)V T and B′ = U ′(

√
Λ2 + w2I)V ′T. We

denote the singular values of B and B′ as σB
1 ≥ σB

2 ≥ . . . ≥ σB
d

and λB
1 ≥ λB

2 ≥ . . . ≥ λB
d resp. Observe that by definition, for

every i we have (σB
i )2 = σ2

i + w2 and (λB
i )

2 = λ2
i + w2.

Again, we assume we output OT = BTY , and compare X =
BTY to X ′ = B′TY . The theorem merely requires Claim A.1 to
hold, and they, in turn, depend on the following two conditions.

e−ε0/2 ≤
√

det(B′TB′)
det(BTB)

≤ eε0/2 (6)

Prx

[
1

2

∣∣∣xT
(
(BTB)−1 − (B′TB′)−1

)
x
∣∣∣ ≥ ε0/2

]
≤ δ0 (7)

The second stage deals with the problem that now, the gap Δ =
B′ − B is not necessarily a rank-1 matrix. However, what we
show is that all stages in the proof of Claim A.1 either rely on

the singular values or can be written as the sum of a few rank-1
matrix multiplications.

The easier part is to claim that Eq. (6) holds. The analysis is a
simple variation on the proof of Eq. (4). Fact A.2 still holds for the
singular values of A and A′. Observe that λB

i > σB
i iff λi > σi.

And so we have√∏
i

(λB
i )

2

(σB
i )2

≤
√√√√ ∏

i∈Big

λ2
i + w2

σ2
i + w2

≤
√√√√ ∏

i∈Big

λ2
i

σ2
i

and the remainder of the proof follows. We now turn to proving
Eq. (7). We start with an observation regarding A′TA and B′TB′.

A′TA′ = A′T(A+ E) = ATA+A′TE + ETA

BTB = V (Σ2 + w2I)V T = ATA+ w2I

B′TB′ = V ′(Λ2 + w2I)V ′T = A′TA′ + w2I

So B′TB′ −BTB = A′TE +ETA. Now we can follow the same
outline as in the proof of (5). Fix x, then:

xT(BTB)−1x− xT(B′TB′)−1x
= xT(BTB)−1(B′TB′)(B′TB′)−1x− xT(B′TB′)−1x

= xT(BTB)−1
[
BTB +A′TE + ETA

]
(B′TB′)−1x

−xT(B′TB′)−1x

= xT(BTB)−1
[
A′TE + ETA

]
(B′TB′)−1x

= xT(BTB)−1(AT + ET)ei · vT(B′TB′)−1x
+xT(BTB)−1v · eT

i

(
A′ − E

)
(B′TB′)−1x

It is straight-forward to see that the i-th spectral values of
(BTB)−1A is σi

σ2
i +w2 ≤ 1√

σ2
i +w2

≤ 1/w, and similarly for

the spectral values of (B′TB′)−1A′. We now proceed as before
and partition the above sum into multiplications of pairs of terms
where termi ≤ |veci · y|, and y is sampled from N (0, In×n) and
x = BTy:

xT(BTB)−1x− xT(B′TB′)−1x

= yT
[
B(BTB)−1(AT + ET)ei

] · [
vT(B′TB′)−1BT

]
y

+yT
[
B(BTB)−1v

] · [eT
i

(
A′ − E

)
(B′TB′)−1BT

]
y

Lastly, we need to bound all terms that contain the multi-
plication (B′TB′)−1BTy in comparison to (B′TB′)−1B′Ty =
B′†y. For instance, take the term = |vecTy| for vecT =
eT
i (A

′ − E) (B′TB′)−1BT, and define it as vecT = zTBT. We
can only bound ‖Bz‖ using σB

1 /(λB
d )

2, whereas we can bound
‖B′z‖ with 1/λB

d < 1/w. In contrast to before, we do not use
the fact that BTy = (B′ −Δ)Ty. Instead, we make the following
derivations.

First, we observe that for every vector z we have that
‖B′z‖ ≥ ‖A′z‖ and ‖B′z‖ ≥ w‖z‖. Using the fact that BTB −
B′TB′ = −A′TE−ETA, a simple derivation gives that ‖Bz‖2 ≤
(‖B′z‖+ ‖z‖)2 ≤ (

1 + 1
w

)2 ‖B′z‖2, and vice-versa. So if y is

s.t.
|zTBTy|

(1+ 1
w )‖B′z‖ > Threshold then

|zTBTy|
‖Bz‖ > Threshold. Ob-

serve that zTBTy is distributed likeN (0, ‖Bz‖2) = ‖Bz‖N (0, 1),
and so we have that for every δ′ > 0

Pr

[
|zTBTy| ≥

√
log(1/δ′)

(
1 +

1

w

)
‖B′z‖

]

= Pr

[((
1 +

1

w

)
‖B′z‖

)−1

|zTBTy| ≥
√

log(1/δ′)

]

≤ Pr
[
(‖Bz‖)−1 |zTBTy| ≥

√
log(1/δ′)

]
≤ δ′
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