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Abstract—We initiate the study of privacy for the analyst
in differentially private data analysis. That is, not only
will we be concerned with ensuring differential privacy
for the data (i.e. individuals or customers), which are the
usual concern of differential privacy, but we also consider
(differential) privacy for the set of queries posed by each
data analyst. The goal is to achieve privacy with respect
to other analysts, or users of the system.

This problem arises only in the context of stateful
privacy mechanisms, in which the responses to queries
depend on other queries posed (a recent wave of results
in the area utilized cleverly coordinated noise and state in
order to allow answering privately hugely many queries).

We argue that the problem is real by proving an
exponential gap between the number of queries that can be
answered (with non-trivial error) by stateless and stateful
differentially private mechanisms. We then give a stateful
algorithm for differentially private data analysis that also
ensures differential privacy for the analyst and can answer
exponentially many queries.
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I. INTRODUCTION

Differential privacy is a widely studied notion of

privacy designed for statistical analysis of confidential

data [1], [2], [3]. All research on differential privacy to

date has focused exclusively on the privacy of the data.

In this work, we introduce the additional requirement

of privacy for the data analyst — hiding the questions
one asks about the data.

People studying a data set (“data analysts”) may

desire confidentiality for the questions they ask for a

variety of reasons, including fear of embarrassment,

persecution, leakage to competitors and in the case

of law enforcement, informing criminals about the in-

vestigation. Allowing individuals to carry out research

privately is well-recognized as being important for a free
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society, for example, as reflected in the strong protec-

tions given to library records. Thus, the Council of the

American Library Association “strongly recommends
that the responsible officers of each library... Advise all
librarians and library employees that such records shall
not be made available to any agency of state, federal, or
local government except pursuant to such process, order
or subpoena” [4]. Confidentiality of this type is also

the motivation behind Private Information Retrieval [5],

which ensures that the library itself does not learn what

the user reads.

In this same spirit, we investigate the problem of

privacy for the data analyst in differentially private

mechanisms. Unlike in a library, or in PIR, where the in-

formation delivered to a user is exactly the information

requested (the original, copyrighted, version of a book,

for example), a feature of differential privacy is that

the responses to queries suffer some (hopefully minor)

distortion. In some algorithms, this distortion reveals

information about queries posed to the system by other

analysts, and thus may compromise their privacy. This

is analogous to some of the concerns motivating secure

computation of approximations, which ensure that ap-

proximations leak no more information than exact val-

ues [6], and history-independent data structures, which

ensure that a data structure representation in memory is

independent of the prior history of queries [7].

The absence of this natural question in the differential

privacy literature may stem from several causes. First,

the accuracy of responses to queries must deteriorate as

the number and complexity of these queries increases

([8] et sequelae). Thus to obtain maximal utility of

data it might make sense to publicize the answers

to all the queries posed, so that the utility can be

shared by all who desire this information. Second, the

“first wave” of differentially private algorithms were all

stateless, meaning that the probability distribution for

the response to one query is the same regardless of

what other queries have been asked (except perhaps with

respect to the amount of the privacy budget the query is

allowed to consume). Combining this with the fact that
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the curator is typically trusted,1 the issue of privacy for

the analyst was not investigated.

In a “second wave” of differentially private algo-

rithms, initiated in [11] (see also [12], [13], [14], [15],

[16], [17]), the responses to the different queries depend

on other queries, either because the queries are handled

as a batch [11], [14], [17], or because the algorithm

explicitly maintains state [13], [15]. The benefit of these

“second wave” algorithms is their ability to provide

answers to truly huge numbers of queries, even expo-

nential in the number of rows in the database (whereas

the known stateless mechanisms can only handle up to

a sub-quadratic number of queries).

The current work was motivated by seeking to

distribute the work of the “second-wave” algorithms

among multiple servers, and our subsequent realization

that the need for shared state raises privacy concerns for

the data analysts, even when the curator is trustworthy.

A. Our Results

State is Necessary: We first prove that a stateless

differentially private algorithm cannot answer more

than Õ(n2) counting queries2 with nontrivial accuracy,

where n is the number of rows in the database. This

bound is tight up to polylogarithmic factors, and shows

an exponential gap between the number of queries

that can be answered by stateless and stateful differen-

tially private mechanisms. The proof relies on the list-

decoding properties of the “long code” [18].

Our result can be interpreted as a negative result

about distributing the work of answering queries among

servers while maintaining differential privacy: either the

servers must share information about what queries are

asked to them, or they can only answer a small number

of queries. A second interpretation is that it may be

difficult to achieve perfect privacy for the data analysts,

if we have differential privacy for the dataset.3

Turning to the algorithmic problem of privacy for

the analyst, we see immediately that this is impossi-

ble for a batch algorithm that takes a set of queries

coming from different analysts and produces a public

and differentially private summary of the dataset that

allows each analyst to compute an accurate answer to

its query: We know from lower bounds on noise [8] that

the output of any batch algorithm must fail to accurately

answer some potential queries. At the same time, with

1Exceptions include [9] and all work in the local model [10].
2A counting query asks what fraction of the database lies in a

specified subset of the universe U .
3By perfect privacy for the data analysts, we mean that changing

any query has no effect on the joint distribution of responses to the
other queries. Stateless mechanisms provide this property, but are
somewhat more constrained. We thank an anonymous reviewer for
a question that brought out the difference.

high probability all queries in the batch are answered

accurately. Thus, any query not well answered is likely

not to have been asked. We therefore consider only

interactive mechanisms.

A Stateful Mechanism with Privacy for the Ana-
lysts: In light of our negative result, if we want privacy

for both the data subjects and the data analysts, we must

look at stateful algorithms. We will also settle for less

than perfect privacy for the data analysts (e.g. look for

an analogue of differential privacy). We achieve this in

a model where every analyst is assigned an ID, which

is fed to the mechanism along with every query made

by that analyst. Specifically, we construct a stateful

mechanism that:

• is differentially private for the data subjects

• can answer up to an exponential number of count-

ing queries (as in the existing stateful mechanisms)

• provides analyst privacy in the following sense:

the view of any one analyst (or few analysts) has

approximately the same distribution regardless of

what other queries are asked by all of the other an-

alysts. Here “approximately the same distribution”

is defined in the same sense as in the definition of

differential privacy, namely every event occurs with

the same probability up to a (1+ ε) multiplicative

factor (and a negligible additive factor).

Our algorithm is based on nesting two privacy-

preserving algorithms. The idea is to have two levels

of responses — the inner layer and the outer layer.

The inner layer is common to all the analysts and

handles all their queries, without regard to which analyst

issues which query. It answers them using a data-private

algorithm, and guarantees that (whp) the accuracy of

all the answers is within an additive α = Õ(1/n1/2)
(hiding the dependence on all parameters other than the

number n of rows in the database). We think of the inner

layer as providing an α-accurate oracle for queries on

the database. This layer is in charge of the privacy of the

database elements. The second, outer, layer runs several

instantiations of an algorithm, one for each analyst (the

analyst is specified by an id). The purpose of the outer

layer is to protect the privacy of the analysts: The

algorithm does not operate on the real database, but

views what the inner layer tells it as an α-accurate oracle

for queries on the database, and its goal is to protect this

oracle, that is to yield no information about which α-

accurate oracle is used, since the precise nature of the

oracle may yield information about the queries asked by

the other analysts. The resulting scheme gives answers

that are within ±Õ(α1/2) = ±Õ(1/n1/4) of the real

answer on all queries.

We remark that our analyst-private algorithm provides

privacy for the entire set of queries posed by each
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analyst. This is analogous to a user-level privacy guaran-

tee [19], [20]. The set of analysts, together, may make

an exponential number of queries. In particular, any

given user may make a truly huge number of queries,

and the presence or absence of this entire, potentially

huge, set is protected.
Additional Related Work: Kasiviswanathan et al.,

in their work on differentially private release of con-

tingency tables, consider a class of stateless mecha-

nisms, which they call instance-independent, obtaining

stronger lower bounds on distortion for these mecha-

nisms than they obtain for general mechanism [21].
Subsequent to the current paper, Ullman [22] proved

that, under standard cryptographic assumptions, it is

computationally intractable for even a stateful differen-

tially private mechanism to answer more than n2+o(1)

arbitrary (but efficiently computable) counting queries

on a large data universe. His proof exploits an intimate

connection to “traitor-tracing schemes” from [12] and

uses some ideas related to our negative result. Intu-

itively, he constructs an adversarial sequence of count-

ing queries that can be viewed as encrypted versions

of the queries in our attack, so that it is infeasible for

the mechanism to take advantage of the correlations

between the queries despite being stateful.

II. THE POWER OF STATE

In this section, we prove that a stateless differentially

private algorithm cannot answer more than a quadratic

number of (counting) queries with nontrivial accuracy.

We prove our negative result for statelessness in the

“easiest possible” case for a stateless algorithm: we have

a large set of processors, each of which will respond

to at most a single query. The processors share the

same database, and they may have an unlimited amount

of shared initial state, including an arbitrarily long

random tape. At each step of the attack, the adversary

chooses a processor, poses a query to this processor, and

receives a response. The processors have unrestricted

computational resources, and each processor may have

its own program, say, depending on its processor id4.

However, the processors do not communicate once

interaction with the data analyst (the adversary) has

begun5. Thus, in this work statefulness and coordination
are equivalent.

4A more stringent requirement is order-obliviousness, in which the
answer to the ith query does not depend on i. Our adversary succeeds
even with the less stringent requirement described above.

5What makes this the “easiest possible” case for a stateless differen-
tially private algorithm (with non-trivial accuracy) is the sharing of ini-
tial state and randomness. If there is no sharing of private randomness
then a fairly straightforward hybrid argument and sampling argument
show that differential privacy can be defeated with ω(n2) queries
to the noncommunicating processors. This also has implications for
cumulative privacy loss over participation in multiple, independently
operated, databases.

We consider databases that consist of n uniformly

random rows from some data universe U (chosen with-

out replacement), and mechanisms that answer counting

queries. For any stateless mechanism that provides a

nontrivial bound on the expected error, we exhibit an

efficient adversary that makes O(n2 log |U|) counting

queries and can reconstruct an unknown row of the

database with probability Ω(1/n2) (based on knowing

the other n− 1 rows of the database). This implies that

the mechanism cannot be differentially private, provided

that the data universe is of size |U| = ω(n2) (which is

also tight — see Section II-B).

Several remarks are in order:

(1) The success probability of the attack is independent

of the size of the universe U , although the number of

queries needed to launch the attack depends logarith-

mically on |U|. For a small universe, this probabil-

ity of success can be achieved simply by guessing a

random member of the universe (even without posing

any queries), so the result is significant only when the

universe has size ω(n2) (and we contradict differential

privacy only in this case). If we think of a database as

containing the data of n different Americans, identified

by their social security numbers, then the universe is at

least the size of the US population, and the reconstruc-

tion attack will produce the social security number of a

member of the database, together with the rest of this

individual’s data. If, moreover, this is a database, say,

of HIV-positive individuals, then the attack immediately

identifies someone as being HIV-positive.

(2) Suppose each datum is very complex; for example,

it may be a patient’s name together with his completely

sequenced DNA. In this case the universe is huge, but

the attack is flexible in that it permits the attacker

to focus on, say, 100 “interesting” bits in the DNA

sequence. In this case a successful adversary produces

the name of the individual together with these 100 bits.

A. Model for Proving the Separation Result

The database is a collection of elements, each drawn

from a universe U , and queries map databases to re-

als. In this section, our databases are (unordered) sets

(not multisets), and queries operate on subsets of the

universe U of elements.

A query is a function q : 2U → R. For a data universe

U , an integer t ∈ N , and a query family Q = {q : 2U →
R}, a query release mechanism is a randomized function

M : 2U ×Qt → R
t, which takes a database x ∈ 2U and

a sequence of t queries q(1), . . . , q(t) ∈ Q, and outputs a

sequence M(x, q(1), . . . , q(t)) = (y(1), . . . , y(t)) where

y(j) is intended to be an estimate of q(j)(x). When we

want to make the coin tosses r of M explicit, we will

write M(x, q(1), . . . , q(t); r).
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Databases x, x′ ∈ 2U are adjacent if they satisfy

|xΔx′| ≤ 1.

Definition II.1. Random variables Y and Z are (ε, δ)-
indistinguishable if for every set S, we have

Pr[Y ∈ S] ≤ exp(ε) · Pr[Z ∈ S] + δ, and

Pr[Z ∈ S] ≤ exp(ε) · Pr[Y ∈ S] + δ.

Definition II.2. A query release mechanism M :
2U × Qt → R

t is (ε, δ) differentially private iff

for all adjacent databases x, x′ ∈ 2U and all query

sequences q(1), . . . , q(t) ∈ Q, the random vari-

ables M(x, q(1), . . . , q(t)) and M(x′, q(1), . . . , q(t)) are

(ε, δ)-indistinguishable (over the coin tosses of M ).

Typically, we think of ε as a small constant, and δ
as negligibly small (e.g. δ = 1/nω(1)). The above def-

inition only considers privacy for nonadaptive queries,

making our negative result stronger. For our positive re-

sult in Section III, we achieve privacy even for adaptive

queries.

Definition II.3. We say that a query release mechanism

M : 2U ×Qt → R is stateless iff for every j ∈ [t], the

answer to the jth query does not depend on the other

t− 1 queries given to M ; i.e.,

M(x, q(1), . . . , q(t); r)

= (M (1)(x, q(1); r), . . . ,M (t)(x, q(t); r))

for some mechanisms M (1), . . . ,M (t).

We now define a game played by the adversary where

a ‘win’ for the adversary is a privacy compromise.

We begin with an informal description: A random

database x is chosen and the adversary is given all but

one element ξ from the database; such an adversary

is sometimes referred to as “totally informed”. Based

on x \ ξ, the adversary then asks some t queries to

the mechanism, and tries to guess (or“reidentify”) the

unknown element ξ of the database. The adversary wins

if it guesses correctly.
In order to obtain tighter parameters in our negative

results about differential privacy, we will consider a gen-

eralization of the above game where the adversary in-

stead outputs a probability distribution p on the data uni-

verse, where p(w) represents the adversary’s confidence

that ξ = w. Thus, if the adversary guessed the value of ξ
according to p, the probability of reidentification would

be p(ξ). However, we will instead give the adversary a

payoff of
√
p(ξ). This can be related to reidentification

probability by the relation E[p(ξ)] ≥ E[
√

p(ξ)]2, but

will enable tighter lower bounds for differential privacy

than analyzing only E[p(ξ)].

Definition II.4. Let M : 2U × Qt → R
t be a query-

release mechanism and let n ∈ N be a database size.

For a (randomized and computationally unbounded)

adversary A, the totally informed reidentification game
is defined as follows:

1. Let x be a uniformly random subset of U of size n.

2. Let ξ be a uniformly random element of x.

3. Feed the set ξc
def
= x \ ξ to A, who then outputs a

query sequence q(1), . . . , q(t).

4. Run M(x, q(1), . . . , q(t)) to obtain output y =
(y(1), . . . , y(t)).

5. Feed y to A, who then outputs a probability distri-

bution p on U .

A’s payoff is defined to be
√
p(ξ). The expected value

of A’s payoff, E[
√

p(ξ)], is over all the randomness in

the above game (including the randomness of both M
and A).

Proposition II.5. If M : 2U × Qt → R
t is an

(ε, δ)-differentially private query release mechanism,
then for every (randomized and computationally un-
bounded) adversary A: A’s expected payoff in the
totally informed reidentification game is at most eε ·√

1/(|U| − (n− 1)) + δ.

Proof: By (ε, δ) differential privacy, A’s expected

payoff is at most eε · μ + δ, where μ is A’s expected

payoff in a modified game where we feed the mecha-

nism M only ξc rather than all of x. In this modified

game, ξ is equally likely to be any element of U \ ξc
even conditioned on A’s view. Thus, when A outputs

probability distribution p, its expected payoff is

Eξ←U\ξc
[√

p(ξ)
]
≤

√
Eξ←U\ξc [p(ξ)] ≤

√
1

|U| − (n− 1)
.

We will use the following measure of utility in our

negative result.

Definition II.6. We say that a query release mechanism

M : 2U × Qt → R
t has expected error γ if for every

database x ∈ 2U , sequence q(1), . . . , q(t) ∈ Q, and j ∈
[t], if we let (y(1), . . . , y(t))←M(x, q(1), . . . , q(t)), we

have

E[|y(j) − q(j)(x)|] ≤ γ.

The probability space is over the coin flips of the

adversary and the mechanism.

Counting Queries: In the literature, a (fractional)

counting query is specified by a predicate q : U →
{0, 1}. When evaluated on a database x ⊆ U , the

counting query q gives the fraction of elements of

x that satisfy the predicate. We abuse notation and

write q to denote both the predicate on U , and the

corresponding function on databases (which are subsets
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of U ). Specifically, for a predicate q : U → {0, 1} and

a database x ⊆ U of size n, we have:

q(x) =
1

|x|
∑
w∈x

q(w) =
1

n

∑
w∈x

q(w).

For technical convenience, in this section we formulate

counting queries as {±1}-valued predicates; That is,

q : U → {±1}, so that q(x) = 1
|x|

∑
z∈x q(z) =

1
n

∑
z∈x q(z) ∈ [−1, 1].

B. The Separation Result

Our main negative result is given by the following

attack on stateless mechanisms:

Theorem II.7. There is a universal constant c such that
the following holds. Let Q = {±1}|U| be the set of all
counting queries on data universe U , and let M : 2U ×
Qt → [−1, 1]t be a stateless query release mechanism
that has expected error at most 1− γ and supports t ≥
cn2 log |U| queries. Then there is an adversary, running
in time poly(n, t, |U|) that achieves payoff Ω(γ/n) in
the totally informed reidentification game. In particular,
if γ = Ω(1), |U| = ω(n2), ε = O(1), and δ = o(1/n),
them M cannot be (ε, δ)-differentially private.

This theorem is nearly tight in almost all parameters:

The requirement that t � n2 is necessary because o(n2)
queries can be privately answered using independent

noise. The condition that |U| � n2 is necessary, be-

cause for data universes of size o(n2), many counting

queries can be answered using “randomized response”.

Requiring δ � 1/n is necessary because random sub-

sampling achieves (0, Õ(1/n)) differential privacy and

can answer many queries accurately. And providing

the adversary some information about the database is

necessary because otherwise a simple “density estima-

tion” strategy can compute an accurate response with

high probability without even looking at the database

(thereby providing perfect privacy).

Proof of Theorem II.7: As in the totally informed

reidentification game, we consider a database x that is

a uniformly random set of n distinct elements drawn

from U , and we write x = (ξ, ξc), where ξc is the set

of elements in x known to the adversary. The adversary,

A(ξc), generates its counting queries q(1), . . . , q(t) ∈ Q
as follows.

1. Choose k←{0, 1, . . . , n− 1}.
2. Choose a uniformly random predicate q• (pronounced

“q-known), where q• : ξc → {±1}, such that q•(w) = 1
for exactly k elements w ∈ ξc, so q• has value 1 on

exactly k elements known by the adversary to be in

the database and value −1 on the remaining n− 1− k
elements known by the adversary to be in the database.

3. For j = 1, . . . , t:

Select q
(j)
◦ : (U \ ξc) → {±1} (pronounced “q-

unknown”) uniformly at random, so elements not
known by the adversary to be in the database are

included in the query with probability 1/2.

Let q(j) = (q•, q
(j)
◦ ) : U → {±1} be the predicate

that equals q• on ξc and equals q
(j)
◦ on U \ ξc.

4. Output the queries (q(1), . . . , q(t)).
The attack is not adaptive, strengthening the result.

Upon receiving the response (y(1), . . . , y(t)) =
(M (1)(x, q(1); r), . . . ,M (t)(x, q(t); r)), the adversary

computes, for each element w ∈ U \ ξc:

c(w) =
1

t

t∑
j=1

q
(j)
◦ (w) · y(j)

and outputs any probability distribution that assigns

each element w ∈ U \ ξc probability at least p(w) =
max{c(w)−γ/2n, 0}2. (If

∑
w p(w) > 1, the adversary

fails and the payoff is 0.)

We now provide some intuition for the analysis

of the expected payoff. Consider any fixed setting of

x = (ξ, ξc), k, r, and q•. Conditioned on these values

the expectation of c(w) is the correlation between the

function g : {±1}U\ξc → [−1, 1] defined as

g(q◦) = E
j
[M (j)(x, (q•, q◦); r)]

and the “dictator” function χw that maps each q◦ ∈
{±1}U\ξc to q◦(w). (Note that χw is the encoding of

w in the long code of [18].) That is, conditioned on

these values of x, k, and q•, we have

E[c(w)] = 〈g, χw〉
=

1

2|U|−n+1
(dot product of g and χw as vectors)

= Eq◦ [g(q◦)χw(q◦)].

Thus, by setting p(w) = max{c(w)− γ/2n, 0}2, our

adversary is trying to identify and assign positive proba-

bility to all w such that g has significant correlation with

the dictator function χw. This can be viewed as the task

of “list-decoding” g according to the long code.

If M were to always answer with perfect accuracy

(without adding noise for privacy), then its outputs

would be completely uncorrelated with all dictator

functions except that of ξ. However, all the adversary

has to work with is that, in some average sense, the

mechanism’s responses must be correlated with (most)

elements in the database, and independent of (most)

elements outside of the database.

We next analyze the expected payoff of the adversary,

assuming that
∑

w p(w) > 1 does not occur.
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Claim II.8.
E
[√

p(ξ)
]
≥ γ

2n
,

where the expectation is taken above all the randomness
in the above experiment (namely x, k, r, q•, and
q
(1)
◦ , . . . , q

(t)
◦ ).

Proof: We have

E
[√

p(ξ)
]
= E [max{c(ξ)− γ/2n, 0}] ≥ E[c(ξ)]−γ/2n.

Thus it suffices to show E[c(ξ)] ≥ γ/n. First, note that

E
x,k,r,q•,q

(1)
◦ ,...,q

(t)
◦
[c(ξ)]

= E
x,k,r,q•,q

(1)
◦ ,...,q

(t)
◦

⎡
⎣1

t

t∑
j=1

q
(j)
◦ (ξ) ·M (j)(x, q(j); r)

⎤
⎦

= E
j,x,k,r,q•,q◦

[
q◦(ξ) ·M (j)(x, (q•, q◦); r)

]
,

where the first equality is by definition and in the last

expression j←[t] and q◦ is a uniformly random function

from U \ ξc to {±1}.
With this simplified notation, we proceed as follows:

E[c(ξ)] = E
j,x,k,r,q•,q◦

[
q◦(ξ) ·M (j)(x, (q•, q◦); r)

]

=

(
1

2

)
E

j,x,k,r,q•

[
E

q◦:q◦(ξ)=1
[M (j)(x, (q•, q◦); r)]

− E
q◦:q◦(ξ)=−1

[M (j)(x, (q•, q◦); r)]
]

=

(
1

2

)
E

j,x,k,r

[
E

q:#{w∈x:q(w)=1}=k+1
[M (j)(x, q; r)]

− E
q:#{w∈x:q(w)=1}=k

[M (j)(x, q; r)]

]

=

(
1

2n

)
E

j,x,r

[
E

q:#{w∈x:q(w)=1}=n
[M (j)(x, q; r)]

− E
q:#{w∈x:q(w)=1}=0

[M (j)(x, q; r)]

]

≥
(

1

2n

)
· (1− (1− γ)− (−1 + (1− γ)) =

γ

n

The next claim shows that the event
∑

w p(w) > 1
occurs rarely, and thus has little effect on E[

√
p(ξ)].

Claim II.9. With probability at least 1−γ/4n, we have∑
w p(w) ≤ 1.

Proof: Consider any fixed setting of x = (ξ, ξc), k,

r, and q•. As in the proof of Claim II.8, the expectation

of c(w) conditioned on these values is exactly:

ĝ(w) = E
j,q◦

[q◦(w)M (j)(x, (q•, q◦); r)].

and recall that ĝ(w) is exactly the correlation between

g : {±1}U\ξc → [−1, 1] defined by

g(q◦) = E
j
[M (j)(x, (q•, q◦); r)]

and the dictator function that maps each q◦ ∈ {±1}U\ξ
to q◦(w). Dictators constitute the first level of the

Fourier basis over {±1}m). By Parseval’s Identity, we

have ∑
w

ĝ(w)2 ≤ E
q◦
[g(q◦)2] ≤ 1.

(Parseval’s Identity becomes an inequality here because

the dictators are only a subset of the Fourier basis.)

To show that
∑

w c(w)2 is also bounded with high

probability, we observe that each c(w) is the average of

the t random variables q
(j)
◦ (w) ·M (j)(x, (q•, q

(j)
◦ ); r) ∈

[−1, 1], which are independent once we fix x = (ξ, ξc),
k, r, and q•. Thus, by a Chernoff bound and union

bound, the probability that c(w) > ĝ(w) + γ/2n for

some w is at most |U| · exp(−Ω(t · (γ/2n)2)) ≤ γ/4n
by the choice of t ≥ c·(n/γ)2 ·log |U|. (We may assume

that |U| ≥ (n/γ)2, else the adversary can achieve payoff

γ/n by just outputting the uniform distribution on U .)

As long as c(w) ≤ ĝ(w) + γ/2n for all w, we have∑
w

p(w) =
∑
w

max{c(w)−γ/2n, 0}2 ≤
∑
w

ĝ(w)2 ≤ 1.

By Claims II.8 and II.9, the expected payoff of our

adversary is at least:

E[
√

p(ξ)]−Pr
[∑

w

p(w) ≥ 1

]
≥ γ/2n−γ/4n = Ω(γ/n).

Remarks and Extensions: The above proof only

requires a very weak consequence of expected error,

namely that on a uniformly random database x ⊆ U
of size n, a uniformly random counting query q that

is constant on the rows of x, and a uniformly random

j ∈ [t], the expectation of M (j)(x, q) is within ±(1−γ)
of q(x) (which is either 1 or −1).

In case the expected error is a relatively small α
(instead of being close to 1), the adversary can attack

with knowledge of substantially fewer rows. Suppose

the adversary knows some number n′−1 < n rows of x,

together with a bound α on the expected error. Writing

n′ = 
(α + γ)n�, and solving for γ, the adversary

can launch of modification of the attack, with improved

expected payoff Ω((γ/n)) = Ω(γ/((γ + α)n)).
When the data universe is large, the number t of

queries needed by our adversary grows proportionally to

log |U|, and the description size of a query and running

time of our adversary grow proportionally to |U|. These

blow-ups can be remedied by effectively reducing the
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universe size, either by considering databases where

the rows come from a smaller subset U ′ ⊆ U , or by

considering an adversary that only tries to learn the

first few “attributes” of a row (i.e. take U = U ′ × U ′′,
consider queries that only look at the U ′ component, and

construct an adversary that outputs the U ′ component of

a random row). Restricting the data universe in either

of these ways preserves differential privacy.

To have an adversary that learns all log |U| bits

of a row chosen uniformly from U , then the num-

ber of queries must grow proportionally to log |U|
by information-theoretic arguments. However, the de-

scription size of queries can be reduced from |U| to

O(n log |U|) by using counting queries whose underly-

ing predicates come from an (n+ 1)-wise independent

family Q of hash functions q : U → {±1}.
Using (n+1)-wise independent hash functions as in

the previous item, we can also reduce the running time

of the adversary to poly(n, log |U|), while still having

the adversary learn all log |U| bits of information about

a uniformly random row. Specifically, we use a family

Q of hash functions where each q ∈ Q is described a

bit string q̃ of length m = O(n log |U|), and where for

every w ∈ U , q(w) is an F2-linear function of q̃. That

is, q(w) = (−1)〈q̃,�w〉 for some bit-string 	w of length

m.

We exploit this linear structure in the adversary as

follows. The adversary selects q• : ξc → {±1} as in

the current attack. Restricting the query q(j) to agree

with q• on ξc amounts to imposing n − 1 F2-linear

constraints on the description of q(j). That is, we can

now describe each query q
(j)
◦ by a bitstring q̃

(j)
◦ of

length m − n + 1, and for every w /∈ ξc, we have

q
(j)
◦ (w) = (−1)〈q̃(j)◦ ,�′w〉, where 	′w is also of length

m − n + 1. Now we can efficiently find all w such

that g(q◦) has noticeable correlation with the dictator

function χw(q◦) = q◦(w) = (−1)〈q̃◦,�′w〉 using the

Goldreich–Levin algorithm [23].

III. PRIVACY FOR THE ANALYST

We now show that it is possible for a centralized

curator to give rigorous guarantees on the privacy of

the analysts while maintaining differential privacy for

the data subjects against exponentially many queries.

Our mechanism will be stateful (as is necessary by

Theorem II.7), and will also require assigning analysts

IDs (see below). The curator will ensure that the coordi-

nation of answers does not leak substantial information

about the queries. This is done by yet another level of

coordination.

A. Model and Definitions

Definition III.1 (stateful mechanisms with IDs). For

a data universe U , an integer t ∈ N , a query family

Q = {q : 2U → R}, and an ID space I, a stateful query
mechanism with analyst IDs is a randomized function

M : 2U ×Q×I ×S → R×S , which takes a database

x ∈ 2U , a query q ∈ Q, an analyst id ∈ I, and a state

s ∈ S and outputs an answer y ∈ R (intended to be

an approximation of q(x) and a new state s′. M also

comes associated with an initial state s0 ∈ S . If I = ∅,
we simply refer to M as a stateful query mechanism
(without analyst IDs).

We will require and achieve privacy even against

adversaries that ask their queries adaptively (in contrast

to Definition II.2 used in our negative result). Recall

Definition II.1 of (ε, δ)-indistinguishable.

Definition III.2 (differential privacy for stateful mech-

anisms). Let M : 2U × Q × I × S → R × S be

a stateful query mechanism with analyst IDs. We say

that M is (ε, δ) differentially private if the following

holds for every two adjacent databases x, x′ ∈ 2U and

every randomized adversary A that adaptively queries

M (i.e. submits a (query, id) pair (q(1), id(1)), receives a

response y(1), then computes its next query (q(2), id(2)),
and so on): the view of A (consisting of the coins of

A and all the responses y(i)) when interacting with

M(x, ·, ·, ·) and the view of A when interacting with

M(x′, ·, ·, ·) are (ε, δ)-indistinguishable.

We also require accuracy when the queries are posed

adaptively.

Definition III.3 (accuracy for stateful mechanisms). Let

M : 2U × Q × I × S → R × S be a stateful query

mechanism with analyst IDs. We say that M is (α, β)
accurate for t queries on databases of size n if for every

database x ∈ 2U of size n and every every randomized

adversary A that adaptively queries M with queries

q(1), . . . , q(t), with probability at least 1 − β, all the

responses y(j) differ from q(j)(x) by at most α.

Now we define privacy for the analyst. This defini-

tion will rely on the analyst IDs, and guarantees that

no analysts can learn much about the other analysts’

queries.

Definition III.4 (analyst privacy for stateful mecha-

nisms). Let M : 2U × Q × I × S → R × S be a

stateful query mechanism with analyst IDs. We say that

M provides (ε, δ) many-to-one analyst privacy if for

every database x ∈ 2U , every id ∈ I, and every two

randomized, adaptive “honest” query strategies H0 and

H1 that can issue queries with any IDs other than id,

and every randomized, adaptive adversary A that always

issues queries under id, the views of A in the following

experiment when H = H0 and H = H1 are (ε, δ)-
indistinguishable:
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A and H interact in an interleaved manner

with M(x, ·, ·, ·), where A determines when

H gets to make queries and how many queries

H can make (but does not see the queries

made or the results of those queries).

B. The Analyst-Private Mechanism

We show how to construct a mechanism that satisfies

the above notion of privacy for the analyst, differential

privacy for the data subjects, and provides accuracy for

a large number of queries. This is summarized in the

following theorem:

Theorem III.5. Let Q = {0, 1}U be the set of all count-
ing queries on data universe U , let β, δ, ε, ε′ ∈ (0, 1),
and let t ∈ N . There is a stateful mechanism with
analyst IDs that:
• Is (ε, δ) differentially private,
• Provides (ε′, β) many-to-one privacy for the ana-

lysts, and
• Is (α, β) accurate for up to t queries on databases

of size n, where α is

O

⎛
⎝
(
log3/8 |U|

)(
log1/8(1/δ)

)(
log1/4(1/β)

)(
log3/4(t/β)

)
(εn)1/4 · (ε′)1/2

⎞
⎠ .

Note that we can take 1/δ, 1/β, |U|, and t to all

be 2n
Ω(1)

, and ε, ε′ to be 1/nΩ(1) and still have the

error vanishing polynomially in n. Also note that the

many-to-one privacy for the analysts is guaranteed with

β rather than its own separate parameter δ′, since there

is a tight connection between the accuracy guarantee of

the inner one and the privacy provided for the analyst.

Our algorithm is based on a nested version of the Pri-

vate Multiplicative Weights (PMW) algorithm of Hardt

and Rothblum [15], which achieves the best parameters

of any known stateful differentially private algorithm

(using its analysis from [24]; a simpler proof appears

in [25]):

Theorem III.6 (Private Multiplicative Weights [15],

[24]). LetQ = {0, 1}U be the set of all counting queries
on data universe U , let β, δ, ε, ε′ > 0 be real numbers,
and let t ∈ N . There is a stateful mechanism that:
• Is (ε, δ) differentially private,
• Is (α, β) accurate on for up to t queries on

databases of size n, where α is

O

⎛
⎝

(
log1/4 |U|

)(
log1/4(1/δ)

)(
log1/2(t/β)

)
(εn)1/2

⎞
⎠ .

Our algorithm utilizes a single, long-lived, “inner” in-

stantiation of the PMW algorithm, denoted PMWinner,

which provides privacy for the data subjects over all the

queries posed by all the analysts. For this part we simply

rely on the standard differential privacy properties of the

algorithm and not on any specific characteristics of it

(i.e. any algorithm with good differential privacy would

do).

Then, for each analyst (as specified by their id), we

spawn an “outer” instantiation of the PMW algorithm,

denoted PMWid. These outer PMWid algorithms do

not access the database directly, but only through

PMWinner. To show that an analyst with a given id does

not learn much about the queries of the other analysts,

we combine the accuracy properties of PMWinner with

the privacy properties of PMWid. Specifically, regard-

less of what questions are asked by the other analysts,

PMWinner will still respond to PMWid with answers

that are within ±α of what the database itself would

have provided (except with probability at most β).

By generalizing the PMW privacy analysis, we show

that the output distribution of PMWid is approximately

the same as it would be if it accessed the database

directly (instead of through PMWinner). Indeed, we

show that this holds not just for accessing the database

through PMWinner but through any stateful oracle that

provides answers that are close to those obtained on

the true database. Consider the following definition of

oracle-aided mechanism and the corresponding privacy

requirements. The intuition is that the value given by the

oracle is taken “as truth.” The oracle may be stateful,

and does not have to give consistent answers (repeating

a query need not yield the same result).

Definition III.7 (oracle-aided mechanism). A stateful

mechanism M : Q×S → R×S is said to be an oracle-

aided stateful query mechanism if to answer queries q ∈
Q on a database x ∈ 2U , it never directly accesses the

database, but instead forwards q to a (possibly stateful)

“oracle” x̂ : Q × S ′ → R × S ′, where S ′ is the set

of states of the oracle, and uses the oracle’s answer

together with its (the mechanism’s) state to respond.

One example of a possible oracle x̂ is the database

x itself, which does not use any state and responds to

any query q with q(x).

Definition III.8 ((ε, δ) privacy for α-accurate oracles).
Let M : Q × S → R × S be an oracle-aided stateful

query mechanism. We say that M has (ε, δ) privacy
for α-accurate oracles if the following holds: for every

database x ∈ 2U , every stateful oracle x̂ : Q× S → R

that always responds to a query q ∈ Q with an

answer that differs from q(x) by at most α, and every

randomized adversary A that adaptively queries M :

the view of A when interacting with M x̂(·, ·) and the

view of A when interacting with Mx(·, ·) are (ε, δ)-
indistinguishable.

Note that this requirement is a generalization of the
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differential privacy requirement, since a neighboring

database can be viewed as an oracle that provides

answers that are close (α = 1/n) to those obtained on

the true database; that is, exact answers on a neighboring

database are very close to exact answers on the true

database (for counting queries, or more generally low-

sensitivity queries on x). Furthermore, this also applies

to group differential privacy where the goal is to hide

whether a group is inside or outside the database (for

small groups). The standard Laplace mechanism [2] us-

ing independent noise of magnitude O(α·t/ε) (added to

the oracle answer rather than the evaluation of the query

on the database) provides (ε, 0) privacy for α-accurate

oracles. (Noise of magnitude O(
√
t log(1/δ)/(εn)) suf-

fices for (ε, δ) differential privacy.)
However it is not true that any (sufficiently) good

differentially private mechanism provides privacy for

α-accurate oracles as in Definition III.8. To see this,

consider an α-accurate oracle x̂ that on query q ∈ Q
simply takes q(x), the true answer on x, and adds to it

at random +1/n or −1/n. Given oracle access to x̂ it

is very easy to distinguish it from one always yielding

q(x) simply by checking for consistency. Now take

any good differentially private mechanism that is oracle

aided, and modify it so that it remembers previous

queries to its oracle, and the oracle’s responses. If at

any point it detects that the same query receives two

different values from the oracle, it leaks this fact as fol-

lows: It continues with the usual operation of ensuring

differential privacy, but encodes in the least significant

bit of its outputs whether the oracle is the randomized x̂
or simply the one yielding q(x). The differential privacy

properties are not affected, but obviously the mechanism

does not hide the oracle.
Nevertheless, we observe that the Private Multiplica-

tive Weights algorithm can be used for this purpose and,

furthermore, that the analysis of the Private Multiplica-

tive Weights algorithms extends to this more general

notion:

Theorem III.9 (Private Multiplicative Weights for

α-accurate Oracles). Let Q = {0, 1}U be the set
of all counting queries on data universe U , and let
α0, β, δ, ε > 0 be real numbers, and let t ∈ N . There
is a stateful mechanism that:
• Ensures (ε, δ) privacy for α0-accurate oracles,
• Is (α, β) accurate for up to t queries on databases

of size n, where α is

O

((
log1/4 |U|

)(
log1/4(1/δ)

)(
log1/2(t/β)

)(α0

ε

)1/2
)
.

Note that the major loss is a square root deterioration

in accuracy, i.e. α is Õ(
√
α0).

Now, to obtain Theorem III.5, we set the parameters

in Theorems III.6 and III.9. We take PMWinner to be

an (ε, δ) differentially private and (α0, β/6) accurate

mechanism with

α0 = O

⎛
⎝
(
log1/4 |U|

)(
log1/4(1/δ)

)(
log1/2(t/β)

)
(εn)1/2

⎞
⎠ .

We take each PMWid to provide (ε′/2, β/6) privacy
for α0-accurate oracles, and to be (α, β/2t) accurate
for α equal to

O

((
log

1/4 |U|
)(

log
1/4

(2/β)
)(

log
1/2

(2t
2
/β)
)( α0

(ε′/2)

)1/2
)

=

O

⎛
⎝
(
log3/8 |U|

)(
log1/8(1/δ)

)(
log1/4(1/β)

)(
log3/4(t/β)

)
(εn)1/4 · (ε′)1/2

⎞
⎠ .

Accuracy: There is one PMWinner executed and

since there are at most t queries there are at most t
different executions of PMWid. By a union bound, the

probability that accuracy fails for any of the invocations

of PMW is at most β/6 + t · (β/2t) < β, so we have

(α, β) accuracy for the combined mechanism.

Privacy of the analysts: To show privacy for the

analyst, fix an id of the adversarial analyst. Whatever

queries the other “honest” analysts ask, PMWinner

still provides an α-accurate oracle to PMWid, except

with probability β/6. Since PMWid is chosen to have

(ε′/2, β/6) privacy for α-accurate oracles, the view of

the adversarial analyst is (ε′/2, β/3) indistinguishable

from its view if we replace PMWinner with the actual

database x. Thus every two strategies for the “honest”

analysts are (ε′, β′) indistinguishable to the adversary

for β′ = (1 + eε
′/2) · (β/3) ≤ β.

Differential Privacy of the data: There is a single

instance of PMWinner and the data is only accessed

through it. So what an adversary sees is a (randomized)

function of the output of PMWinner. Therefore the

differential privacy properties are maintained and we

get (ε, δ) differential privacy.

IV. OPEN PROBLEMS

This work opens a new direction for differentially

private data analysis: protecting the privacy of the

analyst. Many intriguing problems remain.

Collusion: Our Analyst-Private Mechanism from Sec-

tion III-B only provides many-to-one privacy for the

analysts (Definition III.4), meaning that the queries of

many analysts are kept private against one adversarial

analyst. The analyst privacy does not resist collusion by

many adversarial analysts (in contrast to the privacy for

the data subjects, which resists even full collusion). In

particular, a natural and interesting goal is to achieve

one-to-many analyst privacy, where the queries made

under any one ID are hidden from all other analysts

(even if they collude). An ultimate goal would be to
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entirely remove the use of IDs and achieve many-to-

many privacy, where any subset of queries is hidden

from an adversary controlling all of the remaining

queries.

Better Utility: The utility of our analyst-private mecha-

nism (Theorem III.5) does not quite match that of differ-

entially private algorithms that do not provide privacy

for the analyst (Theorem III.6). First, as the database

size n grows, the error only decays proportionally to

1/n1/4 instead of 1/n1/2. Second, the maximum num-

ber t of queries that can be answered while providing

nontrivial error is 2Ω̃(n1/3) instead of 2Ω̃(n). Can these

gaps be closed or are they an inherent price of providing

privacy for the data analyst in addition to the data

subjects?

Communication / Query Tradeoff: As noted in the

Introduction, our negative result can be interpreted as a

negative result about distributing the work of answering

queries among servers while maintaining differential

privacy: either the servers must share information about

what queries are asked to them, or they can only answer

a small number of queries. Is there a tradeoff between

amount of communication and number of queries that

can safely be answered with non-trivial accuracy?

Other types of queries: Another issue is for what other

types of queries (e.g. low sensitivity queries) do we have

mechanisms that preserve the privacy of the analysts. Is

there a general method that translates any differentially

private mechanism into one that is secure in this sense?
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