
Population Recovery and Partial Identification

Avi Wigderson∗
School of Mathematics

Institute for Advanced Study
Princeton, NJ

avi@math.ias.edu

Amir Yehudayoff†
Department of Mathematics

Technion-IIT
Haifa, Israel

amir.yehudayoff@gmail.com

Abstract—We study several problems in which an unknown
distribution over an unknown population of vectors needs to
be recovered from partial or noisy samples, each of which
nearly completely erases or obliterates the original vector.
For example, consider a distribution p over a population
V ⊆ {0, 1}n. A noisy sample v′ is obtained by choosing
v according to p and flipping each coordinate of v with
probability say 0.49 independently. The problem is to recover
V, p as efficiently as possible from noisy samples. Such problems
naturally arise in a variety of contexts in learning, clustering,
statistics, computational biology, data mining and database
privacy, where loss and error may be introduced by nature,
inaccurate measurements, or on purpose. We give fairly ef-
ficient algorithms to recover the data under fairly general
assumptions.

Underlying our algorithms is a new structure we call a
partial identification (PID) graph for an arbitrary finite set of
vectors over any alphabet. This graph captures the extent to
which certain subsets of coordinates in each vector distinguish
it from other vectors. PID graphs yield strategies for dimension
reductions and re-assembly of statistical information.

The quality of our algorithms (sequential and parallel
runtime, as well as numerical stability) critically depends on
three parameters of PID graphs: width, depth and cost. The
combinatorial heart of this work is showing that every set of
vectors posses a PID graph in which all three parameters are
small (we prove some limitations on their trade-offs as well).
We further give an efficient algorithm to find such near-optimal
PID graphs for any set of vectors.

Our efficient PID graphs imply general algorithms for these
recovery problems, even when loss or noise are just below the
information-theoretic limit! In the learning/clustering context
this gives a new algorithm for learning mixtures of binomial
distributions (with known marginals) whose running time
depends only quasi-polynomially on the number of clusters.
We discuss implications to privacy and coding as well.

Keywords-information recovery; learning theory; noisy data;

I. INTRODUCTION

Recovery of information from lossy or noisy data is

common to many scientific and commercial endeavors. In

this work we introduce a new structure we call a partial

∗ Research partially supported by NSF grants CCF-0832797 and DMS-
0835373.† Horev fellow – supported by the Taub Foundation. Research supported
by ISF and BSF.

identification (PID) graph that helps in solving such recovery

problems.

The use of IDs, features of individuals that uniquely
identify them in a given population, is ubiquitous. Finger-

prints and retinal scans, or simply names and addresses,

are useful for identifying people. In other populations,

various appropriate subsets of features are used1. In some

populations, however, some IDs may be too long, and thus

too expensive to maintain, e.g., when storage is limited. In

these cases, partial IDs can be used: instead of a long list

of features per individual, we can maintain a shorter list

that is more efficient. This efficiency has a cost, as it may

introduce ambiguity and “imposters.” PID graphs represent

the imposter-structure of a given choice of PIDs.

We provide fairly efficient algorithms for recovery and

clustering of information from lossy/noisy data. These algo-

rithms use PID graphs to identify useful local sub-systems

of a given system, and combine local pieces of information

to a global one. The complexity of our algorithms crucially

depends on the PID graphs they use. A substantial part of

our algorithms, therefore, is a procedure that builds efficient

PID graphs.

Roadmap: As the introduction is long, here is a

roadmap to it. In section I-A we give intuition and formally

define population recovery problems, samplers and our main

results. In section I-B we explain why a simpler “distribution

recovery” problem is sufficient to solve. Sections I-C and I-D

respectively explain how parameters of PID graphs control

our algorithms, and how to efficiently achieve good param-

eters. Section I-E extensively discusses our work in various

contexts which considered similar problems and methods.

A. Recovery problems

Let us start with two scenarios that motivate the kind of

problems we consider in this paper. We then formulate them

more precisely.

Recovery from lossy samples: Imagine that you are

a paleontologist, who wishes to determine the population

of dinosaurs that roamed the Earth before the hypothetical

1It will be clear that in the settings we consider, hashing and related
techniques are irrelevant, and one has to use actual features of individuals.

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.14

390

meteor made them extinct. Typical observations of dinosaurs

consist of finding a few teeth of one here, a tailbone of

another there, perhaps with some more luck a skull and

several vertebrae of a third, and rarely a near complete

skeleton of a fourth. Each observation belongs to one of

several species. Using these fragments, you are supposed to

figure out the population of dinosaurs, namely, a complete

description of (say) the bone skeleton of each species, and
the fraction that each species occupied in the entire dinosaur

population. Even assuming that our probability of finding

the remains of a particular species, e.g. Brontosaurus, is the

same as its fraction in the population, the problem is clear:

while complete features identify the species, fragments may

be common to several. Even with knowledge of the complete

description of each type (which we a priori do not have),

it is not clear how to determine the distribution from such

partial descriptions. A modern-day version of this problem

is analyzing the partial Netflix matrix, where species are

user types, features are movies, and each user ranked only

relatively few movies.
Recovery from noisy samples: Imagine you are a social

scientist who wants to discover behavioral traits of people

and their correlations. You devise a questionnaire where each

yes/no question corresponds to a trait. You then obtain a

random sample of subjects to fill the questionnaire. Many of

the traits, however, are private, so most people are unwilling

to answer such questions truthfully, fearing embarrassment

or social consequences if these are discovered2. To put

your subjects at ease you propose that instead of filling the

questionnaire truthfully, they fill it randomly: as follows: to

each question, they flip the true answer with probability 0.49,

independently of all others. This surveying method (typically

applied when there is one question of interest) is known as

“randomized response” and was initiated by Warner [26].

Is privacy achieved? Can one recover the original truthful

information about the original sequences of traits and their

distribution in the population? Observe that typical samples

look very different than the sequences generating them.

Indeed, can one synthesize sensitive databases for privacy

by publishing very noisy versions of their records?
These examples illustrate some of the many settings in

which lossy or noisy samples of concrete data is available,

and from which one would like to efficiently recover a

full description of the original data. Losses and noise may

be an artifact of malicious or random actions, and the

entity attempting recovery may be our friends or foes. We

formalize below the general setting and show that, surpris-

ingly, accurate recovery is possible, as long as samples bear

minimal correlation with some data item. This is achieved

even when both the dimension (number of “attributes”) and

the population size (number of “clusters”) are large!

2A possibly worse scenario is when looking for information concerning
medical conditions, where leakage of the truth may cause one to lose
medical insurance.

1) Definitions and results: Fix an alphabet Σ, integer

parameters n, k and an accuracy parameter α > 0. Assume,

as in the examples above, there is a population of vectors

V ⊆ Σn of size (at most) k, and a probability distribution

π on the population V . In the following, we shall not know

π or even V , but rather only get lossy or noisy samples to

them. Our goal will be to fully recover both V and π.

The population recovery problem (PRP) is to (approxi-

mately) reconstruct V and π, up to the accuracy parameter

α. Namely, given independent lossy or noisy samples, find a

set V ′ containing every element v ∈ V for which π(v) > α,

and a distribution π′ on V ′ such that for every v ∈ V ′ we

have |π(v)− π′(v)| < α.

We start by focusing on two processes for generating

samples (which we will later generalize): lossy sampling

and noisy sampling. This type of recovery problem was first

formulated in [5], for the model of lossy sampling.

Lossy samples: Let 0 < μ < 1. A μ-lossy sample v′ is

generated randomly as follows. First, an element v ∈ V is

picked at random with probability π(v). Then, independently

at random, every coordinate vi of v is replaced by the symbol

“?” (assumed not to be in Σ) with probability 1 − μ, and

is left untouched with probability μ. The result is v′. For

example, a 0-lossy sample is a vector of question marks,

and a 1-lossy sample gives full access to V .

Noisy samples: Let −1 < ν < 1, and for simplicity

assume Σ = {0, 1}. A ν-noisy sample v′ is generated as

follows. First, an element v ∈ V is picked at random

with probability π(v). Then, independently at random, every

bit vi of v is flipped with probability (1 − ν)/2, and left

untouched with probability (1 + ν)/2. The result is v′. For

example, a 0-noisy sample is a uniform random vector from

the discrete cube (regardless of V, π).

The nature of the recovery problem, namely, that we only

have access to samples, requires that we allow algorithms to

err with some small probability δ > 0. The main question

we study is “for which noise/loss parameters is there an

efficient reconstruction algorithm, hopefully that runs in time

polynomial in all other parameters |Σ|, n, k, 1/α, log(1/δ)?”

It is not hard to see that, in the noisy model, if ν = 0 it is

information theoretically impossible to solve the recovery

problem. If ν = o(1) then it is impossible to solve the

recovery problem in time polynomial in k, e.g., consider

the case of distinguishing all even-weight strings from all

odd-weight strings of length n = log k. Similarly, for μ = 0
the lossy recovery problem is information theoretically im-

possible, and for μ = o(1) it is impossible to solve it in time

polynomial in k.

In all other cases, namely when μ, ν > 0 are constants,

we design algorithms for these two problems, which run

in time polynomial in |Σ|, n, 1/α, log(1/δ) and klog k. The

exponent of the polynomial depends logarithmically on 1/μ,

1/ν, respectively. The question of reducing the dependence

on k to polynomial is the main open problem. We now

391

state the main results, starting with the lossy case and then

describing the noisy case.

Theorem 1. Let 0 < μ < 1. There is an algorithm that,
given an integer k, α > 0, 0 < δ < 1 and μ, runs in time
poly(|Σ|, n,1/α,log(1/δ),klog k) and solves the recovery
problem for an n-dimensional database of size k over Σ,
given μ-lossy samples, with error α and probability at least
1− δ.

Independence of erasures of different coordinates is not

necessary for the algorithm stated in the theorem to perform

well. Indeed, the algorithm works as long as every set of size

at most log k coordinates has a non-negligible probability

(say β) of having no question marks. The running time in

this case may be slowed down by a factor of poly(1/β).
For example, as long as the question marks are (log k)-wise

independent, we have 1/β = (1/μ)log k = poly(k).

In [5] a completely different algorithm was given for

the lossy case, which is fully polynomial in all parameters

including k, but works only as long as μ > 0.365. For

smaller values of μ, however, exponential running time could

not be ruled out. The motivation in [5] was DNF-learning in

the restriction access PAC learning model (defined there).

Via their reduction the above theorem implies a learning

algorithm for all μ > 0.

Corollary 2. For any fixed 0 < μ < 1, there is an algorithm
that, given k, n, α, δ, learns n-variate DNF formulas of size
k in the restriction access model with3 μ-lossy samples and
probability at least 1−δ in time poly(n,1/α,log(1/δ),klog k).

Our main result for recovery from the noisy samples is

similar to the lossy one.

Theorem 3. Let 0 < ν < 1. There is an algorithm that,
given an integer k, α > 0 and 0 < δ < 1 and4 ν, runs
in time poly(n,1/α,log(1/δ),klog k) and solves the recovery
problem for an n-dimensional database of size k over Σ =
{0, 1} with ν-noisy samples, error α and probability at least
1− δ.

The study of recovering information from noisy samples

appears already in the work of Kearns, Mansour, Ron, Ru-

binfel, Schapire and Sellie [19]. There it is called “learning

mixtures of hamming balls” and two algorithms are pre-

sented. One with a similar running time to our algorithm, but

that only guarantees small divergence, that is, the population

V is not reconstructed exactly but only up to hamming

distance roughly
√
n. A second that basically guarantees

small statistical distance, but runs in time exponentially in

k.

3In the notation of [5], μ-lossy samples are called “set distribution Indμ.”
4In the full version we shall explain how to estimate the noise parameter

when n > log k. This enables the algorithm to perform well even without
knowing ν.

With an appropriate definition of noise, one can generalize

this theorem too to every alphabet Σ. Moreover, it can

also be generalized to the case that a different (but known)

noise probability is applied in every coordinate. As in the

lossy case, we do not need the full independence of the

noise but only (log k)-wise independence. We do, however,

require knowledge of the noise parameter ν (or at least some

polynomially good estimate of it).

More general samplers: A third sampler one can con-

sider is a hybrid sampler combining the lossy and noisy

ones. In the hybrid model, a sample is generated by first

erasing all but a μ fraction of the coordinates, and then

flipping each one of the remaining coordinates with proba-

bility (1− ν)/2. A fourth sampler is a noisy sampler where

every coordinate i is flipped with probability (1 − νi)/2
that depends on i. Even in these more complex situations

we can achieve the same bounds on recovery (in general

knowledge of the noise model is required for our algorithm

to perform well). In fact, when proving the above theorems,

we consider even a more general type of samplers that we

define in Section III-A below.

Our algorithms use the following strategy. Due to the

partial, distorted and inconsistent information provided by

samples, we focus on small windows (subsets of coordi-

nates). The strategy consists of two phases. In the first phase,

we collect statistics for many judiciously chosen windows.

This phase may be viewed as a collection of dimension

reductions of the original problem. Since windows are

small (of logarithmic size), we can afford running time

that is exponential in the window size, and so we can get

pretty accurate information for each of the chosen windows.

However, as many vectors may agree on their projection

on a small window, we need to “decouple” the statistics

thus obtained. This is done in the second phase, where

special care is needed to control accumulation of errors.

The implementation of this strategy is guided by a PID

graph. To build the PID graph though, we need to know

the underlying population (which is actually part of what

we want to learn in PRP). So, we should first explain why

we can assume knowledge of the population (but not of the

underlying distribution).

B. Recovery when vectors are known

The distribution recovery problem (DRP) is a sub-problem

of PRP, in which the set V of vectors in the population is

actually given to the algorithm, and the only problem is

estimating the unknown probability distribution π on V .

An important reduction provided in [5] shows that PRP

can be efficiently reduced to DRP: if from V we can deduce

π, we can find V as well5. In other words, we may assume

5In follow-up work, Impagliazzo [12] shows that recovering only (a
super-set of) V , but not π, can be done in polynomial time from lossy
samples and quasi-polynomial time from noisy ones.

392

V is known even though it is not! This somewhat counter-

intuitive statement has a very simple proof and moreover

is quite general. It works for all uniform6 samplers of V ,

in particular, the ones we discussed above. We note that it

is very similar in spirit to the prefix constructions in other

learning settings, such as [10], [15]. For completeness (and

since it is not stated in this generality in [5]), we state it

here and provide the formal definition of a uniform sampler

and a proof sketch in the appendix.

For uniform samplers, solving PRP is as easy as solving

n DRPs, as the following theorem shows. In the reduction,

there is no need to consider probability of success, but

setting an error probability δ/n for the DRP solver yields

an error probability δ for the PRP solver by a union bound.

Theorem 4 ([5]). Assume f is a lossy/noisy/hybrid sampler.
There is an algorithm that given f and parameters Σ,k,n,α,
makes n oracle calls to a DRP algorithm using f and
parameters Σ,k,i,α/2 for every i ∈ [n], and if all n calls
produce a correct answer, the algorithm solves PRP.

We are, therefore, left with solving DRP from lossy and

noisy samples. That is, we can assume we know V and only

need to estimate π. The approach taken here, which is very

different than that of [5], is to first efficiently construct a

“succinct” representation for vectors in V . To motivate it,

let us first observe that DRP is much easier if the number n
of “features” of an individual was small, say n ≤ O(log k)
where |V | = k. This allows us to use algorithms that run in

exponential time in n. The following proposition states that

exponential running time suffices for solving the problem

(and, in fact, for a more general family of samplers; see

Section III-A for details).

Proposition 5. DRP can be solved in both sample models
in time exponential in n.

How can we make use of the proposition when n is large

(as it typically is)? For this we introduce a generic way to

reduce the dimension: use PID graphs.

C. Dimension reductions and PID graphs

At this point V is available to us and we can preprocess

it. Our approach is to pick, for every individual v ∈ V , a

small representative set of features Sv ⊆ [n], of size |Sv| ≤
log k. Then, solve DRP on the window Sv , ignoring all other

coordinates, in time poly(k) using the lemma above. For a

vector v and a set S, denote by v[S] the restriction of v
to the entries in S. If v[Sv], the pattern of v in coordinates

Sv , uniquely identifies v in V (namely it is an ID), then we

directly get an estimate of π(v). Unfortunately, such short

IDs do not exist for all vectors in a general populations V .

For some vectors v the pattern on Sv is shared by other

6Due to space limitations, we do not formally define uniform samplers.
The definition appears in the full version.

imposters u ∈ V . Thus the set Sv is only a partial ID (PID)

for v, and the statistics obtained from the DRP solver on Sv

counts the total mass of π of all imposters u of v. Recovering

π from this information is clearly a linear system. This linear

system is not always invertible, so we first need to ensure

that it is. But, even when it is invertible, recall that we only

have estimates, and inverting the system can exponentially

blow up the accuracy parameter.

To study the cost of this computation, it is natural to

capture “imposter relations” in a graph. A PID graph
G = G(V,S) is defined for any set of vectors V ⊆ Σn

and any set of PIDs S = {Sv ⊆ [n] : v ∈ V }. The vertices

of G are the elements of V . Directed edges go from every

vertex v to every imposter u of v, namely, u �= v such that

u[Sv] = v[Sv].
The set of imposters I(v) of v contains v itself and all

vertices u such that (v, u) is an edge in G. Let p(v) =∑
u∈I(v) π(u). When G is acyclic, as we will ensure, the

linear system expressing p in terms of π is triangular. So,

knowing p, we can compute π by backwards substitution.

But, as we shall only have an approximation p′ of p, we

need to ensure that the initial error of p′ is small enough so

that accumulated error in π′ will be small as well.

The accumulation of errors in this computation is affected

by depth(G), the length of the longest directed path in

it. This motivates using a graph G of smallest possible

depth. The depth also dominates the running time of any

parallel algorithm for this task. This is a secondary reason

for minimizing the depth.

Depth is just a crude parameter controlling error accumu-

lation. A more precise one is cost(G), defined recursively for

acyclic G according to its topological order by cost(v) = 1
on every sink v in G, and

cost(v) = 1 +
∑

u∈I(v):u�=v

cost(u).

Note that cost(v) is simply the number of directed paths (of

all lengths) emanating at v. Define

cost(G) = max{cost(v) : v ∈ V }.
Trivially,

cost(G) ≤ |V |depth(G).

As we already explained, the runtime of solving each

dimension-reduced DRP problem on Sv is exponential in

|Sv|. This aspect is capture by the width of G,

width(G) = max{|Sv| : v ∈ V }.
We conclude by showing how the runtime of the full DRP

algorithm depends on these three parameters.

Theorem 6. Let G be a PID graph for a population V of
size |V | = k.

• Given G, the distribution recovery problem with ac-
curacy α > 0 for V can be solved, with probability

393

at least 1 − δ, using μ-lossy samples in time T =
poly(nk|Σ| log(1/δ)/α) ·cost(G) ·(1/μ)width(G). More-
over, it can be solved in parallel using T processors in
time depth(G) · poly log T .

• Given G, the distribution recovery problem with ac-
curacy α > 0 for V can be solved, with probability
at least 1 − δ, using ν-noisy samples in time T =
poly(nk log(1/δ)/α)·cost(G)·(1/ν)width(G). Moreover,
it can be solved in parallel using T processors in time
depth(G) · poly log T .

D. Efficient PID graphs
We are now faced with constructing, for any population

V , a PID graph with the smallest possible width and depth

(and cost). Minimizing only one of these parameters is easy;

considering the following examples will help getting some

intuition.
To minimize depth, pick Sv = [n] for all v. Since these

PIDs are actually IDs, there are no imposters and the depth

is zero. The width, however, is n, which would lead to an

exponential time algorithm. Note that if we insist on IDs,

the width may have to be n, e.g. when V consists of all unit

vectors ei as well as the all zeros vector 0̄. While each ei
has an ID of size one, the only ID for the vector 0̄ is [n].

On the other extreme, let us see how we can easily make

the width at most logarithmic. In this case, however, the

depth is possibly k, which again leads to an exponential

running time (due to error-accumulation). First observe7 that

in any V , there must be at least one member v with an ID

Sv of size at most log |V |. We can now remove v from the

population, and consider the set Ṽ = V \ {v}. We can now

find a vector ṽ which has a short ID in Ṽ . Even though Sṽ

is an ID of ṽ in Ṽ , the vector v may still be an imposter of

ṽ in V . Continuing in this fashion results in a set of PIDs,

each of which has size at most log k, but may yield a graph

of depth k. Indeed, if our set of vectors V is simply all n+1
vectors of the form 1i0n−i, then all PIDs thus obtained have

size at most 1, but their graph is a path of length n+1. This

graph happens to have small cost, but similar examples in

which the cost is exponential can be given as well.
We prove that width, depth (and thus cost) can simulta-

neously be made small. Moreover, we can find such PIDs

efficiently.

Theorem 7. There is an algorithm that, given V of size k,
runs in time poly(k), and finds a PID Sv for every v in V
so that the corresponding PID is so that width(G) ≤ log k
and depth(G) ≤ log k. Specifically, cost(G) ≤ klog k.

Theorems 1 and 3 follow immediately from the above

theorems. Observe that finding the smallest possible ID for a

7Indeed, to find such v, Sv take the left-most (non-constant) coordinate
in [n], and keep only vectors in V that have the least popular value in this
coordinate. Now do it again, and again, until you are left with only one
vector v. This process chose at most log |V | coordinates, which serve as
an ID for v.

given v in V is exactly the hyper-graph vertex-cover problem

which is NP-hard to compute.

It would be preferable to obtain short PIDs whose graph

has a polynomial upper bound on the cost. Such a bound

would automatically yield a polynomial running time for our

algorithms. Unfortunately, such a bound can not be obtained.

Proposition 8. For every k there is a databases V of size
k over Σ = {0, 1} so that every PID graph for V of
width at most O(log k) has super-polynomial cost, at least
kΩ(log log k).

This example shows that in order to solve DRP in polyno-

mial time new ideas are required. We note, however, that for

most databases V , the cost of a PID graph is much smaller.

So, for an “average input” our algorithm runs faster.

E. Discussion and related work

Our work addresses situations in which a database of

vectors in high dimension undergoes heavy obliteration and

needs to be recovered. We consider situations where noise

or loss are close to the information-theoretic limit; slightly

increasing their levels completely destroys all information

about the original data. We, nevertheless, provide (reason-

ably) efficient algorithms that completely recover all the data

with arbitrary high probability. Improving the efficiency (e.g.

to be polynomial in k) and relaxing the assumptions (e.g.

the knowledge of noise level) are the obvious next steps to

make these results more useful in practice.

In this section we discuss our results and our methods

in comparison to similar ones in the literature. There are

numerous works dealing with a wide variety of recovery

from lossy and noisy information, and we can’t hope to

survey them all. These arise in various fields, and sometimes

with different motivations, assumptions and terminology,

and we try to relate them to ours. The partitions to topics

below are somewhat arbitrary and certainly overlapping.

Learning: The population recovery problem from lossy

samples was introduced in [5]. It arose naturally from the

analysis of PAC-learning algorithms in a general non-black-

box learning framework they introduced, called restric-
tion access. Here we introduced noisy (and more general)

sample-models. The algorithms we describe suggest that the

restriction access model can be generalized to allow noise

as well as loss. We note that our recovery algorithms are

very different than the ones in [5].

Other works in which a set of vectors (in this case,

representing high Fourier coefficients of a function given by

an oracle) is discovered from samples include the famous

algorithms for learning decision trees and DNFs [10], [15],

[13]. These works differ in several aspects; in particular,

membership queries are allowed, as opposed to only samples

from the distribution.

Clustering: One natural way to view the noisy model

is as follows. The unknown vectors v in our database are k

394

cluster centers, and the noise generates a mixture of binomial
distributions around these centers, with unknown mixture

coefficients determined by π. This problem was considered

when the binomial noise is unknown, and [27], [4], [9] give

algorithms to learn such mixtures. A different closely related

problem is the well-studied learning mixtures of Gaussians

problem (see [18] and references therein). The most crucial

difference between these works and ours is that we assume

to know the binomial distributions around the cluster, and

previous works do not. This is, of course, less general,

but allows us to achieve a better dependence on k, the

number of centers. For example, previous algorithms are

polynomial only for constant k, but ours is polynomial even

for k polynomial in 2
√
logn. Another difference is that in

the Gaussian noise model the distribution is continuous and

the vectors naturally reside in high dimensional Euclidean

space, whereas the binomial noise is discrete and vectors

reside in high dimensional combinatorial cube. The Gaussian

distribution is spherically symmetric and Euclidean space

allows projections in all directions, whereas in the Boolean

case symmetry is restricted and allows only projection on

coordinates.

Codes: Yet another, quite different view of our result

is as a surprising robustness of repetition codes. Imagine

the following way to encode a multi-set of k binary vec-

tors of length n: simply make many (say m) copies of

each. We show that this simple repetition code tolerates

the following vicious kind of attack. First, the km vectors

are arbitrarily permuted. Next, in each vector, a random

99% of the coordinates are erased (replaced by question

marks). Finally, the surviving bits are each flipped with

probability 49%. It is not clear that this leaves enough

information to recover the original data. We show that for

rate m = poly(n, klog k), recovery is not only information

theoretically possible but can be performed in polynomial

time. Of course, determining the minimal rate for which this

is possible is an intriguing question (relevant to the next item

as well).

Privacy: Resolving the conflict between individual

privacy in large databases and their usability for statistical,

medical and social research is an important research area.

Again, we can do no justice to the volumes of work on the

subject, and we resort to generalities. One general principle

that is used is to obliterate individual records and perturb

the data by applying to it random noise of some form, while

allowing access to some statistics or aggregate information

of reasonable quality. In most settings under consideration, a

family of queries to the database is allowed, and then noise

can be applied to the data itself, or to the result of the query,

or to both (see examples in [20], [21], [3], [25], [2], [7], [8],

[6] and their many references). An important parts of these

works include defining notions of individual privacy, finding

mechanisms which ensure privacy under general families

of queries and/or proving that no such mechanisms exist

for other families of queries. Most impossibility results are

about noise applied to query answers, as e.g. in [7] who

show how (almost all) the database can be recovered if the

noise is not sufficiently high to be practically useless. Our

work also shows that under some (quite general) conditions

information can be recovered.

Dimension reduction: High dimension of data is often

considered a curse for efficient algorithms. Often the best

known (or even best possible) running time is exponential

in the dimension. One common remedy used in numerous

algorithms for such data is dimension reduction. The most

famous one is the Johnson-Lindenstrauss reduction [14],

showing that a random linear projection of k points in

Euclidean space to a subspace of dimension O(log k) nearly

preserves all their pairwise Euclidean distances. Similar

reductions in many settings and problems allow much faster

processing of the data in the lower-dimensional space,

and then “lifting” the solution to the original space, often

losing something in its quality. Typically, reductions are

random, and are done once (though there are exceptions

to both: sometimes reductions move to a subspace de-

termined by some top singular eigenvectors, and e.g. in

the aforementioned Gaussian mixtures learning, many 1-

dimensional projections are used). Also in our algorithms

we use many different dimension reductions, projecting the

data onto very different small subsets of the coordinates. But

for the problems we deal with random projections are useless

in general, and judicious choice is needed to guarantee all

properties of our PID graphs.

Identification: Unique identifiers, IDs for short, are

prevalent for people, animals, cars, computers and even

clothing and food items today. Often these IDs are arti-

ficial additions to the individuals, like driver licenses and

barcodes. But sometimes such additions are impossible or

inconvenient. Another possibility is to let IDs consist of a

genuine subset of the features of the individual. One example

is fingerprints and retinal scans used for people. A second

one is data records in databases, which typically have their

IDs being a single key feature of a record. When space is

not an issue, or when the data is structured in advance to

have short IDs, the use of unique IDs is easy and fully

justified. But in situations where the set of individuals is

unstructured, short IDs for every individual, distinguishing

it from all others may not always be possible. In this

paper we introduce the idea of using partial IDs, or PIDs,

which are subsets of features per individual that may not

distinguish it completely from all others, but in which some

control is available about its set of imposters. In this work

we had specific requirements (arising from analyzing our

algorithms) from our set of PIDs, and we could satisfy

them all with very short PIDs (even when no short IDs

exist). In different settings one may need different properties,

and we just put forth the possibility that PIDs may be of

use elsewhere. A particular setting of large collections of

395

unstructured (and noisy/lossy) set of sequences one may

consider are those arising in computational biology, e.g.

from some sequencing or phylogeny of large collections of

large molecules like DNA and proteins. Is there any use

of PIDs for the algorithmic problems such data gives rise

to? A related work is [16] where certain small-dimensional

witnesses are used to study phylogenetic mixtures.

Reconstruction: Reconstruction problems various set-

tings abound, and we just mention a few. The famous graph

reconstruction conjecture of Kelly and Ulam (see e.g. [24]),

now open for half a century, states that an unlabeled n-vertex

graph is always uniquely defined by its (unordered multi-set

of) n induced subgraphs obtained by removing each of the

vertices. A far less famous but very intriguing is Mossell’s

subsequence problem [22] arising from computational biol-

ogy [11], asking if an n-bit sequence is uniquely identified

(with, say, a noticeable gap of 1/n) by the probability

measure on it subsequences, obtained by independently

removing each symbol with probability 1/2 (and removing

the gaps!). Both problems are information theoretic about

reconstruction of data from lossy models different than the

ones considered here, which seem difficult even if we allow

inefficient algorithms! A different reconstruction problem,

in which efficiency is important, is Blum’s junta learning

problem, which can be cast as a recovery from a noisy model

different than ours.

F. Organization

The technical part of paper essentially has two parts.

The first part, Section II, contains the full discussion of

PID graphs: their construction with good parameters, and

a tradeoff showing near optimality of the parameters we

achieve. The second part, Section III, contains our recovery

algorithms and their analysis.

Due to space limitations many proofs are not included in

this version of the paper. The full version can be found on

the authors’ homepages.

II. PID GRAPHS

In this section we study PID graphs. We first describe

our main result, an efficient algorithm for constructing

PID graphs of logarithmic width and depth for any set

of vectors. As noted, these bounds only imply a quasi-

polynomial upper bound on the cost. We next describe a

set of vectors for which any logarithmic width PID graph

has super-polynomial cost.

Our construction of an efficient PID graph is iterative:

Start with a PID graph of logarithmic width in a similar fash-

ion to as described in Section I-D. Then, iteratively improve

it. Each iteration consists of some local improvement based

on the procedure “extend” below. Finally, when no more

extensions are possible, the overall structure is (perhaps

surprisingly) as desired.

We start with setting some useful notation. Fix a set V ⊆
Σn of size |V | = k. We construct PIDs Sv for the vectors

v ∈ V by an iterative procedure, and so we redefine the set

of imposters I(v, S) with respect to any subset S ⊆ [n] to

explicitly depend on S. As before it is the set of all u ∈ V
(including v itself) which have the same pattern on S as v
does, namely

I(v, S) = {u ∈ V : u[S] = v[S]}.
By convention, v[∅] = u[∅] for all v, u.

A. Extension of a PID

A key procedure in the algorithm is a “greedy extension”

of a PID: For v ∈ V and S ⊆ [n], we seek to successively

add coordinates to S which shrink the number of imposters

by a factor of 2, as long as we can. Formally, this proce-

dure Extend(v, S) produces a superset of S and is defined

recursively as follows (in extend V is a fixed set of vector

that the procedures knows).

Extend algorithm
Input:A vector v ∈ V and a set S ⊆ [n].

Recursion base:
Let J be the set of i in [n] \ S so that

|I(v, S ∪ {i})| ≤ |I(v, S)|/2.
If J = ∅, output

Extend(v, S) = S.

Recursive step:
Otherwise, let8 i = min J , and compute

Extend(v, S) = Extend(v, S ∪ {i}).
Call S maximal for v if Extend(v, S) = S. A simple but

crucial claim summarizes the properties of this procedure.

Claim 9 (Properties of extension). For every v ∈ V and
S ⊆ [n], if T = Extend(v, S) then

• S ⊆ T ,
• |I(v, T)| ≤ |I(v, S)| · 2|S|−|T |,
• T is maximal for v, and
• If u �= v and u ∈ I(v, T), then T is not maximal for

u.

Let us give some intuition for the algorithm constructing

the PID graph before formally describing it. Our algorithm

will perform many such Extend sub-routines. We initialize

it by setting Sv = Extend[v, ∅] for all v. Then we repeatedly

and judiciously choose a vector u and a subset S (not nec-

essarily its PID), and assign the new Su to be Extend(u, S).
We insist that whenever we activate Extend(v, S), we have

8Any choice of i in J will do. Minimum is chosen for concreteness.

396

|I(v, S)| ≤ k2−|S|. This guarantees that each Sv during the

running of the algorithm, and especially the final ones, has

size at most log k and so the graph produced has small width.

To take care of the depth we ensure that eventually, for

every v, every imposter u �= v has a PID Su that is strictly

larger than Sv . Thus along every directed path PID-size

increases, and as it has maximum value log k, no path can

be longer than log k. This condition also ensure that no

cycles exist in the graph. The main question is how to ensure

this “monotonicity” property (which certainly does not hold

initially). The answer is simple: fix it whenever it is violated.

Specifically, as long as some imposter u �= v in I(v, Sv)
with |Su| ≤ |Sv| exists, replace Su with Extend(u, Sv). The

properties of extension in the claim above guarantee a new

Su which is longer than the current Sv (and also longer than

the previous Su).

This fixings continue as long as necessary, so all we need

to argue is termination and efficiency. The overall PID-size

strictly increases with every such step. Since their total size

cannot exceed k log k by the width bound, we get a k log k
upper bound on the number of invocations of Extend. The

bound on the running time of the algorithm easily follows9.

We now formally define the algorithm and analyze it.

PID construction algorithm
Input:

A set V ⊆ Σn.
Initialize:

For every v ∈ V set Sv = Extend(v, ∅).
Iterate:

While there exists v and u �= v with u ∈ I(v, Sv)
and |Su| ≤ |Sv| set

Su = Extend(u, Sv).

Output:
The set of final PIDs Sv and their graph G.

Theorem 10. The algorithm above terminates in at most
k log k iterations, and produces a PID graph G with
width(G) ≤ log k and depth(G) ≤ log k (and so also
cost(G) ≤ klog k).

The theorem follows from the following claim, that sum-

marizes the invariants maintained by the algorithm, and

conclusions from them. The invariants follow from the

properties of Extend in Claim 9 above, and can be easily

proved by induction on the iterations of the algorithm.

Claim 11 (Properties of the PID algorithm).
• If u �= v in V were chosen in some iteration, then
|Extend(u, Sv)| > |Sv| ≥ |Su|.

• The total length of PIDs,
∑

v∈V |Sv|, strictly increases
at every iteration.

9An obvious implementation gives a running time of (n+k)2poly log k.
It would be interesting to find a near-linear-time implementation.

• For every v ∈ V and every Sv that is obtained while
the algorithm runs, 1 ≤ |I(v, Sv)| ≤ 2−|Sv| · |V |.
Specifically, the size of Sv never exceeds log k.

• The total length of PIDs never exceeds k log k.
• The algorithm halts after at most k log k iterations.
• Let G be the PID graph the algorithm computed. Then,

along every path the size of the corresponding PIDs
strictly increases.

III. RECOVERY ALGORITHMS

In this section we describe two distribution recovery

algorithms, for lossy and for noisy samples (and also remark

on recovery from the hybrid model combining loss and

noise). That is, we prove Theorem 6. In both cases, there

is some known database V and we wish to estimate a

probability distribution π on it, using random imperfect

samples. We assume that the algorithms get a PID graph

G of V , and specifically a PID Sv for all v in V .

The two algorithms for the two cases share a two-phase

structure: an estimation phase and an aggregation phase. In

the estimation phase, the PID graph is used to extract a list of

quantities that are useful to estimate, and these estimations

are obtained. In the aggregation phase, the estimations

obtained are numerically combined into an estimation of π.

We now discuss the two phases in more detail. Both use

the PID graph G, and specifically will estimate π by first

estimating an auxillary vector p, which for every v in V is

defined by

p(v) =
∑

u∈I(v)

π(u),

where I(v) is the set of imposters of u in G. We shall see

how all parameters of the PID graph, width, depth and cost

affect the performance of these two phases.

In the estimation phase, the algorithm obtains an (L∞)

estimate p′ of p. As we shall see, these estimates amount to

solving k distribution recovery problems in small dimension

(at most width(G)), by projecting the data to the coordinates

of each of the PIDs Sv . As width(G) ≤ log k, these

recovery algorithms can afford to use time exponential in the

dimension! Computing p′ from lossy samples in this regime

is simple, and uses only the well-known Hoeffding bound.

Computing p′ from noisy samples, even in this regime, is

more elaborate (and, in fact, a priori may be impossible). In

both cases, a simple parallel implementation of the algorithm

is possible. In both cases, the quality of the approximation

p′ of p needed (which determines running time and number

of samples) follows from the discussion of the aggregation

phase below.

In the aggregation phase, the estimate p′ of p, is used to

compute an estimate π′ of π. Clearly, the vector p is obtained

from π by a linear transformation: there exists a k × k real

matrix M = M(G) so that

p = Mπ.

397

Since G is acyclic, the matrix M is triangular with 1’s on

the diagonal: π can be computed from p by back substitution

using induction on the structure of G,

π(v) = p(v)−
∑

u∈I(v):u�=v

π(u). (1)

This process is easily parallelized, and can be seen to take

exactly depth(G) rounds. The main issue is, of course, that

we do not have p available but rather an approximation p′ of

it. A priori such a matrix M may have exponentially small

condition number (in k), and thus may require exponentially

good approximation p′ of p, which will, in turn, cause the

first phase to require exponentially many samples. We show,

however, that the error aggregation depends only on cost(G).
Lemma 12 below states that using p′ instead of p in (1) above

yields an estimate π′ satisfying

‖π − π′‖∞ ≤ cost(G) ‖p− p′‖∞ . (2)

Specifically, we only need to estimate p up to an additive

factor α/cost(G) in order to get an α approximation of π.

When G has cost klog k, as we achieve, such estimates can

be obtained in quasi-polynomial running time (instead of

exponential).

Summarizing, the high-level description is:

Recovery algorithm
Input:

A database V ⊆ Σn and a PID graph G for V .
Estimation:

Obtain a (α/cost(G))-estimate p′ of p.
Aggregation:

Compute π′ = M−1p′, using (1) according to the
topological order on G.

Output:
The estimate π′ of a distribution π on V .

We note that cost(G) can be easily computed, and in

many cases it can be much smaller than the worst-case super-

polynomial one.

We now formally discuss the two phases. In the estimation

phase (which is the only phase that depends on the under-

lying sampler), we consider each sampler model separately.

The aggregation phase is the same for both.

A. The estimation phase

We now show how both algorithms compute an estimate

p′ of p: for every v in V , it will hold that

Pr[|p(v)− p′(v)| ≥ ε] ≤ δ,

with

ε = α/cost(G)

(a simple union bound implies that this estimate jointly holds

for all v, with high probability).

In Section I-B of the introduction we intuitively explained

how each of the lossy and noisy cases are handled when n is

small. In this section we unify the two, and actually define

and analyze a much more general sampler that extends both.

This generality also helps to understand the essence of this

phase of the algorithm.

A general sampler: We start by describing a general

sampling procedure over Σn
2 , given a distribution π on Σn

1 .

As we shall explain, the lossy and noisy cases are specific

instances of it. The sampler is determined by n stochastic

transition matrices T1, . . . , Tn, each in R
Σ1×Σ2 . These n

matrices and π define a distribution on samples v′ in Σn
2 .

First, choose v according to π. Then, for each i in [n], if

vi = σ1 in Σ1, then v′i is random: it is σ2 in Σ2 with

probability (Ti)σ1,σ2
.

Let us consider the noisy case for example. In this case,

Σ1 = Σ2 = {0, 1}, and all transition matrices T1, . . . , Tn

are equal to

Tnoise =

[
T0,0 T0,1

T1,0 T1,1

]
=

[
(1 + ν)/2 (1− ν)/2
(1− ν)/2 (1 + ν)/2

]
.

(3)

A simple generalization yields, e.g., a noise model where

each coordinate i in [n] is perturbed with a different prob-

ability (1− νi)/2. As we shall see, our algorithm works in

this case as well.

The estimation algorithm and its analysis: We now

move to describe our algorithm for estimating p using a gen-

eral sampler defined by T1, . . . , Tn. Due to space limitations,

we shall not provide full proofs. Start by obtaining a large

set V ′ of random samples V ′ = {v′1, . . . , v′t}. The exact

value of t will be determined later on. For each v ∈ V , use

the PID Sv to perform dimension reduction on this sample

to estimate p(v). These computations can all be done in

parallel. Fix v in V , and denote S = Sv . We describe how

to estimate p(v).
The transition matrix of vectors on the coordinates S is

the tensor product

T = T (S) = ⊗i∈STi.

That is, for v1 in ΣS
1 and v2 in ΣS

2 , the number Tv1,v2 is the

probability of seeing v2 given that v1 was chosen (using π).

For every v2 in ΣS
2 , let q(v2) be the probability that v2 is

the output of the sampler (when restricted to entries in S).

As long as T is invertible, there is a unique r so that

q = Tr.

What is r? The number r(v1), for every v1 in ΣS
1 , is the

probability that a vector v that is chosen according to π is

so that v[S] = v1. Specifically,

p(v) = r(v[S]).

In other words, we just wish to estimate one entry in r. This

can easily be done, by inverting T . And, as long as T does

398

not have too small singular values, the number of samples

t we need is not too large.

Comment: The same idea works also when the sam-

pling procedure is only width(G)-wise independent, since

all calculations are based on local data (concerning sets of

entries of size at most width(G)).

B. The aggregation phase: error bounds

The only part that is missing is a bound on the increase

in error. Let M be the matrix defined by the PID graph G
for V as above. That is, p = Mπ means

p(v) =
∑

u∈I(v)

π(u).

We prove the following estimate on the increase of error

M−1 can cause.

Lemma 12. For any vector w,∥∥M−1w
∥∥
∞ ≤ cost(G) ‖w‖∞ .

The lemma clearly implies (2) and follows by induction.

ACKNOWLEDGEMENTS

We thank Zeev Dvir for helpful discussions. We thank

Sanjeev Arora, Avrim Blum, Russell Impagliazzo, Dick

Karp, Yishay Mansour and Elchanan Mossel for helpful

comments on an earlier version of this work.

REFERENCES

[1] D. Achlioptas and F. McSherry. On spectral learning of
mixtures of distributions. COLT, pages 458–469, 2005.

[2] R. Agrawal, and R. Srikant. Privacy-preserving data mining.
ACM SIGMOD Record 29 (2), pages 439–450, 2000.

[3] L. Beck. A security mechanism for statistical data bases.
ACM Transactions of Databases 5 (3), pages 316–338, 1980.

[4] A. Blum, A. Coja-Oghlan, A. Frieze, and S. Zhou. Separating
populations with wide data: A spectral analysis. Electron. J.
Statist. 3, pages 76–113, 2009.

[5] Z. Dvir, A. Rao, A. Wigderson and A. Yehudayoff. Restriction
access. ITCS, pages 19–33, 2012.

[6] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. TCC, pages 265–
284, 2006.

[7] I. Dinur and K. Nissim. Revealing information while pre-
serving privacy. PODS, pages 202–210, 2003.

[8] C. Dwork and A. Smith. Differential privacy for statistics:
what we know and what we want to learn. NCHS/CDC Data
Confidentiality Workshop, 2008.

[9] J. Feldman, R. O’Donnell and R. Servedio. Learning mixtures
of product distributions over discrete domains SIAM Journal
on Computing 37 (5), pages 1536–1564, 2008.

[10] O. Goldreich and L. Levin. A generic hardcore predicate for
any one-way function. STOC, pages 25–30, 1989.

[11] T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U.
Wieder. Trace reconstruction with constant deletion proba-
bility and related results. SODA, pages 389–398, 2008.

[12] R. Impagliazzo. Private communication.

[13] J. Jackson. An efficient membership-query algorithm for
learning DNF with respect to the uniform distribution. Journal
of Computer and System Sciences, 55, pages 414–440, 1997.

[14] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz
mappings into a Hilbert space. Contemporary Mathematics
26, pages 189–206, 1984.

[15] E. Kushilevitz and Y. Mansour. Learning decision trees using
the fourier spectrum. SIAM J. Computing 22 (6), pages 1331–
1348, 1993.

[16] F. A. Matsen, E. Mossel and M. Steel. Mixed-up trees: the
structure of phylogenetic mixtures. Bull Math Biol. 70 (4),
pages 1115-39, 2008.

[17] A. Moitra and G. Valiant. Settling the polynomial learnability
of mixtures of gaussians. FOCS, pages 93–102, 2010.

[18] A. Kalai, A. Moitra and G. Valiant. Disentangling Gaussians.
Communications of the ACM 55 (2), pages 113–120, 2012.

[19] M. Kearns, Y. Mansour, D. Ron, R. Rubinfel, R. E. Schapire
and L. Sellie. On the learnability of discrete distributions.
STOC, pages 273–282, 1994.

[20] C. K. Liew, U. J. Choi and C. J. Liew. A data distortion
by probability distribution. Communications of the ACM 42
(10), pages 89–94, 1999.

[21] E. Lefons, A. Silvestri and F. Tangorra. An analytic approach
to statistical databases. International Conference on Very
Large Data Bases, pages 260–274, 1983.

[22] E. Mossell. The subsequence problem. Unpublished

[23] E. Mossell and S. Roch. Phylogenetic mixtures: concentra-
tion of measure in the large-tree limit. Annals of Applied
Probability, to appear, 2012.

[24] C. Nash-Williams. The reconstruction problem. Selected
Topics in Graph Theory I, pages 205–236, 1978.

[25] J. Traub, Y.Yemini and H. Wozniakowski. The statistical
security of a statistical database. ACM Transactions on
Database Systems 9 (4), pages 672–679, 1984.

[26] S. L. Warner. Randomized response: a survey technique for
eliminating evasive answer bias. Journal of the American
Statistical Association 60, pages 63–69, 1965.

[27] G. R. Wood. Binomial mixtures: geometric estimation of the
mixing distribution. Annals of Statistics 27 (5), pages 1706–
1721, 1999.

399

