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Abstract—The long code is a central tool in hardness
of approximation, especially in questions related to the
unique games conjecture. We construct a new code that
is exponentially more efficient, but can still be used in
many of these applications. Using the new code we obtain
exponential improvements over several known results,
including the following:

1) For any ε > 0, we show the existence of an n
vertex graph G where every set of o(n) vertices
has expansion 1 − ε, but G’s adjacency matrix has
more than exp(logδ n) eigenvalues larger than 1 − ε,
where δ depends only on ε. This answers an open
question of Arora, Barak and Steurer (FOCS 2010)
who asked whether one can improve over the noise
graph on the Boolean hypercube that has poly(log n)
such eigenvalues.

2) A gadget that reduces unique games instances with
linear constraints modulo K into instances with
alphabet k with a blowup of Kpolylog(K), improving over
the previously known gadget with blowup of 2Ω(K).

3) An n variable integrality gap for Unique Games that
survives exp(poly(log log n)) rounds of the SDP + Sher-
ali Adams hierarchy, improving on the previously
known bound of poly(log log n).

We show a connection between the local testability of
linear codes and small set expansion in certain related
Cayley graphs, and use this connection to derandomize
the noise graph on the Boolean hypercube.

Keywords-Unique games conjecture, Small set expansion,
Long Code, Locally Testable Codes.

I. Introduction

Khot’s Unique Games Conjecture [13] (UGC) has

been the focus of intense research effort in the last few

years. The conjecture posits the hardness of approxima-

tion for a certain constraint satisfaction problem, and

shows promise to settle many open questions in theory

of approximation algorithms. Specifically, an instance

Γ of the Unique Games problem with n variables and

1 Supported by ERC grant 226203
2 Supported by NSF Career Award and Sloan Fellowship.

alphabet Σ is described by a collection of constraints

of the form (x, y, π) where π is a permutation over Σ.

An assignment to Γ is a mapping f from [n] to Σ, and

f ’s value is the fraction of constraints (x, y, π) such that

f (y) = π( f (x)). The Unique Games Conjecture is that

for any ε > 0, there is some finite Σ such that it is

NP hard to distinguish between the case that a Unique

Games instance Γ with alphabet Γ has an assignment

satisfying 1 − ε fraction of the constraints, and the case

that every assignment satisfies at most ε fraction of Γ’s

constraint.

Many works have been devoted to studying the plau-

sibility of the UGC, as well as exploring its implications

and obtaining unconditional results motivated by this

effort. Tantalizingly, at the moment we have very little

evidence for the truth of this conjecture. One obvious

reason to believe the UGC is that no algorithm is known

to contradict it, though that of course may have more

to do with our proof techniques for algorithm analysis

than actual computational difficulty. Thus perhaps the

strongest evidence for the conjecture comes from results

showing particular instances on which certain natural

algorithms will fail to solve the problem. However, even

those integrality gaps are quantitatively rather weak. For

example, while Arora, Barak and Steurer [2] showed a

subexponential upper bound on an algorithm for the

Unique Games and the related Small-Set Expansion

problem, the hardest known instances for their algorithm

only required quasipolynomial time [17]. Similarly (and

related to this), known integrality gaps for Unique Games

and related problems do not rule out their solution by

an O(log n)-round semidefinite hierarchy, an algorithm

that can be implemented in quasipolynomial (or perhaps

even polynomial [6]) time.

The long code has been a central tool in many of these

works. This is the set of “dictator” functions mapping

�N
2

to �2 that have the form x1 . . . xN �→ xi for some

i. Many hardness reductions (especially from Unique
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Games) and constructions of integrality gap instances

use the long code as a tool. However, this is also the

source of their inefficiency, as the long code is indeed

quite long. Specifically, it has only N codewords but

dimension 2N , which leads to exponential blowup in

many of these applications. In this work, we introduce

a different code, which we call the “short code”, that

is exponentially more efficient, and can be used in the

long code’s place in many of these applications, leading

to significant quantitative improvements. In particular,

we use our code to show instances on which the [2]

algorithm, as well as certain semidefinite hierarchies,

require almost sub-exponential time, thus considerably

strengthening the known evidence in support of the

Unique Games Conjecture. Moreover, our results open

up possibilities for qualitative improvements as well, in

particular suggesting a new approach to prove the Unique

Games Conjecture via an efficient alphabet reduction.

A. Our results

At the heart of the long code’s applications lie

its connection with the noisy Hypercube. This is the

weighted graph HN,ε whose vertices are elements in �N
2

where a random neighbor of x ∈ �N
2

is obtained by

flipping each bit of x independently with probability

ε.1 It is not too hard to show that the codewords

of the long code correspond to the top eigenvectors

of the noisy hypercube which also give the minimal

bisections of the graph, cutting only an ε fraction of

edges. In addition, several converse results are known,

showing that bisections (and more general functions)

cutting few edges are close to these top eigenvectors

(or dictatorships) in some sense. (One such result is the

“Majority is Stablest” Theorem of [21].) The inefficiency

of the long code is manifested in the fact that the number

of vertices of the noisy cube is exponential in the number

N of its top eigenvectors.

The short code.: Another way to describe the long

code is that it encodes x ∈ �n
2
by a binary vector vx

of length 22n
where vx( f ) = f (x) for every function

f : �n
2
→ �2. This view also accounts for the name “long

code”, since one can see that this is the longest possible

encoding of x without having repeated coordinates. For

every subset D of functions mapping �n
2
to �2, we define

the D-short code to be the code that encodes x by a

vector vx of length |D| where vx( f ) = f (x) for every

f ∈ D. Note that this is a very general definition that

encapsulates any code without repeated coordinates. For

d ∈ �, we define the d-short code to be the the D-

short code where D is the set of all polynomials over

�n
2
of degree at most d. Note that the 1-short code is

1This graph is closely related and has similar properties to the
unweighted graph where we connect x and y if their Hamming distance
is at most εN.

the Hadamard code, while the n-short code is the long

code. We use the name “short code” to denote the d
short code for d = O(1). Note that the short code has 2n

codewords and dimension roughly 2nd
, and hence only

quasipolynomial blowup, as opposed to the exponential

blowup of the long code. Our main contribution is a

construction of a “derandomized” noisy cube, which

is a small subgraph of the noisy cube that enjoys the

same relations to the short code (including a “Majority

is Stablest” theorem) as the original noisy cube has to

the long code. As a result, in many applications one

can use the short code and the derandomized cube in

place of the long code and the noisy cube, obtaining an

exponential advantage. Using this approach we obtain

the following results:

Small set expanders with many large eigenvalues.:
Our first application, and the motivation to this work, is

a question of Arora, Barak and Steurer [2]: How many

eigenvectors with eigenvalue at least 1−ε can an n-vertex
small set expander graph have? We say a graph is a small

set expander (SSE) if all sufficiently small subsets of

vertices have, say, at least 0.9 fracton of their neighbors

outside the set. [2] showed an upper bound of nO(ε) on

the number of large (i.e., greater than 1− ε) eigenvalues
of a small set expander. Arora et al. then observed that

the subspace enumeration algorithm of [18], [17] for

approximating small set expansion in an input graph

takes time at most exponential in this number, which

they then use to give an algorithm with similar running

time for the Unique Games problem. Up to this work,

the best lower bound was polylog(n), with the example

being the noisy cube, and hence as far as we knew the

algorithm of [2] could solve the small set expansion

problem in quasipolynomial time, which in turn might

have had significant implications for the Unique Games

problem as well. Our derandomized noisy cube yields

an example with an almost polynomial number of large

eigenvalues:

Theorem 1. For every ε > 0, there is an n-vertex
small set expander graph with 2(log n)Ω(1)

eigenvectors
with corresponding eigenvalues at least 1 − ε.

Theorem 1 actually follows from a more general result

connecting locally testable codes to small set expanders,

which we instantiate with the Reed Muller code. See

Section II for details.

Efficient integrality gaps.: There is a standard

semidefinite program (SDP) relaxation for the Unique

Games problem, known as the “basic SDP” [16], [24].

Several works have shown upper and lower bounds on

the approximation guarantees of this relaxation, and

for constant alphabet size, the relation between the

alphabet size and approximation guarantee is completely

understood [8]. However, for unbounded alphabet, there
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was still a big gap in our understanding of the relation

between the approximation guarantee and the number of

variables. Gupta and Talwar [11] showed that if the re-

laxation’s value is 1−ε, there is an assignment satisfying

1 −O(ε log n) fraction of constraints. On the other hand,

Khot and Vishnoi [16] gave an integrality gap instance

where the relaxation’s value was 1 − 1/ poly(log log n)2

but the objective value (maximum fraction of constraints

satisfied by any assignment) was o(1). It was a natural

question whether this could be improved, and indeed

our short code allows us to obtain an almost exponential

improvement:

Theorem 2. There is an n-variable instance of Unique

Games with objective value o(1) but for which the
standard semidefinite programming (SDP) relaxation
has value at least 1 − 1/ qpolylog(n).3

Integrality gaps for SDP hierarchies.: Our best evi-

dence for the hardness of the Unique Games Conjecture

comes from integrality gap instances for semidefinite pro-

gramming hierarchies. These are strengthened versions

of the basic SDP where one obtains tighter relaxations

by augmenting them with additional constraints, we refer

to [10] for a good overview of SDP hierarchies. These

hierarchies are generally paramaterized by a number r
(often called the number of rounds), where the first round

corresponds to the Basic SDP, and the nth round (where

n is the instance size) corresponds to the exponential

brute force algorithm that always computes an optimal

answer. Generally, the rth-round of each such hierarchy

can be evaluated in nO(r) time (though in some cases

nO(1)2O(r) time suffices [6]). In this paper we consider

two versions of these hierarchies— the SA hierarchy

and the weaker LH hierarchy. Loosely speaking, the

rth round of the SA hierarchy adds the constraints of

the rth round of the Sherali-Adams linear programming

hierarchy (see [25]) to the Basic SDP; the rth round

of the LH hierarchy augments the Basic SDP with the

constraints that and subset of r vectors from the vector

solutions embeds isometrically into the �1 metric. (See

the full version [5] and [24] for more details.)

Barak, Raghavendra and Steurer [6] (see also [12])

showed that for every ε > 0, nε rounds of the SA
hierarchy yields a non-trivial improvement over the basic

SDP . The unique games conjecture predicts that this is

optimal, in the sense that no(1) rounds of any hierarchy

should not improve the worst-case approximation ratio

2Throughout, for any function f , poly( f (n)) denotes a function g
satisfying g(n) = f (n)Ω(1).

3For functions f , g : � → [0,∞) we write f = qpoly(g) if f =
exp(polylog(g)). That is, if there are constants C > c > 0 such that
for all sufficiently large n, exp((log g(n))c) � f (n) � exp((log g(n))C).
(Note that we allow c < 1, and so f = qpoly(g) does not imply that
f > g.) Similarly, we define qpolylog(g) = qpoly(log g) and write
f = qqpoly(g) if f = exp(exp(poly(log log g))).

above the basic SDP.4 However, this prediction is far

from being verified, with the best lower bounds given by

[24] (see also [15]) who showed instances that require

logΩ(1) n rounds for the LH hierarchy, and (log log n)Ω(1)

rounds for the SA hierarchy. Moreover, these instances

are known to be solvable in quasipolynomial time [17]

and in fact via polylog(n) rounds of the SA hierarchy [6] .

Thus prior work gave no evidence that the unique games

problem cannot be solved in quasipolynomial time. In

this work we obtain almost-exponentially more efficient

integrality gaps, resisting qpoly(log n) rounds of the SA
hierarchy and qqpoly(n) rounds of the LH hierarchy.

The latter is the first superlogarithmic SDP hierarchy

lower bound for Unique Games for any SDP hierarchy

considered in the literature.

Theorem 3. For every ε > 0 there is some k = k(ε),
such that for every n there is an n variable instance
Γ of Unique Games with alphabet size k such that the
objective value of Γ is at most ε, but the value on Γ

of both qpoly(log n) rounds of the SA hierarchy and
qqpoly(n) rounds of the LH hierarchy is at least 1 − ε.

A corollary of the above theorem is a construction of

an n-point metric of negative type such that all sets of

size up to some k = qqpoly(n) embed isometrically into

�1 but the whole metric requires qpolylog(n) distortion to

embed into �1. We remark that Theorem 3 actually yields

a stronger result than stated here— as a function of k, our
results (as was the case with the previous ones) obtain

close to optimal gap between the objective value and the

SDP value of these hierarchies; in particular we show

that in the above number of rounds one cannot improve

on the approximation factor of the Geomans-Williamson

algorithm for Max Cut. It is a fascinating open question

whether these results can be extended to the stronger

Lasserre / Sum of Squares hierarchies [19], [26], [23],

[22]. Very recent results of Barak, Brandão, Harrow,

Kelner, Steurer and Zhou [4] (obtained subsequent to

this work), indicate that new ideas may be needed to

do this, since the Unique Games instances constructed

here and in prior works are not integrality gaps for

eight rounds of the Lasserre / Sum of Squares hierarchy.

The underlying reason is that the proof that the original

noisy cube is a small set expander is based on a sum of

squares argument that can be verified efficiently via these

hierarchies, and this extends also to the proof here that

the derandomized noisy cube is a small set expander.
Alphabet reduction gadget.: Khot, Kindler, Mossel

and O’Donnel [14] used the long code to show an

“alphabet reduction” gadget for unique games. They

show how to reduce a unique game instance with some

large alphabet K to an instance with arbitrarily small

4This is under the widely believed assumption that NP �

Dtime(exp(no(1)).
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alphabet. (In particular, they showed how one can reduce

arbitrary unique games instances into binary alphabet

instances, which turns out to be equivalent to the Max Cut
problem.) However, quantitatively their result was rather

inefficient, incurring an exponential in K blowup of the

instance. By replacing the long code with our “short

code”, we obtain a more efficient gadget, incurring only

a qusipolynomial blowup. One caveat is that, because

the short code doesn’t support arbitrary permutations,

this reduction only works for unique games instances

whose constraints are affine functions over �k
2
where

k = log K; however this class of unique games seems

sufficiently rich for many applications.5

Theorem 4. For every ε there are k, δ, and a reduction
that for every � maps any n-variable Unique Games

instance Γ whose constraints are affine permutations over
alphabet ��

2
into an n · exp(poly(�, k))-variable Unique

Games instance Γ′ of alphabet k, such that if the objective
value of Γ is larger than 1 − δ, then the objective value
of Γ′ is larger than 1 − ε, and if the objective value of
Γ is smaller than δ, then the objective value of Γ′ is
smaller than ε.

Once again, our quantitative results are stronger than

stated here, and as in [14], we obtain nearly optimal

relation between the alphabet size k and the soundness

and completeness thresholds. In particular for k = 2 our

results match the parameters of the Max Cut algorithm of

Geomans and Williamson. Our alphabet reduction gadget

suggests a new approach to proving the unique games

conjecture by using it as an “inner PCP”. For example,

one could first show hardness of unique games with

very large alphabet (polynomial or even subexponential

in the number of variables) and then applying alphabet

reduction. At the very least, coming up with plausible

hard instances for unique games should be easier with

a large alphabet.

Remark I.1. The long code is also used as a tool

in applications that do not involve the unique games

conjecture. On a high level, there are two properties that

make the long code useful in hardness of approximation:

(i) it has a 2 query test obtained from the noisy hypercube

and (ii) it has many symmetries, and in particular one

can read off any function of x from the xth codeword.

Our short code preserves property (i) but (as is necessary

for a more efficient code) does not preserve property (ii),
as one can only read off low degree polynomials of x
(also it is only symmetric under affine transformations).

We note that if one does not care about property (i) and

is happy with a 3 query test, then it’s often possible to

5For example, because the multiplicative group of the field �2n

is cyclic, one can represent constraints of the form xi − x j = ci, j
(mod 2n − 1) as linear constraints over �n

2
(i.e., constraints of the form

xi = Ci, j x j where Ci, j is an invertible linear map over �n
2
).

use the Hadamard code which is more efficient than the

short code (indeed it’s essentially equal to the d-short
code for d = 1). Thus, at least in the context of hardness

of approximation, it seems that the applications the short

code will be most useful are those where property (i) is

the crucial one.

Despite the name “short code”, our code is not

the shortest possible code. While in our applications,

dimension linear in the number of codewords is necessary

(e.g., one can’t have a graph with more eigenvalues than

vertices), it’s not clear that the dimension needs to be

polynomial. It is a very interesting open question to

find shorter codes that can still be used in the above

applications.

II. Our techniques

To explain our techniques we focus on our first

application— the construction of a small set expander

with many eigenvalues close to 1. The best way to view

this construction is as a derandomization of the noisy

hypercube, and so it will be useful to recall why the

noisy hypercube itself is a small set expander.

Recall that the ε-noisy hypercube is the graph HN,ε

whose vertex set is {±1}N where we sample a neighbor

of x by flipping each bit independently with probability

ε. The eigenvectors in HN,ε are given by the parity

functions χα(x) =
∏

i∈α xi for subsets α ⊆ [N] and the

corresponding eigenvalues are λα = (1 − 2ε)|α|. Thus λα
only depends on the degree |α| of χα. In particular, the

“dictator” functions χ{i}(x) = xi have eigenvalue 1 − 2ε
and they correspond to balanced cuts (where vertices are

partitioned based on the value of xi) with edge expansion

ε. As α increases, λα decreases, becoming a constant

around |α| = O(1/ε).
Given f : {±1}N → {0, 1} which is the indicator of a

set S , its Fourier expansion f (x) =
∑
α f̂ (α)χα(x) can

be viewed as expressing the vector f in the eigenvector

basis. The edge expansion of S is determined by the

distribution of its Fourier mass; sets where most of the

Fourier mass is on large sets will expand well. Given this

connection, small-set expansion follows from the fact

that the indicator functions of small sets have most of

their mass concentrated on large Fourier coefficients.

More precisely a set S of measure μ has most of

its Fourier mass on coefficients of degree Ω(log(1/μ)).
This follows from the so-called (2,4)-hypercontractive

inequality for low-degree polynomials— that for every

degree d polynomial f ,

�
x∈{±1}N

[ f (x)4] � C �
x∈{±1}N

[ f (x)2]2 (II.1)

for some C depending only on d. (See full version [5]

for the proof, though some intuition can be obtained by

noting that if f is a characteristic function of a set S
of measure μ = o(1) then �[ f 2]2 = μ2 and �[ f 4] = μ
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and hence Equation (II.1) shows that f cannot be an

O(1)-degree polynomial.)

By a “derandomized hypercube” we mean a graph on

much fewer vertices that still (approximately) preserves

the above properties of the noisy hypercube. Specifically

we want to find a very small subset D of {±1}N and a

subgraph G of HN,ε whose vertex set is D such that (i)
G will have similar eigenvalue profile to HN,ε, and in

particular have N eigenvalues close to 1 and (ii) G will

be a a small set expander. To get the parameters we are

looking for, we’ll need to have the size of D be at most

qpoly(N).

A natural candidate is to take D to be a random set,

but it is not hard to show that this will not work. A better

candidate might be a linear subspace D ⊆ �N
2

that looks

suitably pseudorandom. We show that in fact it suffices to

choose a subspaceD whose dual C = D⊥ is a sufficiently

good locally testable code. (We identify �N
2

with {±1}N
via the usual map (b1, . . . , bN) �→ ((−1)b1 , . . . , (−1)bN ).)

Our construction requires an asymptotic family of

[N,K,D]2 linear codes C ⊆ �N
2

where the distance D
tends to infinity. The code should have a εN-query local

tester which when given a received word α ∈ �N
2
samples

a codeword q of weight at most εN from a distribution T
on C⊥ and accepts if 〈α, q〉 = 1. The test clearly accepts

codewords in C, we also require it to reject words that

are distance at least D/10 from every codeword in C
with probability 0.49. Given such a locally testable code

C, we consider the Cayley graph6 G whose vertices

are the codewords of the dual code D = C⊥ while

the (appropriately weighted) edges correspond to the

distribution T . That is, a vertex of G is a codeword

x ∈ D, while a random neighbor of x is obtained by

picking a random q from T and moving to x + q.
Because D is a subspace, it is easy to show that the

eigenvectors of G are linear functions of of the form

χα(x) for x, α ∈ �N
2

(where if α ⊕ α′ ∈ C then χα and

χα′ are identical on G’s vertices). Moreover, from the

way we designed the graph, for every α ∈ �n
2
, the cor-

responding eigenvalue λα is equal to �q∈T [(−1)〈α,q〉] =
1 − 2�T [Test rejects α]. This connection between the

spectrum of G and the local testability of C allows us

to invoke machinery from coding theory in our analysis.

From this one can deduce that the eigenvalue spectrum

of G does indeed resemble the hypercube in the range

close to 1. In particular each χ{i}(x) = xi is a distinct

eigenvector with eigenvalue 1 − 2ε, and gives a bad cut

in G (where vertices are partitioned based on the value

of xi). On the other hand for any eigenvector χ of G,

choose α of minimal weight such that χ = χα. Now if

|α| > D/10 this means that the distance of α from C is

6Cayley graph are usually defined to be unweighted graph. However,
the definition can be generalized straightforwardly to weighted graphs.

at least D/10, which using the testing property implies

that λα � 1 − 2 · 0.49 = 0.02.
If we can show that indicator functions of small sets

have most of their Fourier mass on such eigenvectors

(with small eigenvalue), that will imply that small sets

have good expansion. For small subsets of the hypercube,

recall that this is proved using (2,4)-hpercontractivity

for low-degree polynomials. The key observation is that

the inequality

�
x∈D

[ f (x)4] � C �
x∈D

[ f (x)2]2 (II.2)

still holds for all polynomials f of degree d < D/4. This
is because the distance of C is D, hence the distribution

of a random x in D is D-wise independent, which means

that the expectation of any polynomial of degree at most

D is equal over such x and over a uniform x in {±1}N .
Thus (II.2) follows from (II.1), completing our proof.

We instantiate this approach with using for C the Reed

Muller code consisting of polynomials in n variables

over �2 of degree n − d − 1. This is a code of distance

D = 2d−1. We note that the degree n − d − 1 and hence

the rate of the code C are very high. The graph is over

the codewords of D = C⊥ that is itself the Reed Muller

code of polynomials over �n
2
of degree d. Our basic

tester consists of selecting a random minimum weight

codeword of D.7 Thus our graph G has as its vertices

the d degree polynomials over �n
2
with an edge between

every polynomials p, q such that p− q is a product of d
linearly-independent affine functions (as those are the

minimal weight codewords in the Reed Muller code).

We use the optimal analysis of Bhattacharyya et al. [7]

to argue about the local testability of C which is a high

degree Reed Muller code. We should note that this test

is very closely related to the Gowers uniformity test that

was first analyzed in the work of Kaufman et al. [1], but

our application requires the stronger result from [7].

A. Other applications

We now briefly outline how we use the above

tools to obtain more efficient versions of several other

constructions such as alphabet reduction gadgets and

integrality gaps for unique games and other problems.

Efficient integrality gaps for Unique Games.: To

beign with, the graph we construct can be used to prove

Theorem 2. That is, a construction of an M variable

instance Γ of unique games where every assignment

can satisfy at most a very small (say 1/100) fraction of

the constraints, but for which the standard semidefinite

programming (SDP) relaxation has value of at least

1 − 1/ qpoly(log M). The basic idea is to simply take

the graph G we constructed above, and turn it into an

7For many applications we amplify the success of this tester by
selecting a sum of t random such words, this corresponds to taking
some power of the basic graph G described.
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instance of unique games by considering it to be the label
extended graph of some unique games instance. We now

elaborate a bit below, leaving the full details to Section V.

Recall that a Unique Games instance Γ with M variables

and alphabet Σ is described by a collection of constraints

of the form (x, y, π) where π is a permutation over Σ.

An assignment to Γ is a mapping f from [M] to Σ, and

f ’s value is the fraction of constraints (x, y, π) such that

f (y) = π( f (x)). The label extended graph corresponding

to Γ is the graph GΓ over vertices [M] × Σ where for

every constraint of the form (x, y, π) and σ ∈ Σ we add

an edge between (x, σ) and (y, π(σ)). It is not hard to

see that an assignment of value 1 − ε corresponds to

a subset S containing exactly M of GΓ’s vertices with

small expansion (i.e., ε fraction of the edges from S
leave the set). Thus if GΓ is an expander for sets of

measure 1/|Σ| in GΓ then there is no nearly satisfying

assignment for the unique games instance Γ. In our case,

our graph G has the degree d polynomials over �n
2
as its

vertices, and we transform it into a unique game instance

whose variables correspond to degree d polynomials

without linear terms. The alphabet Σ consists of all

linear functions over �n
2
. We ensure that the graph G is

the label extended graph of Γ by setting the permutations

accordingly: given a polynomial p without a linear term,

and a function q that is a product of d affine functions,8

if we write q = q′ + q′′ where q′′ is the linear part of

q, then we add a constraint of the form (p, p + q′, π)
where π is the permutation that maps a linear function r
into r+q′′. Some not too difficult calculations show that

the top eigenvectors of our graph G yield a solution for

the semidefinite program for Γ (if the top eigenvectors

are f 1, . . . , f K , our vector solution will associate with

each vertex x the vector ( f 1(x), . . . , f K(x)). By choosing

carefully the parameters of the graph G, the instance Γ

will have SDP value 1−1/ qpoly(log M) where M is the

number of variables.

Derandomized Invariance Principle.: While hyper-

contractivity of low degree polynomials suffices for some

applications of the long code, other applications require

other theorems, and in particular the invariance principle,
shown for the hypercube by Mossel, O’Donnel and

Oleszkiewicz [21]. Roughly speaking their invariance

principle says that for “nice” functions f on the vertices

of the N-dimensional noisy hypercube, the distribution

of f (x) where x is a random vertex is close to the

distribution of f (y) where y consists of N indepen-

dent standard Gaussian random variables (appropriately

extending f to act on �N). To obtain more efficient

version of these applications, we first show that the

same holds even when x is a random vertex in our

8Actually, to get better parameters, we take some power t of G,
meaning that we consider q that is a sum of t functions that are
products of d affine functions.

smaller subset of N-dimensional strings – the Reed–

Muller codewords. Our central tool is a recent result

by Meka and Zuckerman [20] which derandomizes the

invariance principle of Mossel et al. Our key insight is

that taking a random Reed–Muller codeword can in fact

be viewed as an instantiation of the Meka-Zuckerman

generator, which involves splitting the input into blocks

via a pairwise independent hash function, and using

independent k-wise independent distributions in each

block. This allows us to obtain a version of the “Majority

is Stablest” theorem for our graph, which is the main

corollary of the invariance principle that is used in

applications of the longcode. See full version [5] for

more details.

Efficient alphabet reduction .: With the “Majority

of Stablest” theorem in hand, proving Theorem 4

(efficient alphabet reduction for unique games), is fairly

straightforward. The idea is to simply replace the noisy

hypercube gadget used by [14] with our derandomized

hypercube. This is essentially immediate in the case of

alphabet reduction to binary alphabet (i.e., reduction to

Max Cut) but requires a bit more work when reducing to

a larger alphabet. See full version [5] for more details.

Efficient hierarchy integrality gaps.: Our proof

Theorem 3 again works by plugging in our short code

/ derandomized noisy hypercube in place of the long

code in the previous integrality gap constructions [16],

[15], [24]. Specifically, these constructions worked by

starting with an integrality gap for unique games where

the basic SDP yields 1 − 1/r, and then composing

it with an alphabet reduction gadget to obtain a new

instance; Raghavendra and Steurer [24] showed that

the composed instances resist poly(r) rounds of the SA
hierarchy and exp(poly(r)) rounds of the LH hierarchy.

These constructions used the noisy cube twice— both

to obtain the basic unique games gap instance, and to

obtain the alphabet reduction gadget. We simply plug

in our short code in both usages— using for the basic

unique games instance the efficient version obtained in

Theorem 2, and for the alphabet reduction gadget the

efficient version obtained in Theorem 4. (Luckily, our

unique games instance has affine constraints and so is

compatible with our alphabet reduction gadget.) The

result essentially follows in a blackbox way from the

analysis of [24]. See full version [5] for details.

III. Preliminaries

Let G be a regular graph with vertex set V . For a

subset S ⊆ V we define the volume of S , denoted μ(S ),

to be |S |/|V |. We define the expansion of S , denoted

Φ(S ), to be the probability over a random edge (u, v),
conditioned on u ∈ S that v � S . Equivalently (since G
is regular), Φ(S ) = G(S ,V \ S )/(degG |S |) where degG
is the degree of the graph G and G(S ,V \ S ) is the
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number of edges going from S to V \ S . Throughout,

we denote the normalized adjacency matrix of a graph

G also by G, and refer to the spectrum of the adjacency

matrix as the spectrum of the graph G. Note that by

definition, every regular graph has maximum eigenvalue

1. In this paper, we use expectation norms for real-valued

functions. That is, for a function f : S → � and p � 1,

we let ‖ f ‖p := (�x∈S | f (x)|p)1/p.
Many of the unique games instances that appear in

this work belong to a special subclass of unique games,

namely �n
2
-Max-2Lin instances defined below.

Definition III.1. Given a group H , an H-Max-2Lin

instance consists of a system of linear equations over the

group H where each equation is of the form xi− x j = ci j

for some ci j ∈ H .

Locally Testable Codes.: Let C be an [N,K,D]2
code, that is, C is a K-dimensional linear subspace of �N

2

with minimum distance D (= min{wt(x) : x ∈ C}). (In
this paper, we are mostly interested in the extremely high

rate regime when H = N − K is very small compared to

N and are happy with D being some large constant.) Let

Δ(x, y) ∈ {0, . . . ,N} denote Hamming distance between

x, y ∈ �N
2
. For α ∈ �N

2
and a code C we define Δ(α,C) =

minc∈C Δ(α, c).

Definition III.2. We say a distribution T over �N
2

is

a canonical tester for C if every vector in the support

of the distribution T is a codeword q ∈ C⊥. The query
complexity of T is the maximum weight of a vector in

its support. The tester’s soundness curve sT : �→ [0, 1]
is defined as

sT (k)
def
= min
α∈�N

2
, Δ(α,C)�k

�
q∼T

{〈α, q〉 = 1} .

Similarly, we denote the rejection probability of T for a

vector α ∈ �N
2

by sT (α) = �q∼T {〈α, q〉 = 1}. We let the

query probability τ ∈ [0, 1] of a tester be the expected

fraction of queried coordinates, that is, τ = �q∼T wt(q)/N.

We say that a tester T with query probability τ is smooth
if for any coordinate i ∈ [N], �q∼T {qi = 1} = τ and we

say it is 2-smooth if in addition, for any two distinct

coordinates i � j, �q∼T
{
qi = q j = 1

}
= τ2.

If the tester T is clear from the context, we will

sometimes drop the subscript of the soundness curve /

rejection probability sT . In the setting of this paper, we

will consider testers with query probability slowly going

to 0 (with N). Further, given a canonical tester T , it is

easy to amplify the probability of rejection by repeating

the test and taking the XOR of the results.

Finally, the following simple lemma gives some

estimates for rejection probabilities of vectors for smooth

testers. The proof can be found in full version [5]

Lemma III.3. If T is a smooth canonical tester with
query probability τ, then sT (α) � Δ(α,C) · τ for every
vector α ∈ �N

2
. Furthermore, if T is 2-smooth, then

sT (α) � (1− γ) ·Δ(α,C) · τ for every vector α ∈ �N
2

with
Δ(α,C)τ � γ.

We review the prerequisites for Majority is Stablest

and Unique Games related results in the corresponding

sections.

IV. Small Set Expanders from Locally Testable Codes

In this section we first use some known properties of

hypercontractive norms to give a sufficient condition for

graphs to be small set expanders. We then describe a

generic way to construct graphs satisfying this condition

from locally testable codes, proving Theorem 1.

Let V be a subspace of the set of functions from V to

� for some finite set V . We denote by PV the projection

operator to the space V. For p, q � 1, we define

‖V‖p→q
def
= max

f :V→�
‖PV f ‖q

‖ f ‖p
.

The next lemma can be viewed qualitatively as a

generalization of one direction of the classical Cheeger’s

inequality relating combinatorial expansion to eigenvalue

gap [9]. We defer the proof to full version [5].

Lemma IV.1. Let G = (V, E) be regular graph, and V
be the span of the eigenvectors of G with eigenvalue
larger than λ. Then, for every S ⊆ V, Φ(S ) � 1 − λ −
‖V‖22→4

√
μ(S ).

A. Cayley graphs on codes

Motivated by the above lemma, we now construct a

graph for which the projection operator on to the top

eigenspace is hypercontractive, i.e., has small 2 → 4

norm, while also having high rank.

Let C ⊆ �N
2

be an [N,K,D]2 code. The graph we

construct will be a Cayley graph with vertices indexed

by C⊥ and edges drawn according to a canonical local

tester T for C. Let Cay(C⊥,T ) denote the (weighted)

Cayley graph with vertex set C⊥ and edges generated by

T . We describe the graph more precisely by specifying

the neighbor distribution for a random walk on the graph.

For a vertex p ∈ C⊥, a random neighbor has the form

p + q with q sampled from the tester T . (Since the

group C⊥ has characteristic 2, the graph Cay(C⊥,T ) is

symmetric for every tester T .)

We argue that if the tester T has small query complex-

ity and good soundness, then the graph Cay(C⊥,T ) has

many large eigenvalues while being a small-set expander.

Theorem IV.2. Let C be an [N,K,D]2 linear code that
has a canonical tester T with query complexity εN
and soundness curve s() and let k < D/5. The graph
Cay(C⊥,T ) has 2N−K = 2H vertices with at least N/2
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eigenvalues larger than 1− 4ε. All subsets S of C⊥ have
expansion at least Φ(S ) � 2s(k) − 3k

√
μ(S ).

By Xoring the results of mulitple tests, one can let the

soundness s(k) tend to 1/2. Hence, if s(k) is significantly

larger than ε (for appropriate k), one can obtain a graph

with many large eigenvalues such that small enough sets

have near-perfect expansion.
Eigenfunctions and Eigenvalues.: We identify the

graph G = Cay(C⊥,T ) by its normalized adjacency

matrix. For every vector α ∈ �N
2
, the character χα : C⊥ →

{±1} with χα(p) = (−1)〈α,p〉 is an eigenfunction of G. If

two vectors α, β ∈ �N
2
belong to the same coset of C, they

define the same character over C⊥ since 〈α + β, p〉 = 0

for all p ∈ C⊥, while if α+β � C then 〈χα, χβ〉 = 0. Thus,

the set of characters of C⊥ corresponds canonically to

the quotient space �N
2
/C. If we fix a single representative

α for every coset in �N
2
/C, we have exactly 2N−K = 2H

distinct, mutually orthogonal characters. We define the

degree of a character as follows:

deg(χα) = min
c∈C

wt(α + c) = Δ(α,C) . (IV.1)

Note that if deg(χα) < D/2, then the minimum weight

representative in α + C is unique. (This uniqueness

will allow us later to define low-degree influences of

functions, see full version [5].)

We let λα denote the eigenvalue corresponding to

character χα. The following observation connects the

soundness of the canonical tester to the spectrum of G:

Lemma IV.3. For any α ∈ �N
2

, λα = 1 − 2s(α).

Proof: From standard facts about Cayley graphs,

it follows that λα = �q∈T [χα(q)] = �q∈T [(−1)α·q] =

1 − 2�q∈T [α · q = 1] = 1 − 2s(α).
We use this to show that many dictator cuts in G which

correspond to characters with degree 1 have eigenvalues

close to 1. We let λi, χi denote λ{i}, χ{i}. As noted before,

for D > 2 these are distinct characters.

Corollary IV.4. We have λi � 1 − 4ε for at least N/2
coordinates [i] ∈ N.

Proof: We have λi = 1 − 2�q∈T [qi = 1]. Since

wt(q) � εN for every q ∈ T ,
∑N

i=1 �q∈T [qi = 1] � εN.

So we can have �q∈T [qi = 1] � 2ε for at most N/2
coordinates.

Another immediate conseuqence of Lemma IV.3 is

that large degree characters have small eigenvalues.

Corollary IV.5. If deg(χα) � k, then λα � 1 − 2s(k).

Subspace Hypercontractivity.: Given a function

f : C⊥ → � we can write it (uniquely) as a linear

combination of the characters {χα}α∈�N
2
/C

f (p) =
∑
α∈�N

2
/C

f̂ (α)χα(p) ,

where f̂ (α) = 〈χα, f 〉 is the Fourier transform of f (over

the abelian group C⊥).
We define the degree of f , denoted deg( f ) to

be maxα: f̂ (α)�0 deg(χα). Note that deg( f + g) �
max{deg( f ), deg(g)} and deg( fg) � deg( f )+deg(g). The

following crucial observation follows immediately from

the fact that C has minimum distance D.

Fact IV.6. The uniform distribution on C⊥ is (D − 1)

wise independent. That is, for any α ∈ �N
2

such that
1 � wt(α) < D we have �p∈C⊥ [χα(p)] = 0.

This fact has the following corollary:

Lemma IV.7. Let � < (D − 1)/4 and let V be the
subspace of functions with degree at most �. Then
‖V‖2→4 � 3�/2.

Proof: The proof follows from the following two

facts:

1) This bound on the 2 → 4 norm is known to hold

for true low degree polynomials under the uniform

distribution on the hypercube by the Bonami-

Beckner-Gross inequality.

2) The expectation of polynomials of degree up to 4� <
D − 1 are the same under the uniform distribution

and a D − 1-wise independent distribution.

Given f : �n → �, let f � denote its projection onto

the space V spanned by characters where deg(χα) � �.
We have

‖ f �‖44 = �p∈C⊥[ f �(p)4] = �
p∈{0,1}N

[ f �(p)4] ,

‖ f ‖22 � ‖ f �‖22 = �p∈C⊥[ f �(p)2] = �
p∈{0,1}N

[ f �(p)2] .

By the 2 → 4 hypercontractivity for degree � polynomi-

als over {0, 1}N ,

�
p∈{0,1}N

[ f �(p)4] � 9� �
p∈{0,1}N

[ f �(p)2]2 .

So we conclude that

�
p∈C⊥

[ f �(p)4] � 9� �
p∈C⊥

[ f �(p)2]2 � 9� �
p∈C⊥

[ f (p)2]2 ,

which implies that ‖V‖2→4 � 3�/2.

Combining the above bound with Lemma IV.1 we get

that, if the local tester rejects sufficiently far codewords

with high probability, then the resulting graph is a small

set expander:

Corollary IV.8. For every vertex subset S in the graph
Cay(C⊥,T ) and every k < D/5, we have Φ(S ) � 2s(k)−
3kμ(S )

1
2 .

In particular, as s(k) tends to 1/2, the expansion

of small sets tends to 1. This corollary together with

Corollary IV.4 completes the proof of Theorem IV.2.
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B. A Canonical Tester for Reed Muller codes

We instantiate the construction from the previous

section for the Reed Muller code. Let C = RM(n, n−d−1)
be the Reed Muller code on n variables of degree

n − d − 1, which has N = 2n, H =
∑

j�d

(
n
j

)
and

D = 2d+1. Bhattacharyya et al. [7] analyze the canonical

tester TRM which samples a random minimum weight

codeword from C⊥. It is well known that the dual

of RM(n, n − d − 1) is exactly RM(n, d) and that the

minimum weight codewords in RM(n, d) are products

of d linearly independent affine forms. They have

weight 2n−d = εN where ε = 2−d. Thus, our graph

CayRM = Cay(RMn,d,TRM) has as its vertices the d-
degree polynomials over �n

2
with an edge between every

pair of polynomials P,Q such that P − Q is equal to

a minimum weight codeword, which are known to be

products of d linearly independent affine forms.

Theorem IV.9 ([7]). There exists a constant η0 > 0 such
that for all n, d, and k < η02d the tester TRM described
above has soundness s(k) � (k/2) · 2−d.

Theorem IV.9 allows us to estimate the eigenvalue

profile of CayRM and shows that small sets have expan-

sion close to O(η0). From here, we can get near perfect

expansion by taking short random walks. We defer the

proof of the theorem to the full version [5].

Theorem IV.10. There exists a constant c1 > 0 such
that for any ε, η > 0, there exists a graph G with
2(log |G|)

1
d eigenvalues larger than 1−ε for d = log(1/ε)+

log log(1/η) + O(1) and where every set S ⊆ G has
expansion Φ(S ) � 1 − η − 3

c1
ε log(1/η)

√
μ(S ).

V. Efficient integrality gaps for unique games

In this section, we present constructions of SDP

integrality gap instances starting from a code C along

with a local tester. To this end, we make an additional

assumption on the code C. Specifically, let us suppose

there exists a subcode H of D = C⊥ with distance 1
2
.

Formally, we show the following result.

Theorem V.1. Let C be an [N,K,D]2 linear code with
a canonical tester T as described in Definition III.2.
Furthermore, let H be a subcode of D = C⊥ with
distance 1

2
. Then, there exists an instance of unique

games, more specifically a H-Max-2Lin instance, whose
vertices are D (|D| = 2N−K) and alphabet H such that:

– The optimum value of the natural SDP relaxation
for unique games is at least

(
1 − 2t

N

)2
where t is

the number of queries made by the canonical tester
T .

– No labelling satisfies more than
mink∈[0,D/5]

(
1 − 2s(k) + 3k

|H|
1
2

)
fraction of

constraints.

Instantiating the above theorem with the Reed–Muller

code and its canonical tester we obtain the following

explicit SDP integrality gap instance.

Corollary V.2. For every integer n, δ > 0 there exists
a �n

2
-Max-2Lin instance Γ on M = 22log

2 n
vertices such

that the optimum value of the SDP relaxation on Γ is
1 − O(

log(1/δ)
n ) = 1 − O

(
log(1/δ)

2(log log M)1/2

)
while every labelling

of Γ satisfies at most O(δ) fraction of edges.

Starting from a code C, we construct an SDP integral-

ity gap instance Γ(C,T ) for unique games as follows.

The vertices of ΓC are the codewords of D. The

alphabet of the unique games instance Γ(C,T ) are

the codewords in H . The constraints of unique games

instance Γ(C,T ) are given by the tests of the following

verifier.

The input to the verifier is a labeling � : D → H . Let

us denote by R = |H|. The verifier proceeds as follows:

– Sample codewords c ∈ D and h, h′ ∈ H uniformly

at random.

– Sample a codeword q ∈ D from the tester T .

– Test if �(c + q + h) − �(c + h′) = h − h′

SDP Solution.: Here we construct a feasible solu-

tion to a natural SDP relaxation of unique games [16].

Maximize �
c∈D,h,h′∈H

�
q∈T

⎡⎢⎢⎢⎢⎢⎢⎣ 1R
∑
�∈H

〈bc+h′,�+h′ , bc+q+h,�+h〉
⎤⎥⎥⎥⎥⎥⎥⎦

Subject to〈bc,h, bc,h′ 〉 = 0 ∀c ∈ D, h � h′ ∈ H
〈bc,h, bc′,h′ 〉 � 0 ∀c, c′ ∈ D, h, h′ ∈ H .∑
�∈H

〈bc,�, bc,�〉 = R ∀c ∈ D

For a vector c ∈ �m
2
, we will use (−1)c ∈ �m to denote

the vector whose coordinates are given by (−1)ci = (−1)ci .

For a pair of vectors c, c′, we have 〈(−1)c, (−1)c′ 〉 =
1 − 2Δ(c, c′) . For each vertex c ∈ D associate vectors

{bc,h = (−1)c+h ⊗ (−1)c+h|h ∈ H}. Notice that for a pair

of vectors bc,h, bc′,h′ we have,

〈bc,h, bc′,h′ 〉 = 〈(−1)c+h, (−1)c′+h′ 〉2 = (1−2Δ(c+h, c′+h′))2 .

Since the distance of the code H is 1
2
, we have

〈bc,h, bc,h′ 〉 = (1 − 2Δ(h, h′))2 =

⎧⎪⎪⎨⎪⎪⎩
1 if h = h′

0 if h � h′

In other words, for every vertex c, the corresponding

SDP vectors are orthonormal. The objective value of the

SDP solution is given by,

OBJ = �
c∈D,h,h′∈H

�
q∈T

1

R

∑
�∈H

〈bc+h′,�+h′ , bc+q+h,�+h〉
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=
1

R
�

c∈D,h∈H
q∈T

∑
�∈H

(1 − 2Δ(c + h′ + � + h′, c + q + h + � + h))2

= �
c∈D,h∈H

�
q∈T

[
(1 − 2Δ(0, q))2

]
�

(
1 − 2t

N

)2

where t is the number of queries made by the canonical

tester T for C.
Soundness.: Let � : D → H be an arbitrary

labelling of the Unique Games instance Γ(C,T ). For

each p ∈ H , define a function fp : D → [0, 1] as follows,

fp(c) = �
h∈H

[
�[�(c + h) = p + h]

]
.

The fraction of constraints satisfied by the labelling �
is given by,

�
c∈D,h,h′∈H

q∈T

∑
p∈H
�[�(c + h′) = p + h′] · �[�(c + q + h) = p + h]

= �
c∈D

q ∈T

∑
p ∈H

�
h′∈H
�[�(c + h′) = p + h′] · �

h∈H
�[�(c + q + h) = p +h]

= �
c∈D
�

q∈T

∑
p∈H

fp(c) fp(c + q) =
∑
p∈H

〈 fp,G fp〉 (V.1)

where G = Cay(C⊥,T ) is the graph associated with the

code C⊥ and tester T . The expectation of the function

fp is given by,

�
c∈D

fp(c) = �
c∈D,h∈H

[
�(c + h) = p + h

]

= �
c∈D,h∈H

[
�(c) = p + h

]
=

1

|H| =
1

R
.

where we used the fact that c + h, h) ∼ (c, h). Since fp

is bounded in the range [0, 1] we have,

〈 fp, fp〉 = �
c∈D

[ fp(c)2] � �
c∈D

[ fp(c)] =
1

R
.

Applying Corollary IV.8, we get that for each p,

〈 fp,G fp〉 �
1

R
· min

k∈[0, D
5
]

(
1 − 2s(k) +

3k

R1/2

)
.

Substituting the previous equation in to (V.1), we get

the desired conclusion.
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