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Abstract—The class of two-spin systems contains several
important models, including random independent sets and the
Ising model of statistical physics. We show that for both the
hard-core (independent set) model and the anti-ferromagnetic
Ising model with arbitrary external field, it is NP-hard to
approximate the partition function or approximately sample
from the model on regular graphs when the model has non-
uniqueness on the corresponding regular tree. Together with
results of Jerrum–Sinclair, Weitz, and Sinclair–Srivastava–
Thurley giving FPRAS’s for all other two-spin systems except
at the uniqueness threshold, this gives an almost complete
classification of the computational complexity of two-spin
systems on bounded-degree graphs.

Our proof establishes that the normalized log-partition
function of any two-spin system on bipartite locally tree-like
graphs converges to a limiting “free energy density” which
coincides with the (non-rigorous) Bethe prediction of statistical
physics. We use this result to characterize the local structure of
two-spin systems on locally tree-like bipartite expander graphs,
which then become the basic gadgets in a randomized reduction
to approximate MAX–CUT. Our approach is novel in that
it makes no use of the second moment method employed in
previous works on these questions.

Keywords-spin system, hard-core model, independent set,
Ising model, Bethe free energy

I. INTRODUCTION

Spin systems are stochastic models defined by local inter-
actions on networks. The class of spin systems includes well-
known combinatorial counting and constraint satisfaction
problems. In this paper we classify the complexity of ap-
proximating the partition function for all homogeneous two-
spin systems on bounded-degree graphs.

When interactions favor agreement of adjacent spins, the
model is said to be ferromagnetic. Jerrum and Sinclair [1]
gave a fully polynomial-time randomized approximation
scheme (FPRAS) for approximating the partition function
(the normalizing constant in the probability distribution) of
the ferromagnetic Ising model, which covers all ferromag-
netic two-spin systems. For anti-ferromagnetic systems such
as the hard-core and anti-ferromagnetic Ising models, the
complexity of approximating the partition function depends
on the model parameters, and is known to be NP-hard when
the interactions are sufficiently strong. Our first main result
establishes that the computational transition for such models

on 𝑑-regular graphs is located precisely at the uniqueness
threshold (see Defn. I.6) for the corresponding model on
the 𝑑-regular tree.

Theorem 1. For 𝑑 ≥ 3 and 𝜆 > 𝜆𝑐(𝑑) =
(𝑑−1)𝑑−1

(𝑑−2)𝑑
, unless

NP = RP there exists no FPRAS for the partition function of
the hard-core model with fugacity 𝜆 on 𝑑-regular graphs.

The transition point 𝜆𝑐(𝑑) is the uniqueness threshold
for the hard-core model on the 𝑑-regular tree: it marks the
point above which distant boundary conditions have a non-
vanishing influence on the spin at the root. In a seminal
paper [2], Weitz used computational tree methods to provide
an FPTAS for the partition function of the hard-core model
on graphs of maximum degree 𝑑 at any 𝜆 < 𝜆𝑐(𝑑). Together
with Weitz’s result, Thm. 1 completes the classification
of the complexity of the hard-core model except at the
threshold 𝜆𝑐.

Previously it was shown that there is no FPRAS for the
hard-core model at 𝜆𝑑 ≥ 10000 [3]. In the case of 𝜆 = 1
this was improved to 𝑑 ≥ 25 [4], [5], using random regular
bipartite graphs as basic gadgets in a hardness reduction.
Mossel et al. [6] showed that local MCMC algorithms are
exponentially slow for 𝜆 > 𝜆𝑐(𝑑), and conjectured that 𝜆𝑐
is in fact the threshold for existence of an FPRAS.

The first rigorous result establishing a computational
transition at the uniqueness threshold appeared in [7], where
hardness was shown for 𝜆𝑐(𝑑) < 𝜆 < 𝜆𝑐(𝑑) + 𝜖(𝑑) for
some 𝜖(𝑑) > 0. The proof relies on a detailed analysis
of the hard-core model on random bipartite graphs, which
are then used in a randomized reduction to MAX-CUT.
More precisely the result of [7] gives hardness subject to
a technical condition which was an artifact of a difficult
second moment calculation from [6], and which could only
be verified for 𝜆 < 𝜆𝑐(𝑑)+𝜖(𝑑). Hardness was subsequently
shown by Galanis et al. [8] for all 𝜆 > 𝜆𝑐(𝑑) when 𝑑 ∕= 4, 5
by verifying the technical condition of [7].

In this paper we follow a different approach which is
more conceptual and completely circumvents second mo-
ment method calculations. Moreover the same method of
proof gives the analogous result for anti-ferromagnetic Ising
models with arbitrary external field:
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Theorem 2. For 𝑑 ≥ 3, 𝐵 ∈ ℝ and 𝛽 < 𝛽𝑐,af(𝐵, 𝑑) < 0,
unless NP = RP there does not exist an FPRAS for the
partition function of the anti-ferromagnetic Ising model with
inverse temperature 𝛽 and external field 𝐵 on 𝑑-regular
graphs.

Here 𝛽𝑐,af(𝐵, 𝑑) denotes the uniqueness threshold for the
anti-ferromagnetic Ising model with external field 𝐵 on
the 𝑑-regular tree. Extending the methods of Weitz [2],
Sinclair et al. [9] (see also [10]) gave an FPTAS for the anti-
ferromagnetic Ising model on 𝑑-regular graphs at inverse
temperature 𝛽 > 𝛽𝑐,af(𝐵, 𝑑), so together with Thm. 2 this
again establishes that the computational transition coincides
with the tree uniqueness threshold.

The hard-core and anti-ferromagnetic Ising models
together encompass all (non-degenerate) homogeneous two-
spin systems on 𝑑-regular graphs (see §III-A). Thus, the
results of [2], [1], [9] combined with Thms. 1 and 2 give
a full classification of the computational complexity of
approximating the partition function for (homogeneous) two-
spin systems on 𝑑-regular graphs, except at the uniqueness
thresholds 𝜆𝑐(𝑑) and 𝛽𝑐,af(𝐵, 𝑑).

In fact, we will show inapproximability in non-uniqueness
regimes in a strong sense: not only does there not exist an
FPRAS, but for any fixed choice of model parameters and 𝑑
there exists 𝑐 > 0 such that it is NP-hard even to approximate
the partition function within a factor of 𝑒𝑐𝑛 on the class of
𝑑-regular graphs.

Independent results of Galanis–Štefankovič–Vigoda

In a simultaneous and independent work, Galanis,
Štefankovič and Vigoda [11] established the result of
Thm. 1, and Thm. 2 in the case of zero external field
(𝐵 = 0). Their methods differ from ours: they analyze the
second moment of the partition function on random bipartite
𝑑-regular graphs, and establish the condition necessary to ap-
ply the approach of [7]. They analyze a difficult optimization
of a real function in several variables by relating the problem
to certain tree recursions.

A. Reduction to MAX-CUT via bipartite graphs

Our proof is based on a detailed characterization (Thm. 5)
of the local structure of anti-ferromagnetic two-spin systems
on symmetric bipartite 𝑑-regular locally tree-like graphs.
Specifically, we show that the joint distribution of all the
spins in a large neighborhood of a typical vertex in the graph
converges to a known (Gibbs) measure on the 𝑑-regular tree.
Under the additional assumption that that the graph is an
edge expander, when the model has non-uniqueness on the
𝑑-regular tree the spin distribution on the graph is divided
into + and − phases where one or the other side of the
graph has a linear number more vertices with + spin.

Our main results Thms. 1 and 2 are then proved by
a variation on the construction of [7], using the bipartite
graphs in a randomized reduction to approximate MAX-CUT

on 3-regular graphs, which is known to be NP-hard [12].
First, we use Thm. 5 to construct a symmetric bipartite 𝑑-
regular locally tree-like graph 𝐺 of large constant size such
that, conditioned on the phase of the global configuration,
spins at distant vertices are asymptotically independent with
known marginals depending only on the side of the graph
(Propn. III.2).

Given a 3-regular graph 𝐻 on which we wish to approx-
imate MAX-CUT, first we take a disjoint copy 𝐺𝑣 of 𝐺 for
each vertex 𝑣 ∈ 𝐻 . After removing 3𝑘 edges from each 𝐺𝑣 ,
for each edge (𝑢, 𝑣) ∈ 𝐻 we add 𝑘 edges joining each side
of 𝐺𝑢 to the corresponding side of 𝐺𝑣 in such a way that
the resulting graph 𝐻𝐺 is 𝑑-regular.

The connections between gadgets do not substantially
change the spin distributions inside them, and in particular
the ± phases remain. The anti-ferromagnetic nature of the
interaction, however, results in neighboring copies of 𝐺
in 𝐻𝐺 preferring to be in opposing phases. Using the
asymptotic conditional independence result Propn. III.2 we
can estimate the partition function for the model on 𝐻𝐺

restricted to configurations of given phase on each copy
of 𝐺 within a factor of 𝑒𝜖∣𝐻∣ (Lem. III.4). We find that
the distribution is concentrated on configurations where the
vector of phases gives a good cut of 𝐻 , and the effect
is strengthened as 𝑘 is increased. Thus, for any 𝜖 > 0,
by taking 𝑘 (hence 𝐺) to be sufficiently large a (1 + 𝜖)-
approximation of MAX-CUT(𝐻) can be determined from the
partition function of the model on 𝐻𝐺, thereby completing
the reduction.

Our reduction depends crucially on the detailed picture of
the spin distribution developed in Thm. 5 and Propn. III.2.
Using methods developed in [13], these results in turn are
obtained as consequences of precise asymptotics for the
partition function of two-spin models on bipartite 𝑑-regular
graphs: we show that the log-partition function, normalized
by the number of vertices in the graph, has an asymptotic
value, the “free energy density,” which is easily computed
from the (non-rigorous) “Bethe prediction” of statistical
physics (see §II). This is a result of independent interest,
since lower bounds for partition functions on graphs have
proved to be in general challenging. Our proof avoids the
use of the second moment method and its heavy calculations
and instead bounds the derivative of the partition function
directly using properties of Gibbs measures on trees. Asymp-
totics for the partition function on general tree-like graphs
were established for the ferromagnetic Ising model in [14],
[15], [16], and for more general spin systems in uniqueness
regimes in [16]. Our result for anti-ferromagnetic models
is stated somewhat informally as follows; for the precise
statement see Thm. 4.

Theorem 3. For any non-degenerate homogeneous two-spin
model on bipartite 𝑑-regular locally tree-like graphs, the log-
partition function normalized by the number of vertices has
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an asymptotic value which coincides with the Bethe free
energy prediction.

We now formally introduce the models which we consider.
We then define the notion of local (weak) convergence of
graphs and give precise statements of our results on the
partition function (Thm. 4) and local structure (Thm. 5) of
these models on bipartite graphs.

B. Definition of spin systems

Let 𝐺 = (𝑉,𝐸) be a finite undirected graph, and X a
finite alphabet of spins. A spin system or spin model on 𝐺 is
a probability measure on the space of (spin) configurations
𝜎 ∈ X 𝑉 of form

𝜈
𝜓
𝐺(𝜎) =

1

𝑍𝐺(𝜓)

∏
(𝑖𝑗)∈𝐸

𝜓(𝜎𝑖, 𝜎𝑗)
∏
𝑖∈𝑉

𝜓(𝜎𝑖), (I.1)

where 𝜓 is a symmetric function X 2 → ℝ≥0, 𝜓 is a positive
function X → ℝ≥0, and 𝑍𝐺(𝜓) is the normalizing constant,
called the partition function. The pair 𝜓 ≡ (𝜓,𝜓) is called
a specification for the spin system (I.1).

In this paper we consider spin systems with an alphabet
of size two; without loss X ≡ {±1}. The Ising model on
𝐺 at inverse temperature 𝛽 and external field 𝐵 is given by

𝜈𝛽,𝐵𝐺 (𝜎) =
1

𝑍𝐺(𝛽,𝐵)

∏
(𝑖𝑗)∈𝐸

𝑒𝛽𝜎𝑖𝜎𝑗

∏
𝑖∈𝑉

𝑒𝐵𝜎𝑖 . (I.2)

The hard-core (or independent set) model on 𝐺 at activity
or fugacity 𝜆 is given by

𝜈𝜆𝐺(𝜎) =
1

𝑍𝐺(𝜆)

∏
(𝑖𝑗)∈𝐸

1{𝜎̄𝑖𝜎̄𝑗 ∕= 1}
∏
𝑖∈𝑉

𝜆𝜎̄𝑖 (I.3)

where 𝜎̄ ≡ 1{𝜎 = +1} = (1 + 𝜎)/2. Our definition (I.3)
is trivially equivalent to the standard definition of the hard-
core model which has spin 0 in place of −1, but we take
X = {±1} throughout to unify the notation.

C. Local convergence and the Bethe prediction

If 𝐺 is any graph and 𝑣 a vertex in 𝐺, write 𝐵𝑡(𝑣) for
the subgraph induced by the vertices of 𝐺 at graph distance
at most 𝑡 from 𝑣, and ∂𝑣 ≡ 𝐵1(𝑣)∖{𝑣} for the neighbors
of 𝑣. We let 𝑇 ≡ (𝑇, 𝑜) denote a general tree with root 𝑜,
with 𝑇 𝑡 ≡ 𝐵𝑡(𝑜) ⊆ 𝑇 the subtree of depth 𝑡. We also fix
𝑑 throughout and write 𝕋 ≡ (𝕋, 𝑜) for the rooted 𝑑-regular
tree.

Definition I.1. Let 𝐺𝑛 = (𝑉𝑛 = [𝑛], 𝐸𝑛) be a sequence
of (random) finite undirected graphs, and let 𝐼𝑛 denote a
uniformly random vertex in 𝑉𝑛. The sequence 𝐺𝑛 is said
to converge locally to the 𝑑-regular tree 𝕋 if for all 𝑡 ≥ 0,
𝐵𝑡(𝐼𝑛) converges to 𝕋

𝑡 in distribution with respect to the
joint law ℙ𝑛 of (𝐺𝑛, 𝐼𝑛): that is, lim𝑛→∞ ℙ𝑛(𝐵𝑡(𝐼𝑛) ∼=
𝕋
𝑡) = 1 (where ∼= denotes graph isomorphism).

We write 𝔼𝑛 for expectation with respect to ℙ𝑛 and
impose the following integrability condition on the degree
of 𝐼𝑛:

Definition I.2. The sequence 𝐺𝑛 is uniformly sparse if the
random variables ∣∂𝐼𝑛∣ are uniformly integrable, that is, if

lim
𝐿→∞

lim sup
𝑛→∞

𝔼𝑛[∣∂𝐼𝑛∣1{∣∂𝐼𝑛∣ ≥ 𝐿}] = 0.

We assume throughout that 𝐺𝑛 (𝑛 ≥ 1) is a uniformly
sparse graph sequence converging locally to the 𝑑-regular
tree 𝕋; this setting is hereafter denoted 𝐺𝑛 →loc 𝕋, and
we write 𝑍𝑛 ≡ 𝑍𝐺𝑛

(𝜓). The free energy density for a
specification 𝜓 on 𝐺𝑛 is defined by

𝜙 ≡ lim
𝑛→∞𝜙𝑛 ≡ lim

𝑛→∞
1

𝑛
𝔼𝑛[log𝑍𝑛], (I.4)

provided the limit exists. For ferromagnetic spin systems on
a broad class of locally tree-like graphs, heuristic methods
from statistical physics yield an explicit (conjectural)
formula for the value of 𝜙, the so-called “Bethe prediction”
Φ whose definition we recall in §II. For anti-ferromagnetic
two-spin models, the Bethe prediction is well-defined only
on graph sequences 𝐺𝑛 which are nearly bipartite, in the
following sense: let 𝕋+ denote the 𝑑-regular tree 𝕋 with
vertices colored +1 (black) or −1 (white) according to
whether they are at even or odd distance from the root 𝑜; let
𝕋− be 𝕋+ with the colors reversed. Let T be the random
tree which equals 𝕋+ or 𝕋− with equal probability; write P
for the law of T and E for expectation with respect to P.

Definition I.3. For 𝐺𝑛 →loc 𝕋, we say the 𝐺𝑛 are nearly
bipartite, and write 𝐺𝑛 →loc T (equivalently 𝐺𝑛 →loc P), if
there exists a (not necessarily proper) black-white coloring
of 𝐺𝑛 such that for all 𝑡 ≥ 0, 𝐵𝑡(𝐼𝑛)→ T𝑡 in distribution.

The precise statement of Thm. 3 is then as follows:

Theorem 4. Let 𝜓 specify a non-degenerate homogeneous
two-spin system.

(a) If 𝜓 is ferromagnetic, then 𝜙 exists for any 𝐺𝑛 →loc 𝕋

and equals Φ{𝕋} as defined by (II.2) (and given more
explicitly by (II.4)).

(b) If 𝜓 is anti-ferromagnetic, then 𝜙 exists for any 𝐺𝑛 →loc

T and equals Φ{𝕋±} as defined in (II.2) (and given more
explicitly by (II.3)).

Remark I.4. Hereafter we treat 𝐺𝑛 →loc 𝕋 and 𝐺𝑛 →loc T
in a unified manner when possible by writing 𝐺𝑛 →loc ℙ𝒯
for ℙ𝒯 the uniform measure on 𝒯 , which always denotes
either {𝕋} or {𝕋±}. We write 𝔼𝒯 for expectation with
respect to ℙ𝒯 .

D. Local structure of measures

Under some additional assumptions on 𝐺𝑛, Thm. 4,
together with the arguments of [13], characterizes the
asymptotic local structure of the spin systems 𝜈𝑛 ≡ 𝜈𝐺𝑛

.
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For 𝐺𝑛 →loc T, let 𝜏 : 𝑉𝑛 → {±} denote the given black-
white coloring of the vertices of 𝐺𝑛 (hereafter writing ±
as shorthand for ±1). We say that 𝐺𝑛 is symmetric if it is
isomorphism-invariant to reversing the black-white coloring.
For a spin configuration 𝜎 ∈ 𝐺𝑛 we define the phase of 𝜎
to be

𝑌 (𝜎) ≡ sgn
∑
𝑖

𝜏𝑖𝜎𝑖, sgn𝑥 ≡ 1{𝑥 ≥ 0} − 1{𝑥 < 0}.

Let 𝜈±𝑛 denote the measure 𝜈𝑛 conditioned on the configu-
rations of ± phase: that is,

𝜈±𝑛 (𝜎) ≡
1

𝑍±𝑛
1{𝑌 (𝜎) = ±}

∏
(𝑖𝑗)∈𝐸𝑛

𝜓(𝜎𝑖, 𝜎𝑗)
∏
𝑖∈𝑉𝑛

𝜓(𝜎𝑖),

where 𝑍±𝑛 is the partition function restricted to the ±
configurations. We will characterize the local structure of
the measures 𝜈±𝑛 on graph sequences satisfying an edge-
expansion assumption, as follows:

Definition I.5. A graph 𝐺 = (𝑉,𝐸) is a (𝛿, 𝛾, 𝜆)-edge
expander if, for any set of vertices 𝑆 ⊆ 𝑉 with 𝛿∣𝑉 ∣ ≤
∣𝑆∣ ≤ 𝛾∣𝑉 ∣, there are at least 𝜆∣𝑆∣ edges joining 𝑆 to 𝑉 ∖𝑆.

The measures 𝜈±𝑛 will be related to Gibbs measures on
the infinite tree. In particular, recall the definition of (Gibbs)
uniqueness:

Definition I.6. For a rooted tree 𝑇 , let G𝑇 denote the
set of Gibbs measures for the specification 𝜓 on 𝑇 . The
specification is said to have (Gibbs) uniqueness (on 𝑇 ) if
∣G𝑇 ∣ = 1.

Recalling Rmk. I.4, let G𝒯 denote the space of mappings
𝜈 : 𝑇 �→ 𝜈(𝑇 ), 𝑇 ∈ 𝒯 (with G{𝕋} ↪→ G{𝕋±} in the obvious
manner). When 𝒯 = {𝕋±} we write 𝜈± as shorthand for
𝜈(𝕋±).

Definition I.7. An element 𝜈 ∈ G𝒯 is translation-invariant
if for (𝑇, 𝑜) ∈ 𝒯 and any vertex 𝑥 ∈ 𝑇 , the law on spin
configurations of (𝑇, 𝑥) induced by 𝜈(𝑇, 𝑜) coincides with
𝜈(𝑇, 𝑥).

(If 𝒯 = {𝕋} then the preceding agrees with the usual
definition of translation-invariance, whereas if 𝒯 = {𝕋±}
then the projections 𝜈(𝕋±) are semi-translation-invariant.)

For a two-spin model, let 𝜈+ (resp. 𝜈−) be the elements of
G𝒯 defined by conditioning on all spins identically equal to
1 on the 𝑡-th level of black (resp. white) vertices and taking
the weak limit as 𝑡 → ∞; the 𝜈± are translation-invariant.
The projections 𝜇+ ≡ 𝜈++ ≡ 𝜈+(𝕋+) and 𝜇− ≡ 𝜈−+ ≡
𝜈−(𝕋+), disregarding the black-white coloring on 𝕋+, are
the extremal semi-translation-invariant Gibbs measures for
the model on 𝕋, and by symmetry

𝜇+ = 𝜈−− ≡ 𝜈−(𝕋−), 𝜇− = 𝜈+− ≡ 𝜈+(𝕋−).

The model has uniqueness if and only if 𝜇+ = 𝜇−.

Definition I.8. For 𝐺𝑛 ∼ ℙ𝑛 a random graph sequence and
𝜈𝑛 any law on spin configurations 𝜎𝑛 of 𝐺𝑛, we say that
ℙ𝑛⊗𝜈𝑛 converges locally (weakly) to ℙ𝒯 ⊗𝜈 (for 𝜈 ∈ G𝒯 ),
and write ℙ𝑛 ⊗ 𝜈𝑛 →loc ℙ𝒯 ⊗ 𝜈, if it holds for all 𝑡 ≥ 0
that (𝐵𝑡(𝐼𝑛), 𝜎𝐵𝑡(𝐼𝑛)) converges in distribution to (𝑇 𝑡, 𝜎𝑡)
where 𝑇 ∼ ℙ𝒯 and 𝜎𝑡 is the restriction to 𝑇 𝑡 of 𝜎 ∼ 𝜈(𝑇 ).

Remark I.9. In [13, Defn. 2.3] three forms 𝐴,𝐵,𝐶 of
local convergence of measures are distinguished, with 𝐶 ⇒
𝐵 ⇒ 𝐴. Our Defn. I.8 corresponds to the weakest form 𝐴:
however, as explained in the proof of [13, Thm. 2.4 (II)], if
the (𝜈(𝑇 ))𝑇∈𝒯 are extremal Gibbs measures then 𝐴,𝐵,𝐶
are easily seen to be equivalent, so convergence in the sense
of Defn. I.8 implies convergence in the a priori stronger
sense of

∥ℙ𝑛[(𝐵𝑡(𝐼𝑛), 𝜎𝐵𝑡(𝐼𝑛)
) = ⋅]− ℙ𝒯 [(𝑇 𝑡, 𝜎𝑇 𝑡) = ⋅]∥TV → 0.

Theorem 5. For any anti-ferromagnetic two-spin system on
𝐺𝑛 →loc T, the following hold:
(a) If the 𝐺𝑛 are symmetric, then ℙ𝑛⊗𝜈𝑛 →loc P⊗ [(𝜈++

𝜈−)/2].
(b) If for all 𝛿 > 0 the 𝐺𝑛 are (𝛿, 1/2, 𝜆𝛿)-edge expanders

for some 𝜆𝛿 > 0, then

ℙ𝑛 ⊗ 𝜈±𝑛 →loc P⊗ 𝜈±. (I.5)

Further, with ⟨ ⟩𝜇 denoting expectation with respect to
the Gibbs measure 𝜇,

1

𝑛
𝑌 (𝜎)

∑
𝑖∈𝑉

𝜏𝑖𝜎𝑖 → 1

2
[⟨𝜎𝑜⟩𝜇+−⟨𝜎𝑜⟩𝜇− ] in probability.

(I.6)

Outline of the paper

In §II we review the Bethe prediction in the 𝑑-regular
setting. In §III we prove the approximate conditional in-
dependence statement (Propn. III.2) and demonstrate the
randomized reduction to MAX-CUT to prove our main
results Thms. 1 and 2. The proofs of Thm. 3 (in the
form Thm. 4) and Thm. 5 are given in the full ver-
sion of this extended abstract, which may be found at
http://arxiv.org/abs/1203.2602.

II. THE BETHE PREDICTION

In this section we review the Bethe prediction which gives
the limiting free energy density 𝜙 for two-spin models on
graph sequences 𝐺𝑛 →loc T in Thm. 4. We refer to [17],
[16] for more general background and references on the
Bethe prediction, and here we describe only its specialization
to the 𝑑-regular setting.

Given 𝒯 , let 𝒯e denote the set of trees 𝑇 rooted not
at a vertex but at an oriented edge 𝑥 → 𝑦, obtained by
distinguishing an oriented edge in 𝑇 ∈ 𝒯 and forgetting the
root. Elements of 𝒯 , 𝒯e are regarded modulo isomorphism:
thus if 𝒯 = {𝕋} then 𝒯e = {(𝕋, 𝑜→ 𝑗)}, and if 𝒯 = {𝕋±}
then 𝒯e = {(𝕋±, 𝑜→ 𝑗)}.
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LetΔ denote the (∣X ∣−1)-dimensional simplex of proba-
bility measures on X . A message is a mapping ℎ : 𝒯e → Δ;
we write ℋ ≡ ℋ(𝒯 ) for the space of messages on 𝒯e. For
𝑇 ∈ 𝒯 , 𝑥→ 𝑦 in 𝑇 , and ℎ ∈ ℋ, write ℎ𝑥→𝑦 for the image
of (𝑇, 𝑥→ 𝑦) ∈ 𝒯e under ℎ, and define

Φ𝑇 (ℎ) ≡ Φvx
𝑇 (ℎ)− Φe

𝑇 (ℎ)

where

Φvx
𝑇 (ℎ) ≡ log

{∑
𝜎𝑜

𝜓(𝜎𝑜)
∏
𝑗∈∂𝑜

(∑
𝜎𝑗

𝜓(𝜎𝑜, 𝜎𝑗)ℎ𝑗→𝑜(𝜎𝑗)

)}
,

Φe
𝑇 (ℎ) ≡

1

2

∑
𝑗∈∂𝑜

log

{ ∑
𝜎𝑜,𝜎𝑗

𝜓(𝜎𝑜, 𝜎𝑗)ℎ𝑜→𝑗(𝜎𝑜)ℎ𝑗→𝑜(𝜎𝑗)

}
.

The Bethe free energy functional on ℋ(𝒯 ) is defined by
Φ𝒯 (ℎ) ≡ 𝔼𝒯 [Φ𝑇 (ℎ)].

The Bethe or belief propagation (BP) recursion is the map

BP ≡ BP𝒯 : ℋ(𝒯 )→ ℋ(𝒯 ),
(BPℎ)𝑥→𝑦(𝜎) ≡ F̄[(ℎ𝑣→𝑥)𝑣∈∂𝑥∖𝑦]

for F̄ : Δ𝑑−1 → Δ defined by

[F̄(ℎ)](𝜎) ∼= 𝜓(𝜎)

𝑑−1∏
𝑗=1

{∑
𝜎𝑗

𝜓(𝜎, 𝜎𝑗)ℎ𝑗(𝜎𝑗)

}
, (II.1)

where ℎ ≡ (ℎ1, . . . , ℎ𝑑−1) ∈ Δ𝑑−1 and ∼= denotes
equivalence up to a positive normalizing factor.

Definition II.1. For any homogeneous spin system on
𝐺𝑛 →loc ℙ𝒯 , the Bethe prediction is that the free energy
density 𝜙 of (I.4) exists and equals

Φ ≡ Φ𝒯 ≡ sup
ℎ∈ℋ★

Φ𝒯 (ℎ) (II.2)

with ℋ★ ≡ ℋ★(𝒯 ) ⊆ ℋ(𝒯 ) the set of all fixed points of
BP𝒯 .

For ℎ ∈ Δ write F(ℎ) ≡ F̄(ℎ, . . . , ℎ): then ℋ★({𝕋})
corresponds simply to the fixed points of F in simplex.
For ℎ ∈ ℋ({𝕋±}) we write ℎ± ≡ ℎ(𝕋±, 𝑜 → 𝑗) ∈ Δ:
then any ℎ ∈ ℋ★({𝕋±}) must satisfy ℎ± = F(ℎ∓), so
ℋ★({𝕋±}) corresponds to the fixed points of the double
recursion F(2) ≡ F ∘ F.

In verifying the Bethe prediction we will identify the
fixed points attaining the supremum in (II.2). In the
anti-ferromagnetic case, with ℎ+ (resp. ℎ−) denoting the
elements ℎ ∈ ℋ★({𝕋±}) maximizing ℎ+(+) (resp. ℎ−(+)),
we will see that

Φ{𝕋±} = Φ{𝕋±}(ℎ
+) = Φ{𝕋±}(ℎ

−). (II.3)

Explicitly, ℎ++ = ℎ−− (resp. ℎ+− = ℎ−+) will be the fixed points
of F(2) giving maximal (resp. minimal) probability to spin
+. The ferromagnetic case reduces to the Ising model: here,
with ℎ± denoting the elements of ℋ★({𝕋}) maximizing
ℎ𝑜→𝑗(±) on 𝕋, we will see that

Φ{𝕋} = Φ{𝕋}(ℎsgn𝐵). (II.4)

III. COMPUTATIONAL HARDNESS

In this section we prove the hardness results Thms. 1
and 2. In §III-A we show that for purposes of computing
𝜙 on 𝑑-regular locally tree-like graph sequences, all non-
degenerate two-spin systems reduce to the Ising or hard-
core models. In §III-B we construct and analyze the bipartite
expander gadgets to be used in the reduction to MAX-CUT.
We complete the reduction in §III-C, concluding the proof.

A. Reduction to Ising and hard-core on 𝑑-regular graphs

We now show that for the computation of the free energy
density, all (non-degenerate) homogeneous two-spin models
on graph sequences 𝐺𝑛 →loc T reduce to either the Ising or
hard-core model. Indeed, let 𝜓 ≡ (𝜓,𝜓) be a specification
for a two-spin system with alphabet X = {±}. If we define
𝜓′ by 𝜓′(𝜎, 𝜎′) ≡ 𝜓(𝜎, 𝜎′)𝜓(𝜎)1/𝑑𝜓(𝜎′)1/𝑑, and 𝜓′(𝜎) ≡ 1,
then
1

𝑛
log𝑍𝐺(𝜓)− 1

𝑛
log𝑍𝐺(𝜓

′) = 𝑂(𝔼𝑛[∣∂𝐼𝑛∣1{∣∂𝐼𝑛∣ ∕= 𝑑}]),
which for 𝐺𝑛 →loc 𝕋 tends to zero as 𝑛 →∞ by uniform
sparsity. Therefore we assume without loss 𝜓 ≡ 1, and
consider the possibilities for 𝜓:
(1) If 𝜓 > 0, then 𝜓(𝜎, 𝜎′) = 𝑒𝐵0𝑒𝛽𝜎𝜎

′
𝑒𝐵𝜎/𝑑𝑒𝐵𝜎′/𝑑 for

𝛽,𝐵,𝐵0 defined by

𝜓(+,+)

𝜓(−,−) = 𝑒4𝐵/𝑑,
𝜓(+,+)𝜓(−,−)

𝜓(+,−)2 = 𝑒4𝛽 ,

𝜓(+,+)𝜓(+,−)2𝜓(−,−) = 𝑒4𝐵0 ,

so 𝜙𝑛−(𝑑/2)𝐵0 is asymptotically equal to the free en-
ergy density for the Ising model on 𝐺𝑛 with parameters
(𝛽,𝐵).

(2) If 𝜓(+,−) = 𝜓(−,+) > 0 and 𝜓(−,−) > 𝜓(+,+) =
0, then, recalling 𝜎̄ ≡ 1{𝜎 = +}, we have 𝜓(𝜎, 𝜎′) =
𝑒𝐵01{𝜎̄𝜎̄′ ∕= 1}𝜆𝜎̄/𝑑𝜆𝜎̄′/𝑑 for 𝐵0, 𝜆 defined by

𝜓(−,−) ≡ 𝑒𝐵0 ,
𝜓(+,−)
𝜓(−,−) ≡ 𝜆1/𝑑.

Therefore 𝜙𝑛− (𝑑/2)𝐵0 is asymptotically equal to the
free energy density for the independent set model on
𝐺𝑛 at fugacity 𝜆.

The remaining two-spin models are degenerate, with free
energy density which is easy to calculate:
(3) Suppose 𝜓(+,−) = 𝜓(−,+) = 0, so that 𝜓(𝜎, 𝜎′)

may be written as 1{𝜎 = 𝜎′}𝑒𝐵0𝑒𝐵𝜎/𝑑𝑒𝐵𝜎′/𝑑. Then

𝜙𝑛 = 𝐵0
𝔼𝑛[∣𝐸𝑛∣]

𝑛
+𝐵+

1

𝑛
𝔼𝑛

[ 𝑘(𝐺𝑛)∑
𝑗=1

log(1+𝑒−2𝐵∣𝐶𝑗 ∣)
]

where the sum is taken over the connected components
𝐶1, . . . , 𝐶𝑘(𝐺𝑛) of 𝐺𝑛. We claim 𝜙𝑛 → 𝜙 = (𝑑/2)𝐵0+
𝐵: we have lim inf𝑛→∞(𝜙𝑛 − 𝜙) ≥ 0 (using uniform
sparsity), and

lim sup
𝑛→∞

(𝜙𝑛 − 𝜙) ≤ lim sup
𝑛→∞

log 2
𝔼𝑛[𝑘(𝐺𝑛)]

𝑛
,
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so it suffices to show 𝔼𝑛[𝑘(𝐺𝑛)]/𝑛 → 0. Indeed, if
this fails then there exists 𝜖 > 0 such that for infinitely
many 𝑛, the event {𝑘(𝐺𝑛) ≥ 𝜖𝑛} occurs with ℙ𝑛-
probability at least 𝜖. On this event, 𝐺𝑛 has at least
𝜖𝑛/2 components of size ≤ 2/𝜖, so for 𝑡 > log𝑘(2/𝜖),
lim sup𝑛→∞ ℙ𝑛(𝐵𝑡(𝐼𝑛) ∕∼= 𝕋

𝑡) ≥ 𝜖2/2 > 0, in
contradiction of 𝐺𝑛 →loc 𝕋.

(4) Suppose instead 𝜓(+,+) = 𝜓(−,−) = 0 while
𝜓(+,−) = 𝜓(−,+) > 0. If the 𝐺𝑛 are not exactly
bipartite then 𝜙𝑛 = −∞. If they are exactly bipartite
then

𝜙𝑛 = log𝜓(+,−)𝔼𝑛[∣𝐸𝑛∣]
𝑛

+ log 2
𝔼𝑛[𝑘(𝐺𝑛)]

𝑛
,

and by the observation of (3) this converges to 𝜙 =
(𝑑/2) log𝜓(+,−).

B. Bipartite expander gadgets

In this section we construct the bipartite expander gadgets
to be used in the reduction to MAX-CUT (Lem. III.1) and
refine Thm. 5 to an approximate conditional independence
statement for the gadgets (Propn. III.2). We conclude with
the proof of our main results Thms. 1 and 2.

For any fixed positive integer 𝑘, 𝐺𝑘
2𝑛 will be a bipartite

graph on 2𝑛 vertices with 𝑛 even, defined as follows:
∙ Let 𝐻𝑛 be a graph on 𝑛 vertices of maximum degree 𝑑,

generated by the configuration model as follows: take a
uniformly random matching 𝔪 of [𝑑𝑛], and put an edge
(𝑖𝑗) in 𝐻𝑛 for every edge (𝑖′, 𝑗′) ∈ 𝔪 with 𝑖′ ∈ 𝑖+𝑛ℤ,
𝑗′ ∈ 𝑗 + 𝑛ℤ (self-loops and multi-edges allowed).

∙ Take 𝐺2𝑛 to be the bipartite double cover of 𝐻𝑛: the
two parts of 𝐺2𝑛 are (𝑖+)𝑛𝑖=1 and (𝑖−)𝑛𝑖=1, and we put
two edges (𝑖+, 𝑗−) and (𝑗+, 𝑖−) in 𝐺2𝑛 for every edge
(𝑖𝑗) ∈ 𝐻𝑛 (multi-edges allowed).

∙ Choose 𝑘 vertices (𝑖ℓ)𝑘ℓ=1 uniformly at random from
𝐻𝑛, and for each ℓ choose 𝑗ℓ ∈ ∂𝑖ℓ uniformly at
random. 𝐺𝑘

2𝑛 is the simple bipartite graph formed by
deleting the edges (𝑖ℓ±, 𝑗

ℓ
∓) from 𝐺2𝑛 and merging any

remaining multi-edges in the graph into single edges.
Write 𝑊± ≡ {𝑖ℓ±, 𝑗ℓ±}𝑘ℓ=1 and 𝑊 ≡𝑊+ ∪𝑊−.

The graphs 𝐺2𝑛 are 𝑑-regular with probability bounded away
from zero as 𝑛 → ∞ (see e.g. [18, Ch. 9]). The following
lemma gives their expansion property:

Lemma III.1. Let 𝑘 be fixed. For all 𝛿 > 0 there exists
𝜆𝛿 > 0 such that the 𝐺𝑘

2𝑛 are (𝛿, 1/2, 𝜆𝛿)-edge expanders
with high probability as 𝑛→∞.

Proof: By stochastic domination we may assume 𝑑 = 3.
For 𝑆 ⊂ 𝐻𝑛 with ∣𝑆∣ = 𝑚, the probability that there are
exactly 𝑗 edges in 𝐻𝑛 between 𝑆 and its complement is

𝑃𝑗,𝑚 = 𝐼𝑗,𝑚

(
3𝑚
𝑗

)(
3(𝑛−𝑚)

𝑗

)
𝑗!𝑀3(𝑚−𝑗)𝑀3(𝑛−𝑚−𝑗)
𝑀3𝑛

,

where 𝐼𝑗,𝑚 is the indicator that 𝑚 − 𝑗 is even, and 𝑀ℓ =
(ℓ−1)!! = 𝜋−1/2Γ[(ℓ+1)/2]2ℓ/2 is the number of matchings

on [ℓ] for ℓ even. By Stirling’s approximation, if 𝛿 ≤ 𝑚/𝑛 ≤
1− 𝛿 and 𝑗 = 𝛾𝑛, then

𝑃𝑗,𝑚 = 𝐼𝑗,𝑚 exp
{
−𝑛

[3
2
𝐻(𝑚/𝑛)−𝛾 log 𝛾+𝑂𝛿(𝛾)

]
+𝑜𝛿(𝑛)

}
(where 𝐻(𝑝) denotes the binary entropy function −𝑝 log 𝑝−
(1− 𝑝) log(1− 𝑝)). There are ≤ 𝑒𝑛𝐻(𝑚/𝑛) subsets of 𝐻𝑛 of
size 𝑚 so there exists 𝛾𝛿 > 0 such that with probability at
least 𝑛𝑒−𝑛𝐻(𝛿)/4, all subsets of 𝐻𝑛 of size between 𝛿𝑛 and
(1− 𝛿)𝑛 have expansion at least 𝛾𝛿 .

We now show expansion for 𝐺𝑘
2𝑛: since 𝑘 does not change

with 𝑛 and the number of edges leaving any set of vertices
decreases by at most a factor of 3 when multi-edges are
merged into single edges, it suffices to show expansion for
𝐺2𝑛. Let 𝑆± be subsets of the ± sides of 𝐺2𝑛 such that
𝑆 ≡ 𝑆+∪𝑆− has size ≤ 𝑛. If the projection 𝜋𝑆 of 𝑆 in 𝐻𝑛

has size ≤ (1 − 𝛿)𝑛, then 𝑆 has expansion at least 𝛾𝛿/2.
Suppose ∣𝜋𝑆∣ ≥ (1 − 𝛿)𝑛: without loss ∣𝑆+∣ ≥ ∣𝑆−∣, so
∣𝜋𝑆+∖𝜋𝑆−∣ ≥ (1/2−𝛿)𝑛. If there are fewer than 𝛾∣𝑆∣ edges
leaving 𝑆, then there must be at least 3(1/2−𝛿)𝑛−𝛾𝑛 edges
between 𝜋𝑆+∖𝜋𝑆− and its complement in 𝐻𝑛. A similar
analysis as above shows that for sufficiently small 𝛿 there
exists 𝛾𝛿 > 0 such that the probability 𝐺2𝑛 has such a set
𝑆 is ≤ 𝑒−𝑛(log 2)/4, and this concludes the proof.

Recall that we use 𝑊± to denote the endpoints on the
± sides of the 2𝑘 edges deleted from 𝐺2𝑛 in the formation
of 𝐺𝑘

2𝑛. Recall also the definitions of 𝜇± ∈ G𝕋, and write
ℎ± ≡ ℎ𝜇

±
𝑜→𝑗 ∈ Δ. For ℎ, ℎ′ ∈ Δ define ℎ⊗𝜓 ℎ

′ ∈ ΔX 2 by

(ℎ⊗𝜓 ℎ
′)(𝜎, 𝜎′) =

ℎ(𝜎)𝜓(𝜎, 𝜎′)ℎ(𝜎′)
𝑧(ℎ⊗𝜓 ℎ′)

, (III.1)

for 𝑧(ℎ⊗𝜓 ℎ
′) the normalizing constant.

Proposition III.2. The conditional measure 𝜈±
𝐺𝑘

2𝑛
(𝜎𝑊 = ⋅)

converges to the product measure

𝑄±𝑊 (𝜎) ≡
∏

𝑤∈𝑊+

ℎ±(𝜎𝑤)
∏

𝑤∈𝑊−
ℎ∓(𝜎𝑤).

Proof: Let 𝐵𝑡 denote the union of the balls 𝐵𝑡(𝑤) ⊆
𝐺2𝑛 over 𝑤 ∈ {𝑖ℓ±}𝑘ℓ=1; assume that 𝐵𝑡 is a disjoint union
of graphs isomorphic to 𝕋

𝑡 with internal boundary 𝑆𝑡 ≡
𝐵𝑡∖𝐵𝑡−1, which is the case with high probability. For 𝜂 ∈
X 𝑆𝑡 let

𝜉±𝑡,ℓ,𝜂(⋅) ≡ 𝜈𝐺𝑘
2𝑛
(𝜎𝑖ℓ± = ⋅ ∣ 𝜎𝑆𝑡

= 𝜂),

𝜁±𝑡,ℓ,𝜂(⋅) ≡ 𝜈𝐺𝑘
2𝑛
(𝜎𝑗ℓ± = ⋅ ∣ 𝜎𝑆𝑡

= 𝜂),

so that

𝜈𝐺2𝑛
[(𝜎𝑖ℓ+ , 𝜎𝑗ℓ−) = ⋅ ∣ 𝜎𝑆𝑡

= 𝜂] = 𝜉+𝑡,ℓ,𝜂 ⊗𝜓 𝜁
−
𝑡,ℓ,𝜂.

By Thm. 5, the conditional measures 𝜈+𝐺2𝑛
(𝜎𝐵𝑡(𝑖ℓ+) = ⋅)

converge to 𝜇+. But by (I.6), 𝑌 (𝜎) agrees with 𝑌𝑡(𝜎) ≡
sgn

∑
𝑖∈𝑉 ∖𝐵𝑡

𝜏𝑖𝜎𝑖 with high probability, so that convergence
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also holds if we replace 𝜈+𝐺2𝑛
by 𝜈±𝑡𝐺2𝑛

(⋅) ≡ 𝜈𝐺2𝑛
(⋅ ∣ 𝑌𝑡(𝜎) =

±). In particular,

𝔼2𝑛

[∥∥∥∑
𝜂

𝜈+𝑡
𝐺2𝑛
(𝜎𝑆𝑡

= 𝜂)𝜉+𝑡,ℓ,𝜂 ⊗𝜓 𝜁
−
𝑡,ℓ,𝜂 − ℎ+ ⊗𝜓 ℎ

−
∥∥∥

TV

]

= 𝔼2𝑛

[∥∥∥⟨𝜉+𝑡,ℓ,𝜎𝑆𝑡

⊗𝜓 𝜁
−
𝑡,ℓ,𝜎𝑆𝑡

⟩𝜈+𝑡
𝐺2𝑛

− ℎ+ ⊗𝜓 ℎ
−
∥∥∥

TV

]
tends to zero in the limit 𝑛 → ∞ followed by 𝑡 → ∞.
On the other hand, it is easily seen that (ℎ ⊗𝜓 ℎ

′)(1, 0) is
maximized by taking ℎ(1) and ℎ′(0) as large as possible.
But in the limit 𝑡 → ∞ the values 𝜉±𝑡,ℓ,𝜂(1), 𝜁

±
𝑡,ℓ,𝜂(1) (with

𝜂 arbitrary) are sandwiched between ℎ±(1), so it must be
that

𝔼2𝑛

[ ∑
𝜎∈{±}

〈
∥𝜉𝜎𝑡,ℓ,𝜎𝑆𝑡

− ℎ𝜎∥TV

〉
𝜈+𝑡
𝐺2𝑛

]
→ 0 (III.2)

in the limit 𝑛→∞ followed by 𝑡→∞.
We now claim that (III.2) continues to hold after removal

of the edges (𝑖ℓ±, 𝑗
ℓ
∓). Indeed,

𝜈+𝑡
𝐺2𝑛
(𝜎𝑆𝑡

= 𝜂)

𝜈+𝑡
𝐺𝑘

2𝑛
(𝜎𝑆𝑡

= 𝜂)
=

[
𝑍+𝑡
out(𝜂)𝑍in(𝜂)∑

𝜂′ 𝑍
+𝑡
out(𝜂

′)𝑍in(𝜂′)

]
[

𝑍+𝑡
out(𝜂)𝑍

𝑘
in(𝜂)∑

𝜂′ 𝑍
+𝑡
out(𝜂

′)𝑍𝑘
in(𝜂

′)

] (III.3)

where

𝑍±𝑡out(𝜂) ≡ 𝑍𝐺2𝑛∖𝐵𝑡−1
[{𝜎𝐺2𝑛∖𝐵𝑡−1

: 𝑌𝑡(𝜎) = ±, 𝜎𝑆𝑡
= 𝜂}],

𝑍in(𝜂) ≡ 𝑍𝐵𝑡
[{𝜎𝐵𝑡

: 𝜎𝑆𝑡
= 𝜂}],

𝑍𝑘
in(𝜂) ≡ 𝑍𝐵𝑡∩𝐺𝑘

2𝑛
[{𝜎𝐵𝑡

: 𝜎𝑆𝑡
= 𝜂}].

Now note that for 𝑘 bounded and 𝑡 large we have 𝑍in(𝜂) ≍
𝑍𝑘
in(𝜂) uniformly over 𝜂: for Ising interactions at non-zero

temperature this is obvious, while for the hard-core model

𝑍in(𝜂)

𝑍𝑘
in(𝜂)

=

𝑘∏
ℓ=1

{
[1− 𝜉+𝑡,ℓ,𝜂(1)𝜁

−
𝑡,ℓ,𝜂(1)][1− 𝜉−𝑡,ℓ,𝜂(1)𝜁

+
𝑡,ℓ,𝜂(1)]

}

which for 𝑡 large is ≍ 1 uniformly over 𝜂. Since the 𝜉±𝑡,ℓ,𝜂
and 𝜁±𝑡,ℓ,𝜂 are 𝜂-measurable, it follows from (III.3) that (III.2)
continues to hold with 𝜈+𝑡

𝐺𝑘
2𝑛

in place of 𝜈+𝑡
𝐺2𝑛

. Since the spins

(𝜎𝑤)𝑤∈𝑊 are independent under 𝜈±𝑡
𝐺𝑘

2𝑛
(⋅ ∣ 𝜎𝑆𝑡

), this further
implies

0 = lim
𝑡→∞ lim

𝑛→∞𝔼2𝑛

[
∥𝜈+𝑡

𝐺𝑘
2𝑛
(𝜎𝑊 = ⋅)−𝑄+

𝑊 ∥TV

]
. (III.4)

Finally, by a similar argument as before
lim𝑛→∞ 𝜈𝐺𝑘

2𝑛
(𝑌 (𝜎) = 𝑌𝑡(𝜎)) = 1, so (III.4) holds

with 𝜈+
𝐺𝑘

2𝑛
in place of 𝜈+𝑡

𝐺𝑘
2𝑛

which gives the result.

C. Randomized reduction to MAX-CUT

We now demonstrate how to use Propn. III.2 to establish
a randomized reduction from approximating the partition
function to the problem of approximate MAX-CUT on 3-
regular graphs, which is NP-hard [12]. We begin with the
following easy observation:

Lemma III.3. For anti-ferromagnetic two-spin models on
𝐺𝑛 →loc T,

lim
𝑛→∞𝔼𝑛

[
𝜈𝑛

( ∑
𝑖∈𝑉𝑛

𝜏𝑖𝜎𝑖 = 0
)]
= 0.

Proof: For the Ising model see [13, Lem. 4.1]. For the
hard-core model, let 𝐴𝑛 denote the set of vertices 𝑖 ∈ 𝑉𝑛
with 𝐵2(𝑖) isomorphic to 𝕋

2
+, the depth-two subtree of 𝕋+;

then 𝐴𝑛 is necessarily an independent set of black vertices.
The probability that

∑
𝑖∈𝐴𝑛

𝜏𝑖𝜎̄𝑖 =
∑

𝑖∈𝐴𝑛
𝜎̄𝑖 takes value 𝑗,

conditioned on all the spins (𝜎̄𝑖)𝑖/∈𝐴𝑛
, is ℙ(𝑋 = 𝑗) where

𝑋 is a binomial random variable on 𝑁 = ∣{𝑖 ∈ 𝐴𝑛 : 𝜎̄∂𝑖 ≡
0}∣ number of trials with success probability 𝜆/(1 + 𝜆). If
𝑁 ≥ 𝜖𝑛 then ℙ(𝑋 = 𝑗) = 𝑂(1/

√
𝜖𝑛) uniformly in 𝑗 (e.g.

by the Berry-Esséen theorem). If 𝑁 < 𝜖𝑛 then
∑

𝑖∈∂𝐴𝑛
𝜎̄𝑖 ≥

(∣𝐴𝑛∣ − 𝜖𝑛)/𝑑, so

1

𝑛

∑
𝑖∈𝑉𝑛

𝜏𝑖𝜎𝑖 =
2

𝑛

∑
𝑖∈𝑉𝑛

𝜏𝑖𝜎̄𝑖 − 1

𝑛

∑
𝑖∈𝑉𝑛

𝜏𝑖

< 𝜖− ∣𝐴𝑛∣/𝑛− 𝜖

𝑑
+
∣𝑉𝑛∖(𝐴𝑛 ∪ ∂𝐴𝑛)∣

𝑛
− 1

𝑛

∑
𝑖∈𝑉𝑛

𝜏𝑖.

As 𝑛 → ∞ the right-hand side tends in probability to
[−1/2+𝜖(𝑑+1)]/𝑑, which is negative for small 𝜖. Combining
the above observations concludes the proof for the hard-core
model.

Let 𝐻 be a 3-regular graph on 𝑚 vertices and construct
the bipartite graph 𝐺 = 𝐺3𝑘

2𝑛 by the procedure described
above. By Lem. III.3 and Propn. III.2, for any 𝜖 > 0 there
exists 𝑛(𝜖) large enough such that the following hold with
positive probability:

(I) 𝐺3𝑘
2𝑛 was formed by removing 3𝑘 distinct edges from

a 𝑑-regular graph 𝐺2𝑛;
(II) 𝜈𝐺3𝑘

2𝑛
(𝑌 (𝜎) = +) ≤ (1 + 𝜖)/2; and

(III) 𝜈±
𝐺3𝑘

2𝑛
(𝜎𝑊 )/𝑄

±
𝑊 (𝜎𝑊 ) ∈ [1− 𝜖, 1 + 𝜖] for all 𝜎𝑊 .

Consequently, for given 𝜖 we may find 𝐺3𝑘
2𝑛 satisfying

properties (I)-(III) within finite time by deterministic search.
We then construct from 𝐻 and 𝐺 a new graph 𝐻𝐺 as
follows:

∙ For each vertex 𝑥 ∈ 𝐻 let 𝐺𝑥 be a copy of 𝐺, and
denote by 𝑊±

𝑥 the vertices of 𝐺𝑥 corresponding to 𝑊±

in 𝐺. Let 𝐻̂𝐺 be the disjoint union of the 𝐺𝑥, 𝑥 ∈ 𝐻 .
∙ For every edge (𝑥, 𝑦) ∈ 𝐻 , add 2𝑘 edges between 𝑊+

𝑥

and 𝑊+
𝑦 and similarly 2𝑘 edges between 𝑊−

𝑥 and 𝑊−
𝑦 .

This can be done deterministically in such a way that
the resulting graph, which we denote 𝐻𝐺, is 𝑑-regular.
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We write a spin configuration on 𝐻̂𝐺 or 𝐻𝐺 as 𝜎 ≡
(𝜎𝑥)𝑥∈𝐻 where 𝜎𝑥 is the restriction of 𝜎 to 𝐺𝑥. We write
𝑌𝑥 ≡ 𝑌 (𝜎𝑥) for the phase of each 𝜎𝑥, and 𝒴(𝜎) ≡
(𝑌 (𝜎𝑥))𝑥∈𝐻 ∈ {0, 1}𝐻 . Write 𝑍𝐻𝐺(𝒴) for the partition
function for the two-spin model on 𝐻𝐺 restricted to config-
urations of phase 𝒴 , and define likewise 𝑍

ˆ𝐻𝐺(𝒴).
Recalling (III.1), let

Γ ≡ 𝑧(ℎ+ ⊗𝜓 ℎ
+)𝑧(ℎ− ⊗𝜓 ℎ

−), Θ ≡ 𝑧(ℎ+ ⊗𝜓 ℎ
−)2,

and note that for anti-ferromagnetic two-spin models in non-
uniqueness regimes, Θ > Γ.

Lemma III.4. For 𝐺 satisfying properties (I)-(III),

[(1− 𝜖)/2]𝑚 ≤ 𝑍𝐻𝐺/𝑍
ˆ𝐻𝐺

Γ2𝑘∣𝐸(𝐻)∣(Θ/Γ)2𝑘 MAX-CUT(𝐻)
≤ (1 + 𝜖)𝑚.

Proof: By (II),

(1− 𝜖)𝑚 ≤ 2𝑚
𝑍

ˆ𝐻𝐺(𝒴)
𝑍

ˆ𝐻𝐺

≤ (1 + 𝜖)𝑚 (III.5)

for all 𝒴 ∈ {0, 1}𝐻 . By (III), the ratio

𝑍𝐻𝐺(𝒴)
𝑍

ˆ𝐻𝐺(𝒴) =
∑
𝑥∈𝐻

∑
𝜎𝑊𝑥

𝜈𝑌𝑥

𝐺𝑥
(𝜎𝑊𝑥

)
∏

(𝑖𝑗)∈𝐸(𝐻𝐺)∖𝐸( ˆ𝐻𝐺)

𝜓(𝜎𝑖, 𝜎𝑗)

is within a (1± 𝜖)𝑚 factor of∑
𝑥∈𝐻

∑
𝜎𝑊𝑥

𝑄𝑌𝑥(𝜎𝑊+
𝑥
)

∏
(𝑖𝑗)∈𝐸(𝐻𝐺)∖𝐸( ˆ𝐻𝐺)

𝜓(𝜎𝑖, 𝜎𝑗),

which by direct calculation equals

Γ2𝑘∣𝐸(𝐻)∣(Θ/Γ)2𝑘 cut(𝒴)

where cut(𝒴) ≡ ∣{(𝑥, 𝑦) ∈ 𝐸(𝐻) : 𝑌𝑥 ∕= 𝑌𝑦}∣, the number
of edges crossing the cut of 𝐻 induced by 𝒴 . Combining
with (III.5) gives

𝑍𝐻𝐺 =
∑
𝒴

𝑍𝐻𝐺(𝒴)
𝑍

ˆ𝐻𝐺(𝒴)𝑍 ˆ𝐻𝐺(𝒴)

≤ (1 + 𝜖)2𝑚Γ2𝑘∣𝐸(𝐻)∣(Θ/Γ)2𝑘 MAX-CUT(𝐻)𝑍
ˆ𝐻𝐺

and similarly

𝑍𝐻𝐺 ≥ 2−𝑚(1− 𝜖)2𝑚Γ2𝑘∣𝐸(𝐻)∣(Θ/Γ)2𝑘 MAX-CUT(𝐻)𝑍
ˆ𝐻𝐺 .

Rearranging gives the stated result.

Using this lemma we now complete the reduction to
approximate MAX-CUT:

Proof of Thms. 1 and 2: Let 𝐻 be a 3-regular graph
on 𝑚 vertices, and note that the maximum cut of 𝐻 is at
least 3𝑚/4, the expected value of a random cut. Construct
𝐻̂𝐺, 𝐻𝐺 as above. Since 𝐻̂𝐺 is a disjoint collection of
constant-size graphs, its partition function can be computed
in polynomial time. Suppose 𝑍𝐻𝐺 could be approximated

within a factor of 𝑒𝑐∣𝐻
𝐺∣ in polynomial time for any 𝑐 > 0:

rearranging the result of Lem. III.4 gives

log

(
𝑍𝐻𝐺/𝑍

ˆ𝐻𝐺

Γ2𝑘∣𝐸(𝐻)∣(1 + 𝜖)𝑚

)
2𝑘 log(Θ/Γ)

≤ MAX-CUT(𝐻)

≤
log

(
𝑍𝐻𝐺/𝑍

ˆ𝐻𝐺

Γ2𝑘∣𝐸(𝐻)∣[(1− 𝜖)/2]𝑚

)
2𝑘 log(Θ/Γ)

, (III.6)

so within polynomial time one obtains upper and lower
bounds for MAX-CUT(𝐻) which differ by 𝑂[(𝑐∣𝐺∣+1)𝑚/𝑘].
Taking 𝑘 large and 𝑐 small then allows to compute
MAX-CUT(𝐻) up to an arbitrarily small multiplicative error:
that is, we have completed the reduction to a PRAS for
MAX-CUT on 3-regular graphs, in contradiction of the result
of [12].
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