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Abstract—We study the complexity of the following “resolution
width problem”: Does a given 3-CNF formula have a resolution
refutation of width k? For fixed k, refutations of width k
can easily be found in polynomial time. We prove a matching
polynomial lower bound for the resolution width problem that
shows that there is no significant faster way to decide the existence
of a width-k refutation than exhaustively searching for it. This
lower bound is unconditional and does not rely on any unproven
complexity theoretic assumptions.

We also prove that the resolution width problem is EXPTIME-
complete (if k is part of the input). This confirms a conjecture
by Vardi, who has first raised the question for the complexity of
the resolution width problem. Furthermore, we prove that the
variant of the resolution width problem for regular resolution is
PSPACE-complete, confirming a conjecture by Urquhart.

Index Terms—resolution width, lower bounds

I. INTRODUCTION

Resolution is a well-known and intensively studied proof

system to detect the unsatisfiability of a given formula in

conjunctive normal form (CNF). Starting with the clauses from

the CNF formula one iteratively derives new clauses using

only one simple rule: The resolution rule takes two clauses

γ ∪ {X}, δ ∪ {¬X} and resolves γ ∪ δ. The given CNF

formula is unsatisfiable if, and only if, the empty clause can

be derived. Despite its simplicity resolution has been found

many applications in practical SAT solving. Most state-of-the-

art SAT solvers try to find resolution refutations.

One natural complexity measure for resolution is the length
of a refutation. This measure is also important for resolution

based satisfiability testing since the running time of that SAT

solvers is lower bounded by the length of the underlying reso-

lution refutation. Haken [11] proved the first superpolynomial

lower bound on the length of resolution refutations for the

pigeon hole principle. Several improvements and length lower

bounds for other combinatorial principles followed. A second

complexity measure is the width of a resolution refutation,

which is the size of the largest clause in the refutation.

Ben-Sasson and Widgerson [6] underlined its importance by

showing that every length S resolution refutation of an n-
variable 3-CNF formula can be transformed to a refutation

of width at most O(
√
n logS). Hence, if a 3-CNF formula

has a “short” (subexponential) refutation, then it has also

a “narrow” refutation of sublinear width. This fact enabled

them to rederive essentially all previous known exponential

length lower bounds by proving linear width lower bounds.

Furthermore, they proposed a simple dynamic algorithm that

searches for a refutation of smallest width. This heuristics was

already known before and dates back to Galil [9]. It proceeds

in a very simple way:

i← 0.
repeat

i← i+ 1.
Derive all clauses of width at most i.

until the empty clause has been derived.

Since on n variables there are at most O(nk) clauses of

width k, the algorithm terminates after nO(w) steps, where w is

the smallest width of a resolution refutation of Γ. To estimate

the running time of this procedure on a given instance, one

needs to solve the following decision problem.

Resolution width problem

Input: A 3-CNF formula Γ and an integer k.
Question: Does Γ have a resolution refutation

of width at most k?

The algorithm above solves this problem within exponential

time by deriving all clauses of width at most k. Our first

theorem states that this problem cannot be solved within

polynomial time.

Theorem 1. The resolution width problem is complete for
EXPTIME.

Motivated by an EXPTIME-completeness result for the k-

consistency heuristics for general CSP [16], Vardi raised the

question for the complexity of the resolution width problem

and conjectured that it is EXPTIME-complete. In 2006, Hertel

and Urquhart [12] claimed to have solved the problem, but

later retracted their claim [13]. Nordström mentions it as an

open problem in his recent survey [17]. A related problem

is the regular resolution width problem that asks whether or

not there exists a regular resolution refutation of width at

most k. Urquhart stated its complexity as open problem and

conjectured it to be PSPACE-complete [20]. We settle this

conjecture as well.

Theorem 2. The regular resolution width problem is complete
for PSPACE.

For more motivation of the above theorems we refer to

Chapter 7 of Hertel’s dissertation [14] that also discusses

quite a few interesting consequences. If an unsatisfiable 3-
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CNF formula can be refuted by a constant width resolution

refutation, then the algorithm above recognizes its unsatis-

fiability within polynomial time. Thus, searching for width-

k refutations may serve as polynomial time heuristics for

determining unsatisfiability. On the other hand the degree of

the polynomial depends on k and it is natural to ask whether

this is necessary. That is, can the following decision problem

be solved in, say, quadratic time?

Resolution width-k problem

Input: A 3-CNF formula Γ.
Question: Does Γ have a resolution refutation

of width at most k?

The existence of an O(2k‖Γ‖2) time, hence quadratic, algo-

rithm for the resolution width-k problem would be consistent

with Theorem 1 and with our previous knowledge. Our third

theorem rules out this possibility in a very strong manner.

Theorem 3. For every integer k ≥ 15, the resolution width-k
problem can not be decided in time O(‖Γ‖ k−3

12 ) for a given
3-CNF formula Γ on multi-tape Turing machines.

Note that this lower bound is unconditional because it

is ultimately obtained from the deterministic time hierarchy

theorem. The simple algorithm above computes a resolution

refutation of width at most k, provided there is one, in time

‖Γ‖O(k). Hence, this theorem also states that there is no

significant better way to decide the existence of a width-k

refutation than exhaustively searching for it. The proof of

Theorem 3 also settles the parameterized complexity of the

resolution width problem:

Corollary 4. Parameterized by the width k, the resolution
width problem is complete for XP.

This corollary adds one more natural problem to the short

list of XP-complete problems. However, Theorem 3 is stronger

in the sense that XP-completeness does not rule out the

possibility of time O(nlog log k) algorithms.

As mentioned above, every width-k refutation has length

at most O(nk) where n is the number of variables in the 3-

CNF formula and it is an intriguing question if this bound is

sharp. We prove for every constant k a near optimal lower

bound by explicitly constructing a family {Γk
n}∞n=1 of 3-CNF

formulas with O(n) variables that can be refuted in width-k
resolution, but for which every width-k resolution refutation

has length at least Ω(nk−1). On the other hand, Γk
n can be

refuted by a treelike resolution refutation of width k + 1
and constant length (depending on k). Thus, the refutation

of smallest width is by means longer than the shortest one.

Such a trade-off was unknown before and relates to the work

of [3] and open problems in [18] (see also [17, (Chapter 6)]

for further discussion).

Theorem 5. For every fixed integer k ≥ 3 there is a family of
unsatisfiable 3-CNF formulas {Γk

n}∞n=1 with O(n) variables,
O(n2) clauses and minimal refutation width k such that the

following holds:
• Every width-k resolution refutation of Γk

n has length at
least Ω(nk−1).

• There is a width-(k + 1) treelike resolution refutation of
Γk
n of length O(1).

The three computational lower bounds stated above are

obtained by essentially one reduction from the combinatorial

KAI-game [15] to a restricted variant of the existential pebble

game that characterizes resolution width [2]. Our proofs built

on earlier work by Kolaitis and Panttaja [16] and recent

work by the author of this paper [7] on the complexity of

existential pebble games. We introduce both games and state

the reduction in the next section. Section III summarizes the

proof techniques and outlines the reduction, the details of the

reduction are given in Section IV and V. In Section VI we

sketch the lower bound on the length of width-k resolution

refutations.

II. DEFINITIONS AND PROOF OF THE MAIN THEOREMS

A. A Game Characterization of Resolution Width

A literal is either a Boolean variable X or its negation

¬X . A clause γ is a disjunction of literals and the width
of a clause is the number of literals in it. A CNF formula

Γ is a conjunction of clauses and a d-CNF formula is a CNF

formula that contains only clauses of width at most d. It is
common to view clauses as sets of literals and formulas as sets

of clauses. Resolution is a well-known calculus for proving the

unsatisfiability of a given CNF formula. The resolution rule
on X takes two clauses γ ∪ {X} and δ ∪ {¬X} and derives

the resolvent γ∪δ. A resolution derivation of a clause γ from

a CNF formula Γ is a sequence of clauses (γ1, . . . , γn) such
that γ = γn and every clause γi is either contained in Γ or a

resolvent of two preceding clauses. A resolution refutation is

a resolution derivation of the empty clause.

The length of a resolution derivation is the number of

clauses it contains and the width of a resolution derivation

is the maximum width over all clauses in that derivation. A

resolution derivation of γ can also be viewed as a directed

acyclic graph (dag) where the nodes are labeled with the

clauses from the derivation, one node of in-degree 0 is labeled

with γ and all nodes of out-degree 0 are labeled with clauses

from Γ. There is one arc from δ to γ1 and one arc from

δ to γ2 if δ is the resolvent of γ1 and γ2. The depth of a

resolution derivation of γ from Γ is number of arcs on the

longest directed path in the corresponding dag. A resolution

derivation is regular if on every path from the root to the leafs

in the associated dag no variable has been used twice by the

resolution rule.

A partial assignment is a partial mapping p from the

Boolean variables to {0, 1}. The Boolean existential (k + 1)-
pebble game introduced by [2] works with these partial

assignments and is designed to simulate width-k resolution.

This game can be seen as a special case of the model-theoretic

existential (k + 1)-pebble game. On the other hand it is quite

similar to Pudlak’s Prover-Delayer game for resolution [19] if
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one bounds the size of the so-called record. For abbreviation

we call the Boolean existential (k + 1)-pebble game “width-

k game” here. The game is played by two players, called

Spoiler and Duplicator, and the positions of the game are

partial assignments of domain size at most k + 1. The game

starts with the empty assignment. In each round, Spoiler asks

Duplicator for the assignment of a variable X and Duplicator

has to answer with either X �→ 0 or X �→ 1. Spoiler can

store at most k + 1 variables and its assignments, but he

can delete information at any time. After Spoiler has stored

the (k + 1)st assignment, he is forced to delete at least one

assignment before doing anything else. Spoiler wins the game

if he can reach an assignment that falsifies a clause from Γ
and Duplicator wins the game if she has a strategy such that

Spoiler can never reach such a position. For illustration we

also view a partial assignment p of domain size l as a set

of l pebbles marked with 0 or 1 and lying on the variables

Dom(p). In [2] it was shown that Spoiler wins the width-k
game on Γ if, and only if, Γ has a resolution refutation of

width at most k. The next lemma relates also the depth of

a width-k refutation to the number of rounds in the width-k
game.

Lemma 6. Spoiler wins the width-k game on Γ within d
rounds if, and only if, Γ has a resolution refutation of width
at most k and depth at most d.

Proof: We first show how a width-k resolution refutation

leads to a winning strategy for Spoiler. We can identify

every clause γ of width l with the unique partial assignment

of domain size l that falsifies it. For example, the clause

{X,¬Y, Z} is falsified by the partial assignment {X �→
0, Y �→ 1, Z �→ 0}. Spoiler plays along the arcs in the

resolution dag from the empty clause to some clause in Γ and

always stores the assignment that falsifies the current clause

(hence this assignment has domain size at most k). First, the
game starts with the empty assignment that corresponds to

the empty clause in the derivation. If the current clause is

derived from γ1 ∪ {X} and γ2 ∪ {¬X} via resolving on X ,

then Spoiler asks for X . Depending on Duplicators choice,

he walks to either of the two parents and deletes assignments

that are not related to the new clause. Finally, he reaches an

assignment that falsifies a clause from Γ and thus he wins.

Since he follows a path from the root to the leafs in the dag,

the number of rounds is bounded by the depth of the refutation.

In an analog way one can develop a resolution refutation

of width at most k from a winning strategy for Spoiler in the

width-k game. In order to do this we first construct a resolution

refutation that also uses the weakening rule that derives a

clause γ from a clause δ ⊂ γ. A resolution refutation with

weakening can easily be transformed to a standard resolution

refutation without increasing length, width and depth. The

refutation we construct uses the clauses that are falsified

by the current assignment, if the domain size is less than

k + 1. For every partial assignment of domain size k + 1
occurring in the strategy, we consider the clause that relates

to the corresponding partial assignment after Spoiler was

forced to delete one variable. Deleting assignments in Spoilers

strategy corresponds to weakening. If Spoiler asks for X this

essentially corresponds to resolving on X , but we have to be a

little bit more precise here. Let γ be the clause that relates to

the current assignment (that falsifies it) and X be the variable

Spoiler asks for. If |γ| < k, then γ is obtained from γ ∪ {X}
and γ∪{¬X} via resolving on X . If |γ| = k, let γ1 ⊂ γ∪{X}
and γ2 ⊂ γ ∪{¬X} be the clauses obtained after Spoiler was

forced to delete at least one assignment. Now it holds that

(1) γ is (a weakening of) γ1 or (2) γ is (a weakening of) γ2
or (3) X ∈ γ1 and ¬X ∈ γ2 and γ is (a weakening of) the

resolvent of γ1 and γ2. Since every play of the game relates

to a path from the empty clause to some clause in Γ in the

resolution-dag we get a width-k resolution refutation of depth

at most d (after getting rid of the weakening).

A slight modification of the width-k game yields an ap-

propriate game to characterize regular resolution refutations

of width at most k [14]. The regular width-k game proceeds

as the width-k game with the restriction that Spoiler is not

allowed to ask for a variable twice. The following lemma is a

straightforward adaptation of Lemma 6.

Lemma 7. Spoiler wins the regular width-k game on Γ within
d rounds if, and only if, Γ has a regular resolution refutation
of width at most k and depth at most d.

B. The Pebble Games of Kasai, Adachi and Iwata

An instance of the KAI-game [15] is a tuple (U,R, s, θ)
where U is the universe, R = R′ × (

[k]
2

)
with R′ ⊆ U3 the

set of rules, s : [k]→ U the start position and θ ∈ U the goal.

We let [k] be the set of k pebbles in the game. A rule is of

the form (u, v, w, c, d), with c �= d, u �= v �= w �= u and

the intended meaning that if pebble c is on u and pebble d is

on v and there is no pebble on w, then one player can move

pebble c from u to w. This is a slight more wasteful notion as

originally used in [15], where the set of rules is R′ ⊆ U3, but

it is useful in our reduction to specify the pebbles c and d in

the rules. A position of the KAI-game is an injective mapping

p : [k] → U . A rule r = (u, v, w, c, d) ∈ R is applicable to a

position p if p(c) = u, p(d) = v and p(z) �= w for all z ∈ [k].
Furthermore, r(p) denotes the position defined as r(p)(c) = w
and r(p)(z) = p(z), for all z ∈ [k] \ {c}. If r is applicable

to p, then r(p) is the position that occurs after applying r
to p. The set of all rules in R applicable to a position p is

denoted by appl(p) and Tr(p) ⊆ [k] denotes the set of pebbles
i such that p(i) contradicts the applicability condition of rule

r: T(u,v,w,c,d)(p) := {i ∈ [k] | (i = c and p(i) �= u) or (i =
d and p(i) �= v) or p(i) = w}.

The KAI-game is played by two players and proceeds in

rounds. In the first round Player 1 starts with position s and

chooses a rule r ∈ appl(s), the new position is p = r(s). In the
next round Player 2 chooses a rule r ∈ appl(p) and applies

it to p. Then it is Player 1’s turn and so on. Player 1 wins

the game if he reaches a position p, where p(z) = θ for one

z ∈ [k] (that is called a winning position) or where Player 2 is

unable to move. Player 2 wins if she has a strategy ensuring
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that Player 1 cannot reach such a position. The next definition

formalizes winning strategies for Player 2, they contain a set of

positions K1 where it is Player 1’s turn and a set of positions

K2 where it is Player 2’s turn and a function κ that tells Player

2 which rule to choose next.

Definition 8. A winning strategy for Player 2 in the KAI-game

on G = (U, {r1, . . . , rm}, s, θ) is a triple K = (K1,K2, κ)
where K1 ⊆ {p | p : [k] → U} and K2 ⊆ {p | p : [k] →
U \ {θ}} are sets of positions and κ : K2 → [m] is a mapping

such that the following holds:

• s ∈ K1.

• For every p ∈ K1 and every ri ∈ appl(p): ri(p) ∈ K2.

• For every p ∈ K2: rκ(p) ∈ appl(p) and rκ(p)(p) ∈ K1.

In the k-pebble KAI-game the instances are required have

to exactly k pebbles (as indicated by the start position).

The underlying directed graph of a KAI-game instance G =
(U,R, s, θ) consists of the node set U and arcs (u,w) and

(v, w) for every rule (u, v, w, c, d) ∈ R. An instance of

the KAI-game is acyclic if its underlying directed graph is

acyclic and the acyclic KAI-game is the KAI-game restricted

to acyclic instances. The next theorem from [15] addresses

the complexity of deciding which player wins the (acyclic)

KAI-game.

Theorem 9. Determining the winner in the KAI-game is
complete for EXPTIME and determining the winner in the
acyclic KAI-game is complete for PSPACE.

It can be decided in time nO(k) if Player 1 has a winning

strategy in the k-pebble KAI-game on G, thus this problem

is in PTIME for every fixed k. Theorem 10 below states a

corresponding lower bound. It was proven in [1] by simulating

a deterministic multi-tape Turing machine of running time nk

within the k′-pebble KAI-game so that the machine accepts

if, and only if, Player 1 wins the KAI-game. The lower bound

then follows from the time hierarchy theorem, that states that

Turing machines of running time nk cannot be simulated in

time nk−ε.

Theorem 10. For every ε > 0, determining the winner in the
k-pebble KAI-game is not in DTIME(n

k−1
4 −ε).

C. Proof of the Main Theorems
We write (regular) width game to denote that the parameter

k is given as part of the input. We now prove the computational

lower bounds, using the reductions stated in the next two

lemmas. The main lemmas itself are proven at the end of

Section V.

Lemma 11 (First Main Lemma). There is a LOGSPACE-
reduction from the KAI-game to the width game and from the
acyclic KAI-game to the regular width game.

Proof of Theorem 1: It is easy to see that the resolution

width problem is in EXPTIME by iteratively resolving all

clauses of width at most k. Since determining the winner in

the KAI-game is EXPTIME-hard (Theorem 9) it is EXPTIME-

hard to determine the winner in the width game by Lemma

11. Hence, the resolution width problem is complete for

EXPTIME.

Proof of Theorem 2: Spoiler has a forced win in the

regular width game if, and only if, he can win the game

within |Var(Γ)| steps. Thus, an alternating Turing machine

can decide if Spoiler can win the game in polynomial time.

By APTIME=PSPACE [8] we get that the regular resolution

width problem is in PSPACE. Since the acyclic KAI-game

is PSPACE-hard (Theorem 9) and there is a LOGSPACE-

reduction from the acyclic KAI-game to the regular width

game (Lemma 11) it follows that the regular resolution width

problem is complete for PSPACE.

Lemma 12 (Second Main Lemma). There is a reduction
from the k-pebble KAI-game to the width-(k + 1) game that
computes for every instance G of size ‖G‖ a 3-CNF formula
Γ(G) such that the following holds.
• Player 1 has a winning strategy in the k-pebble KAI-

game on G if, and only if, Spoiler has a winning strategy
in the width-(k + 1) game on Γ(G).

• Γ(G) contains O(‖G‖3) clauses and O(‖G‖2) variables.
• The reduction is computable in DTIME(‖G‖3).

Proof of Theorem 3: Let k ≥ 15 be a fixed integer.

Assume that A is an algorithm that determines the winner of

the width-k game on Γ in time O(‖Γ‖ k−3
12 ). Let B be the

algorithm that first applies the reduction from Lemma 12 to

a given instance G of the (k − 1)-pebble KAI-game and then

executes A. Since ‖Γ(G)‖ = O(‖G‖3), B has running time

O(‖G‖3 + ‖G‖ k−3
4 ) and thus solves the k′-pebble KAI-game

in time O(‖G‖ k′−2
4 ) for a k′ ≥ 14. This contradicts Theorem

10.

III. PROOF TECHNIQUES AND OUTLINE

We devise one reduction that proves both statements in

Lemma 11 and a weaker form of Lemma 12 (with ‖Γ(G)‖ =
O(‖G‖4)) at once. With a slight modification of that reduction

we obtain the bounds from Lemma 12. For the rest of the

paper let G = (U,R, s, θ) with U = [n], R = {r1, . . . , rm},
s : [k] → [n] and θ ∈ [n] be an instance of the k-pebble
KAI-game. We construct a 3-CNF formula Γ(G) such that

the following holds.

• Player 1 has a winning strategy in the k-pebble KAI-

game on G if, and only if, Spoiler has a winning strategy

in the width-(k + 1) game on Γ(G).
• If G is acyclic and Player 1 has a winning strategy in the

k-pebble KAI-game on G, then Spoiler has a winning

strategy in the regular width-(k + 1) game on Γ(G).

A. Combining Strategies

In our reduction we construct the clause set Γ(G) out of

smaller clauses sets, called gadgets. The gadgets are defined on

pairwise disjoint variable sets and there are additional clauses

to connect these gadgets. In order to establish a winning

strategy for one player, we need to combine strategies on the

gadgets to a strategy on Γ. The easier part is to do that for

Spoiler with a notion obtained from finite model theory [10].
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We say that Spoiler can (regularly) reach position p2 from

position p1 on Γ if he has a strategy in the (regular) width-

(k+1) game such that starting from position p1 he either wins

the game or position p2 occurs in the game after some finite

number of rounds. We can combine such strategies to show

that Spoiler can reach some position p from ∅; if p falsifies a

clause from Γ(G) this gives us a winning strategy for Spoiler

and hence a resolution refutation.

It is more difficult to establish a winning strategy for

Duplicator, but we can benefit from the view of the width-

(k + 1) game as existential (k + 2)-pebble game [2] and the

techniques developed for the existential pebble games in [7].

Definition 13. A critical strategy for Duplicator in the width-

(k + 1) game on Γ is a nonempty family H of partial

assignments that do not falsify any clause from Γ and a set of

critical positions crit(H) ⊆ H such that:

• p ∈ crit(H)⇒ |Dom(p)| = k + 1.
• If p ∈ H and p′ ⊂ p, then p′ ∈ H.
• For every p ∈ H\crit(H), |Dom(p)| ≤ k+1, and every

variable Z ∈ Var(Γ) there is a value z ∈ {0, 1} such that

p ∪ {Z �→ z} ∈ H.
If crit(H) = ∅, then H is a winning strategy.

If there is a winning strategy H for Duplicator, then she

can always provide a correct answer z for a queried variable

Z without falsifying any clause from Γ. A critical strategy

is nearly a winning strategy in the sense that Duplicator wins

unless the game reaches a critical position. Duplicator may not

have an appropriate answer in that situation, but she knows

that Spoiler has stored a critical position (and nothing else,

since |Dom(p)| = k+ 1) and can use this information to flip

to another critical strategy H′ with p ∈ H′. The following

lemma enables us to construct a winning strategy out of a

collection of critical strategies.

Lemma 14. If H1, . . . ,Hl are critical strategies on Γ and for
all i ∈ [l] and all p ∈ crit(Hi) there exists a j ∈ [l] such that
p ∈ Hj \ crit(Hj), then

⋃
i∈[l]Hi is a winning strategy on Γ.

Every gadget Q ⊆ Γ(G) we construct has a boundary
bd(Q) ⊆ Var(Q), that are the variables on which the gadget

is connected to other gadgets. Furthermore, two gadgets Q and

Q′ are only connected by the clauses {X,¬Y } and {¬X,Y }
(denoted X ↔ Y ) for variables X ∈ bd(Q) and Y ∈ bd(Q′).
A boundary function of a strategy H on a gadget Q is a

function β : bd(Q) → {0, 1} such that p(X) = β(X) for

all p ∈ H and X ∈ bd(Q) ∩ Dom(p). We say that two

strategies G and H on gadgets QG and QH are connectable,
if they have boundary functions βG and βH and it holds that

βG(X) = βH(Y ) for all (X ↔ Y ) ∈ Γ(G), X ∈ bd(QG),
Y ∈ bd(QH).
Lemma 15. Let G and H be two connectable critical strate-
gies on gadgets QG and QH. The composition G�H := {g∪h |
g ∈ G, h ∈ H} is a critical strategy on QG ∪ QH and their
connecting clauses. Furthermore, G �H has critical positions

crit(G) ∪ crit(H) and the boundary function βG ∪ βH.

We use the operator � to construct a critical strategy for

Γ(G) out of critical strategies on the gadgets. Then we show

that the union of those global critical strategies is by Lemma

14 a winning strategy for Duplicator.

B. The Construction

In this paragraph we give an overview on the construction

and the gadgets we use. Detailed descriptions of the gadgets

and the strategies on them are given in the next section. We

construct Γ(G) as illustrated in Figure 1. The gadgets and

their boundary variables are depicted as boxes and the arrows

indicate the connection of the boundary variables. To encode

the positions of the KAI-game we introduce Boolean variables

Xi
j for i ∈ [k] and j ∈ [n], which state “pebble i is on node

j”. Every position p is encoded by the partial assignment

{Xi
p(i) �→ 1 | i ∈ [k]}, which will be denoted “position p

on X”. A partial assignment of the variables Xi
j is invalid,

if there is at least on partition l such that no variable X l
j

is mapped to 1. The boundary of every gadget we construct

consists of these variable blocks and we connect two blocks

of variables Xi
j and Y i

j by introducing clauses Xi
j ↔ Y i

j (for

i ∈ [k], j ∈ [n]). If two blocks are connected in such a way,

then Spoiler can regularly reach p on X from p on Y and vice

versa. In order to do that, Spoiler stores p on X and then asks

for Y 1
p(1). Duplicator has to answer with 1 since otherwise

this would falsify the clause {¬X1
p(1), Y

1
p(1)}. Next, Spoiler

deletes the assignment X1
p(1) �→ 1 and asks for Y 2

p(2). Once

again, Duplicator has to answer with 1. Following that strategy

Spoiler can regularly reach p on Y from p on X . We want

the players to move positions from left to right through the

gadgets, that is they first store a position on the input boundary
X on the left side, then they play on the gadget and finally

they reach a position on the output boundary Y on the right

side.

The Initialization Gadget Is is used to start the game. It has

boundary variables Y (Is)
i
j (i ∈ [k], j ∈ [n]) and the feature

that Spoiler can regularly reach s on Y (Is), the assignment

that encodes the start position of the KAI-game.

For every rule r there is a Rule Gadget for Spoiler Sr

with input boundary variables X(Sr)
i
j and output boundary

variables Y (Sr)
i
j . This gadget is used to modify the current

KAI-game position according to rule r. If r is applicable to

p, then Spoiler can regularly reach r(p) on Y (Sr) from p on

X(Sr) and he does this whenever Player 1 applies rule r to

position p in the KAI-game. Since Player 1 starts the KAI-

game, the input X(Sr)
i
j of every Sr is connected to the output

Y (Is)
i
j of the Initialization Gadget. Hence, Spoiler can reach

the start position on the input of every Sr. If a position p is on

the input variables of Sr for a rule r that is not applicable to

p, then Duplicator has a strategy to avoid valid positions at the

output of Sr, i.e. there exists a partition l such that no variable

Y (Sr)
l
j is mapped to 1. We use this fact to force Spoiler to

choose only applicable rules as it is the case for Player 1 in

the KAI-game.
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Figure 1. The 3-CNF formula Γ(G).

After every Rule Gadget Sr there is a copy MSr of the

Switch M with input variables X(M)ij and output variables

Y (M)ij . Switches were already used before to prove lower

bounds for model theoretic pebble games [7], [10], [16] and

they are always the most involved part of the construction.

This holds also for our Switch that bases on some kind

of pigeonhole principle. From a valid position p on X(M)
Spoiler can reach p on Y (M), but he cannot move invalid

positions through the Switch. Duplicator’s impasse strategies
ensure that from an invalid partial assignment on the input

variables (where no variable X(M)lj is mapped to 1 for at

least one l) Spoiler can only reach positions that map output

variables to 0. Especially, moving p through Sr for a rule r
not applicable to p leads to an invalid position on the output

of Sr and on the input of MSr and hence to an impasse.

Another property of the Switch is that Spoiler has to reach

a critical position inside the Switch in order to move a valid

position from the input to the output and thus cannot store

assignments outside of the Switch. Moreover, Spoiler cannot

reach a position on the input from a position on the output. It

follows that once Spoiler moves a position from left to right

through the Switch he cannot move backwards and has no

information about the variables outside of the Switch.

After every Switch there is a copy Cr of the Choice Gadget
C that enables Duplicator to chose the next rule. This choice

corresponds to the choice of Player 2 in the KAI-game. The

Choice Gadget has one block of input variables X(C)ij and

for every rule rl a block of output variables Y (C)ij,l. First, if
the current position p on X(C) is already a winning position

for Player 1 (p(i) = θ for some i ∈ [k]), then Spoiler wins

immediately. To ensure that we introduce clauses {¬X(C)iθ}
for every i ∈ [k] in C. Second, Spoiler can regularly reach

{Y (C)ip(i),q �→ 1 | i ∈ [k]} from p on X(C) for some q ∈
[m] of Duplicator’s choice. Duplicator has for every rule rq a

strategy to answer with p on the input variables and on the q-
th block of the output variables, and with 0 on all other output

variables.

The q-th block of output variables of every Choice Gadget

C is connected to input variables of the corresponding Rule
Gadget for Duplicator Drq . Analog to Sr these gadgets have

input variables X(Dr)
i
j and output variables Y (Dr)

i
j , and

Spoiler can regularly reach position r(p) on Y (Dr) from p

on X(Dr). If Duplicator has chosen a rule r not applicable to

the current position p, then Spoiler wins immediately from p
on X(Dr). There are Switches also after the Dr gadgets and

the output variables of that Switches are connected to the input

variables of the Sr gadgets. Hence, Spoiler can move to the

rule gadget Sr that corresponds to Player 1’s next choice. By

playing the way described above, Spoiler can simulate a play

of the KAI-game. If this play ends up with a winning position

for Player 1, then Spoiler wins the game by falsifying some

clause {¬X(C)iθ}. Duplicator’s strategies ensure that this is

the only way for Spoiler to win the game.

IV. THE GADGETS

For a partial assignment p we let cl(p) := {p′ | p′ ⊆ p}. It is
easy to see that if p is a satisfying total assignment of Γ, then
cl(p) is a winning strategy for Duplicator in the width-(k+1)
game on Γ.

A. Rule Gadget for Spoiler

For every rule r = (u, v, w, c, d) the Rule Gadget for Spoiler
Sr consists of variables X(Sr)

i
j and Y (Sr)

i
j for all i ∈ [k] and

j ∈ [n] that are all boundary variables. There are the following

clauses:

X(Sr)
c
u → Y (Sr)

c
w, (1)

X(Sr)
d
v → Y (Sr)

d
v, (2)

X(Sr)
i
j → Y (Sr)

i
j , i ∈ [k] \ {c, d}, j ∈ [n] \ {w}. (3)

Lemma 16 (Spoiler’s strategy on Sr). Spoiler can regularly
reach p on Y (Sr) from p on X(Sr) for every position p and
every rule r applicable to p.

Proof: By definition, the gadget contains the clauses

X(Sr)
i
p(i) → Y (Sr)

i
r(p)(i) for i ∈ [k]. Thus, starting from

position {X(Sr)
i
p(i) �→ 1 | i ∈ [k]} Spoiler can ask for

Y (Sr)
1
p(1) and Duplicator has to answer with Y (Sr)

1
p(1) �→ 1.

Now, Spoiler deletes X(Sr)
1
p(1) and asks for Y (Sr)

2
p(2). Once

more, Duplicator has to answer with 1. Following that strategy,

Spoiler can regularly reach {Y (Sr)
i
r(p)(i) �→ 1 | i ∈ [k]}.

The next lemma states that Duplicator does not lose when

Spoiler moves through the gadget. Furthermore, if Spoiler has

chosen a Rule Gadget Sr and the rule r is not applicable to
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the current position p (hence Tr(p) �= ∅), then Duplicator has

a strategy that avoids valid positions at the output.

Lemma 17 (Duplicator’s strategies on Sr). For every position
p Duplicator has a winning strategy Rp with boundary func-
tion βp(X(Sr)

i
j) = 1, iff j = p(i); and βp(Y (Sr)

i
j) = 1, iff

i /∈ Tr(p) and j = r(p)(i). Furthermore, she has a winning
strategy R0 with boundary function β0(X

i
j) = β0(Y

i
j ) = 0

for all i ∈ [k] and j ∈ [n].
Proof: Let Rp := cl(βp) and R0 := cl(β0), where βp

and β0 are the boundary functions defined in the above lemma.

Since βp and β0 define total assignments that satisfy all clauses

from the gadget, Rp and R0 are winning strategies on Sr.

B. Rule Gadget for Duplicator

For every rule r = (u, v, w, c, d) the Rule Gadget for

Duplicator Dr consists of boundary variables X(Dr)
i
j and

Y (Dr)
i
j for all i ∈ [k] and j ∈ [n] and the following clauses:

X(Dr)
c
u → Y (Dr)

c
w, (4)

X(Dr)
d
v → Y (Dr)

d
v, (5)

X(Dr)
i
j → Y (Dr)

i
j , i ∈ [k] \ {c, d}; j ∈ [n] \ {w}, (6)

¬X(Dr)
c
j , j �= u, (7)

¬X(Dr)
d
j , j �= v, (8)

¬X(Dr)
i
w, i ∈ [k] \ {c, d}. (9)

As for the Sr gadget, Spoiler can move a valid position

through the gadget while applying the rule. If Duplicator has

chosen a Rule Gadget for a rule r not applicable to p, then
she is penalized by losing immediately.

Lemma 18 (Spoiler’s strategy on Dr). Spoiler can regularly
reach p on Y (Dr) from p on X(Dr) for every position p and
every rule r applicable to p. Furthermore, if r is not applicable
to p, then Spoiler wins from position p on X(Dr).

Proof: If r is applicable to p, then there are clauses

X(Sr)
i
p(i) → Y (Sr)

i
r(p)(i) for i ∈ [k]. Spoiler can regularly

reach {Y (Dr)
i
r(p)(i) �→ 1 | i ∈ [k]} from {X(Dr)

i
p(i) �→ 1 |

i ∈ [k]} analog to Lemma 16. If r is not applicable to p, then
{X(Dr)

i
p(i) �→ 1 | i ∈ [k]} falsifies some clause from (7)-(9).

The next lemma states that Duplicator does not lose the

game if the rule is applicable to the current position or if all

variables are mapped to 0.

Lemma 19 (Duplicator’s strategies on Dr). If r is applicable
to p, then Duplicator has a winning strategy Rp on Dr

with boundary function βp(X(Dr)
i
j) = 1, iff j = p(i); and

βp(Y (Dr)
i
j) = 1, iff j = r(p)(i). Furthermore, she has a

winning strategy R0 with boundary function β0(X(Dr)
i
j) =

β0(Y (Dr)
i
j) = 0 for all i ∈ [k] and j ∈ [n].

Proof: Analog to Lemma 17, let Rp := cl(βp) and R0 :=
cl(β0), where βp and β0 are the boundary functions defined

in the above lemma.

C. The Switch

The Switch M contains input variables X(M)ij , output

variables Y (M)ij and additional variables inside. The clauses

of the Switch are given below for all i, i′, l ∈ [k], j, j′ ∈ [n]
and c, c′ ∈ {1, 2, 3, 4}.

X(M)ij → A0ij ∨A1ij (10)

A0ij → Ai,1
j ∨Ai,2

j (11)

A1ij → Ai,3
j ∨Ai,4

j (12)

Ai,c
j → Ai,c

j,1 ∨Ai,c
j,≥2 (13)

Ai,c
j,≥l → Ai,c

j,l ∨Ai,c
j,≥l+1 2 ≤ l ≤ k − 2 (14)

Ai,c
j,≥k−1 → Ai,c

j,k−1 ∨Ai,c
j,k (15)

¬(Ai,c
j,l ∧Ai′,c′

j′,l

)
i �= i′ (16)

Ai,c
j,l → Bl (17)

B1 ∧B≥2 → B (18)

Bl ∧B≥l+1 → B≥l 2 ≤ l ≤ k − 2 (19)

Bk−1 ∧Bk → B≥k−1 (20)

Ai,c
j,l ∧B → Y (M)ij (21)

The essence of the Switch can be described by a kind of

pigeon hole principle. There are k holes and kn groups of

four pigeons each. Every group of four pigeons corresponds

to one of the kn variables X(M)ij . The four pigeons in the

pigeon group X(M)ij correspond to the four variables Ai,1
j ,

Ai,2
j , Ai,3

j and Ai,4
j . The variables Ai,c

j determine whether the

corresponding pigeon is arriving. Variable X(M)ij says that

one pigeon Ai,c
j of the pigeon group is arriving (stated by

the clauses (10), (11) and (12)). Thus, a partial assignment

{X(M)ip(i) �→ 1 | i ∈ [k]} forces k pigeons to arrive. The

variables Ai,c
j,l say “pigeon Ai,c

j sits in hole l”. It is ensured

by the clauses (13), (14) and (15) that if Ai,c
j is arriving, then

it will sit in some hole. The clauses (16) state that in every

hole there is at most one pigeon.

The intended meaning of the variable Bl is “hole l is occu-
pied” and it is ensured by the clauses (17) that this variable

is true, if some pigeon actually sits in hole l. The variable

B states “all holes are occupied” and it is guaranteed by the

clauses (18), (19) and (20) that B is true, if all Bl are true.

The clauses (21) state that if all holes are occupied and pigeon

Ai,c
j (from the pigeon group X(M)ij) sits in some hole, then

Y (M)ij has to be true. Moving a position p through the Switch

proceeds, roughly, in the following way. At the beginning

the partial assignment p is on the input X(M). There sits

no pigeon in any hole and Duplicator plays according to a

critical input strategy that maps all output variables to 0.

In order to reach p on the output, Spoiler has to bring all

pigeons into the pigeon house. He can force Duplicator to

decide which pigeon from the corresponding pigeon group is

arriving and then he forces Duplicator to specify a mapping

from the k arriving pigeons to the k holes. Unless the k-th
pigeon is arriving, Duplicator maintains B �→ 0 and thus he

can maintain Y (M)ij �→ 0 without falsifying any clause. As
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soon as every pigeon is arriving the game reaches a critical

position. At this point Duplicator flips to an output strategy
with B �→ 1 and Y (M)ip(i) �→ 1. On the other hand, he flips

all input variables X(M)ij to 0 and hence prevents Spoiler

from reaching any position at the input.

If there is an invalid position at the input vertices, then at

most k − 1 variables X(M)ij are mapped to 1. Thus, Spoiler

can force only k−1 pigeons to arrive. Since in that case at most

k − 1 holes are occupied, Duplicator use an impasse strategy
to maintain B �→ 0 and Y (M)ij �→ 0 without contradicting

any clause. Therefore, Spoiler cannot move invalid positions

through the Switch. The next two lemmas state Spoiler’s and

Duplicator’s strategies formally, the proofs are deferred to the

full version of the paper.

Lemma 20 (Spoiler’s strategy on M ). Spoiler can regularly
reach p on Y (M) from p on X(M).

Lemma 21 (Duplicator’s strategies on M ). For every position
p and every nonempty T ⊆ [k], there are strategies S imp

p,T , Sout
p

and S in
p for Duplicator satisfying the following conditions.

(i) The impasse strategy S imp
p,T is a winning strategy with

boundary function β(X(M)ij) = 1, iff i /∈ T and
j = p(i); and β(Y (M)ij) = 0, for all i ∈ [k], j ∈ [n].

(ii) The output strategy Sout
p is a winning strategy with

boundary function β(X(M)ij) = 0, for all i ∈ [k],
j ∈ [n]; and β(Y (M)ij) = 1, iff j = p(i).

(iii) The input strategy S in
p is a critical strategy with

crit(S in
p ) ⊆ Sout

p and boundary function β(X(M)ij) = 1,
iff j = p(i); and β(Y (M)ij) = 0, for all i ∈ [k], j ∈ [n].

D. The Initialization Gadget

For a start position s the Initialization Gadget Is consists

of two Switches M1 and M2, start variables S1 and S2, and

boundary variables Y (Is)
i
j for all i ∈ [k] and j ∈ [n]. There

are the following clauses in addition to the ones of M1 and

M2:

S1 ∨ S2 (22)

S1 → X(Mc)
i
s(i), for all i ∈ [k], c ∈ {1, 2} (23)

Y (Mc)
i
s(i) → Y (Is)

i
s(i), for all i ∈ [k], c ∈ {1, 2} (24)

Lemma 22 (Spoiler’s strategy on Is). Spoiler can regularly
reach s on Y (Is).

Proof: First, Spoiler pebbles S1 and S2. Because of clause

S1 ∨ S2, Duplicator has to answer 1 for S1 or S2. Depending

on Duplicator’s choice, Spoiler can either reach s on X(M1)
or s on X(M2) owing to clauses (23). By applying Lemma

20 Spoiler can reach s on Y (M1) (s on Y (M2)) and thus he

can reach s on Y (Is) using clauses (24).

We can combine the strategies from Lemma 21 on the

switches M1 and M2 to obtain strategies for Duplicator on

Is. The winning strategy I init says that Duplicator does not

lose when Spoiler reaches s on Y (Is). Duplicator uses the

critical strategies I initp and I init0 if other positions than the start

position occur at the output of Is during the course of the

game.

Lemma 23 (Duplicator’s strategies on Is). There are strate-
gies I init, I init

p and I init
0 for Duplicator with the following

properties.
(i) I init is a winning strategy with boundary function

β(Y (Is)
i
j) = 1, iff j = s(i).

(ii) I init
p is a critical strategy with crit(I init

p ) ⊆ I init and
boundary function βp(Y (Is)

i
j) = 1, iff j = p(i).

(iii) I init
0 is a critical strategy with crit(I init

0 ) ⊆ I init and
boundary function β0(Y (Is)

i
j) = 0 for all boundary

variables Y (Is)
i
j .

Proof: Recall the strategies Souts and S ins from Lemma 21.

I1 := S ins (M1) � Souts (M2) � cl
({S1 �→ 1, S2 �→ 0}∪

{Y i
s(i) �→ 1 | i ∈ [k]}∪

{Y i
j �→ 0 | i ∈ [k], j ∈ [n], j �= s(i)})

I2 := Souts (M1) � S ins (M2) � cl
({S1 �→ 0, S2 �→ 1}∪

{Y i
s(i) �→ 1 | i ∈ [k]}∪

{Y i
j �→ 0 | i ∈ [k], j ∈ [n], j �= s(i)})

I init := I1 ∪ I2
By Lemma 15, I1 and I2 are critical strategies with crit(I1) =
crit(S ins (M1)) and crit(I2) = crit(S ins (M2)). From

crit(I1) = crit(S ins (M1)) ⊆ Souts (M2) ⊆ I2 \ crit(I2) and
crit(I2) = crit(S ins (M2)) ⊆ Souts (M1) ⊆ I1 \ crit(I1)
it follows that I init is a winning strategy by Lemma 14. This

proves (i), to establish (ii) and (iii) let

I initp := S ins (M1) � S ins (M2) � cl
({S1 �→ 1, S2 �→ 1}∪

{Y i
p(i) �→ 1 | i ∈ [k]}∪

{Y i
j �→ 0 | i ∈ [k], j ∈ [n], j �= p(i)}) and

I init0 := S ins (M1) � S ins (M2) � cl
({S1 �→ 1, S2 �→ 1}∪

{Y i
j �→ 0 | i ∈ [k], j ∈ [n]}).

Lemma 15 tells us that I initp and I init0 are critical strategies

with crit(I init0 ) = crit(I initp ) = crit(S ins (M1))∪ crit(S ins (M2)).
Therefore, crit(I initp ) ⊆ I init and crit(I init0 ) ⊆ I init.
E. The Choice Gadget

The Choice Gadget C contains input variables X(C)ij for

i ∈ [k], j ∈ [n] and output variables Y (C)ij,q for all i ∈ [k],
j ∈ [n] and q ∈ [m] as boundary. Furthermore there are inner

variables Ei
j,≥q for i ∈ [k], j ∈ [n] and 2 ≤ q ≤ m − 1. The

clauses are given below.

¬X(C)iθ i ∈ [k] (25)

X(C)ij → Y (C)ij,1 ∨ Ei
j,≥2 (26)

Ei
j,≥q → Y (C)ij,q ∨ Ei

j,≥q+1 2 ≤ q ≤ m− 2 (27)

Ei
j,≥m−1 → Y (C)ij,m−1 ∨ Y (C)ij,m (28)

¬(Y (C)ij,q ∧ Y (C)ij,q′) q �= q′ (29)
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Lemma 24 (Spoiler’s strategy on C). Spoiler can regularly
reach {Y (C)ip(i),q �→ 1 | i ∈ [k]} from {X(C)ip(i) �→ 1 | i ∈
[k]} for some q ∈ [m] of Duplicator’s choice. Moreover, if p is
a winning position for Player 1, then Spoiler wins immediately.

Proof: Starting from {X(C)ip(i) �→ 1 | i ∈ [k]}
Spoiler picks up the two remaining pebbles and asks for

Y (C)1p(1),1 and E1
p(1),≥2. Owing to clause (26) Duplicator

has to answer 1 for one of the two. If Duplicator does

not answer with Y (C)1p(1),1 �→ 1, then Spoiler moves the

pebbles from X(C)1p(1) and Y (C)1p(1),1 to Y (C)1p(1),2 and

E1
p(1),≥3. Because of clause (27) Duplicator has to answer with

Y (C)1p(1),2 �→ 1 or E1
p(1),≥3 �→ 1. Using that strategy Spoiler

can reach {Y (C)1p(1),q �→ 1} ∪ {X(C)ip(i) �→ 1 | 2 ≤ i ≤ k}
for some q ∈ [m] of Duplicator’s choice. In the next step

Spoiler applies the same technique to the other partitions. If

Duplicator chooses a q′ �= q in an other partition, then she

loses immediately owing to clause (29). Thus, Spoiler can

reach {Y (C)ip(i),q �→ 1 | i ∈ [k]}. Since he has not pebbled

a variable twice, this strategy is regular. In addition, if p is a

winning position for Spoiler, then {X(C)ip(i) �→ 1 | i ∈ [k]}
clearly falsifies some clause from (25).

Lemma 25 (Duplicator’s strategies on C). For every po-
sition p : [k] → [n] \ {θ} and every q ∈ [m] there is a
winning strategy Cqp for Duplicator with boundary function
βq
p(X(C)ij) = 1, iff j = p(i); and βq

p(Y (C)
i
j,l) = 1 , iff

j = p(i) and l = q. Furthermore, there is a winning strategy
C0 with boundary function β0 mapping all boundary variables
to 0.

Proof: Let Cq
p be the total assignment consisting of βq

p

together with

Ei
p(i),≥l �→

{
1, if j = p(i) and l ≤ q,

0, else,

and C0 be the assignment that maps every variable in the

gadget to 0. Since the assignments Cq
p and C0 falsify no clause,

the strategies Cqp := cl(Cq
p) and C0 := cl(C0) are winning

strategies with the desired boundary function.

V. THE REDUCTION

Lemma 26 (Spoiler’s global strategy). If Player 1 has a
winning strategy in the (acyclic) k-pebble KAI-game on G,
then Spoiler has a winning strategy in the (regular) width-
(k + 1) game on Γ(G).

Proof: Assume that Player 1 has a winning strategy in

the k-pebble KAI-game on G. We have to show that Spoiler

can reach a position that falsifies a clause. First, Spoiler can

reach s on Y (Is) via the Initialization Gadget. Let r be the

rule applicable to s Player 1 chooses first in his strategy and

p1 := r(s). Spoiler can reach s on X(Sr) by the connection

of the boundary. He can move through the Rule Gadget to p1
on Y (Sr) and hence to p1 on X(MSr) since the boundary

variables are connected. In the next step he moves through the

Switch and reaches p1 on Y (MSr) and then p1 on X(Cr).

If position p1 is a winning position for Player 1 in the KAI-

game (that is, one pebble is on node θ), then Spoiler wins

immediately. Thus, assume that p1 is no winning position and

Player 2 chooses a rule r in the KAI-game. At this point

Spoiler forces Duplicator to choose a q ∈ [m] such that he

can reach {Y (Cr)
i
p1(i),q

�→ 1 | i ∈ [k]} and hence p1 on

X(Drq ). If Duplicator has chosen a q ∈ [m] such that rq is

not applicable to p1, then Spoiler wins immediately, especially

he wins if there is no rule applicable to p1 and Player 2 is

unable to move. Thus, let rq be applicable to p1 and p2 :=
rq(p1). Spoiler moves through the Rule Gadget, reaches p2 on

Y (Drq ) and then p2 onX(MDrq ). Now he moves through the

Switch to p2 on Y (MDrq ). Via the connection of the output

variables of the Switch MDrq to the input variables of the

Rule Gadgets Sr, Spoiler chooses a rule r that is applicable

to p2 and moves to p2 on X(Sr). The choice of the rule

corresponds to the choice of Player 1 in his winning strategy.

In the sequel, Spoiler applies that rule by moving through the

Rule Gadget and so on. Simulating the strategy of Player 1 in

this way, Spoiler can reach a position on the input variables

of some Choice Gadget that encodes a winning position for

Player 1 and thus falsifies a clause {¬X(C)iθ}.
If G is acyclic, then no rule can be applied twice. Thus,

following that strategy above Spoiler does not play twice on

one gadget. Since all partial strategies on the gadgets are

regular this gives rise to a global regular strategy for Spoiler.

Lemma 27 (Duplicator’s global strategy). If Player 2 has
a winning strategy in the k-pebble KAI-game on G, then
Duplicator has a winning strategy in the width-(k + 1) game
on Γ(G).

Proof: Let K = (K1,K2, κ) be a winning strategy for

Player 2 in the k-pebble KAI-game on G. We construct a

winning strategyH for Duplicator in the width-(k+1) game on

Γ(G). First, we define auxiliary critical strategies H1
p, H2

p and

Hinit. In order to do this we combine Duplicator’s strategies on

the gadgets using the �-operator and write A〈B〉 to pinpoint

strategy A on gadget B. For all p ∈ K1 let

H1
p := I initp �

⊎
r

(C0〈Cr〉 � R0〈Dr〉 � Soutp 〈MDr〉
)�

⊎
r∈appl(p)

(Rp〈Sr〉 � S inr(p)〈MSr〉
)�

⊎
r/∈appl(p)

(Rp〈Sr〉 � S imp

r(p),Tr(p)
〈MSr〉

)
.

The initialization strategy Hinit differs from H1
s only in the

choice of the strategy on the Initialization Gadget: It contains

the winning strategy I init instead of the critical strategy I inits .

For all p ∈ K2 let

H2
p := I init0 �

⊎
r

(Cκ(p)p 〈Cr〉 � R0〈Sr〉 � Soutp 〈MSr〉
)�

⊎
r �=rκ(p)

(R0〈Dr〉 � S imp

p,[k]〈MDr〉
)�
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(Rp〈Drκ(p)
〉 � S inrκ(p)(p)

〈MDrκ(p)
〉).

Note that all these strategies are by Lemma 15 global critical

strategies. The strategies above enable Duplicator to simulate

the moves of the KAI-game. Playing within strategy Hinit

means that the KAI-game has just started, position s is on the

board and it is Player 1’s turn. Duplicator uses the strategy

H1
p (H2

p) to express that the current position in the KAI-game

is p and it is Player 1’s (Player 2’s) turn. If Spoiler reaches

a critical position on the switches, then Duplicator flips the

strategies in the same way as the positions in the KAI-game

change. Let us now define the winning strategy H formally:

H := Hinit ∪ ⋃
p∈K1

H1
p ∪

⋃
p∈K2

H2
p. Using the statements

about the critical positions in Lemma 21 and Lemma 23 it can

be verified that every critical position of an auxiliary strategy

above is contained as non-critical position in another auxiliary

strategy. Hence, H is a winning strategy by Lemma 14.

Proof of the First Main Lemma (Lemma 11): It is easy

to verify that the reduction can be performed in LOGSPACE.

Lemma 11 then follows from Lemma 26 and Lemma 27.

Proof of the Second Main Lemma (Lemma 12): The

number of clauses used by all gadgets in Γ(G) is bounded

by O(‖G‖4). The most wasteful part is the set of O(m)
Choice Gadgets of size O(knm2) each. However, since we

do not argue about regular refutations here, it suffices to

use one Choice Gadget whose input variables are connected

to the output variables of all MSr gadgets. The proof of

Lemma 26 and Lemma 27 goes through with that modification

(except for regularity). With this clause set Γ′(G) we get

‖Γ′(G)‖ = O(‖G‖3) and |Var(Γ′(G))| = O(‖G‖2) as

desired.

VI. THE LENGTH OF THE NARROWEST PROOF

Despite the hardness of even deciding the existence of a

narrow proof, the minimum width heuristics performs in some

cases better than the DPLL procedure. In order to compare

the power of the two approaches one compares the length

of a minimum width refutation with the length of a minimal

treelike refutation. First, if Γ has a treelike refutation of length

S, then it has also a refutation of width O(logS) and hence a

minimum width refutation of length nO(log S) [4], [6]. Thus,

the length of the narrowest refutation is quasi-polynomial

bounded in the length of a minimal treelike resolution refu-

tation. Furthermore, Ben-Sasson, Impagliazzo and Widgerson

[5] constructed a sequence of CNF formulas {Γn}∞n=1 of size

‖Γn‖ = O(n) such that:

• Every treelike resolution refutation of Γn has length at

least 2Ω( n
log n ).

•There is a resolution refutation of Γ nof width O(1) .

This provides an example where the minimum width heuristics

succeeds in polynomial time whereas every implementation

of the DPLL procedure requires exponential time. Theorem 5

provides for every constant k a contrary example: The mini-

mum width heuristics produces refutations of length Ω(nk−1)
and width k while there exists a treelike refutation of constant

length (depending on k) and width k + 1. Therefore, the

refutation of minimal width is by far longer than the treelike

refutation of minimal length. We present a short proof sketch

of Theorem 5 here, a detailed proof can be found in the full

version of the paper.

Proof of Theorem 5 (sketch): We use a similar construc-

tion as in the reduction above to prove a lower bound on the

number of rounds in the width-k game. The variable blocks

Xi
j for i ∈ [k − 1] and j ∈ [n] were used to encode an n-

ary counter with k − 1 digits. Thus, every position p on X
encodes a number from 0 to nk−1−1. The start position is the

position identified with 0 and k − 1 Rule Gadgets were used

to increment the counter. Spoiler wins if he reaches a position

that corresponds to the number (n− 1)nk−2, but since he has

to run through the gadgets and increment Ω(nk−1) times, this

gives a lower bound on the number of rounds in the game. By

Lemma 6 this is a lower bound on the depth and hence on the

length of width-k resolution refutations.
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