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Abstract—We present new bounds on the locality of several
classical symmetry breaking tasks in distributed networks. A
sampling of the results include

1) A randomized algorithm for computing a maximal
matching (MM) in O(log Δ+(log log n)4) rounds, where
Δ is the maximum degree. This improves a 25-year
old randomized algorithm of Israeli and Itai that takes
O(log n) rounds and is provably optimal for all log Δ in
the range [(log log n)4,

√
log n].

2) A randomized maximal independent set (MIS) algorithm
requiring O(log Δ

√
log n) rounds, for all Δ, and only

2O(
√

log log n) rounds when Δ = poly(log n). These
improve on the 25-year old O(log n)-round randomized
MIS algorithms of Luby and Alon, Babai, and Itai when
log Δ � √

log n.
3) A randomized (Δ + 1)-coloring algorithm requiring

O(log Δ + 2O(
√

log log n)) rounds, improving on an algo-
rithm of Schneider and Wattenhofer that takes O(log Δ+√

log n) rounds. This result implies that an O(Δ)-
coloring can be computed in 2O(

√
log log n) rounds for

all Δ, improving on Kothapalli et al.’s O(
√

log n)-round
algorithm.

We also introduce a new technique for reducing symmetry
breaking problems on low arboricity graphs to low degree
graphs. Corollaries of this reduction include MM and MIS
algorithms for low arboricity graphs (e.g., planar graphs and
graphs that exclude any fixed minor) requiring O(

√
log n) and

O(log2/3 n) rounds w.h.p., respectively.

Keywords-Coloring; Maximal Independent Set; Maximal
Matching;

I. INTRODUCTION

Breaking symmetry is one of the central themes in the the-

ory of distributed computation. At initialization the nodes of

a distributed system are assumed to be in the same state (but

** A full version of this paper is availabel online [6].
This work is supported by the US-Israel Binational Science Foundation
grant No. 2008390, Israel Science Foundation grant No. 872009011, and
NSF CAREER Grant No. CCF-0746673. Leonid Barenboim is supported
by the Adams Fellowship Program of the Israel Academy of Sciences
and Humanities. Additional funding was provided by Lynne and William
Frankel Center for Computer Science.

with distinct node IDs), yet to perform any computation the

nodes frequently must take different roles, that is, they must

somehow break their initial symmetry. In this paper we study

three of the classical symmetry breaking tasks in Linial’s

LOCAL model [20]: computing maximal matchings (MM),

maximal independent sets (MIS), and (Δ + 1)-coloring,

where Δ is the maximum degree.1 In the LOCAL model

each node of the input graph G hosts a processor, which is

aware of its neighbors and an upper bound on the size of the

graph. The computation proceeds in synchronized rounds in

which each processor sends one unbounded message along

each edge, which may be different for each edge. Time is

measured by the number of rounds; local computation is

free. At the end of the computation each node must report

whether it is in the MIS, or which incident edge is part of the

MM, or its assigned color. See [25, Ch. 1-2] for an extensive

discussion of distributed models.

Prior Work: The vertex coloring, MM, and MIS prob-

lems have been the subject of intensive research since the

mid-1980s [1], [2], [3], [9], [10], [11], [19], [20], [22],

[23], [27], [30]. In 1986 Israeli and Itai [11] devised a

randomized algorithm that computes an MM in O(logn)
time with high probability,2 and the same year Luby [22] and

Alon, Babai, and Itai [1] independently proposed O(logn)-
time randomized MIS algorithms, which can also be used

to compute (Δ + 1)-colorings in O(logn) time. These are

the fastest known algorithms for MM and MIS on general
graphs. It was recently shown that (Δ + 1)-coloring can

be computed faster [30], in O(logΔ +
√
logn) time w.h.p.

Kuhn, Moscibroda, and Wattenhofer [18] proved that there

exist n-vertex graphs with maximum degree 2Θ(
√

log n) on

1The MM problem is to compute a maximal set of vertex-disjoint edges.
The MIS problem is to compute a maximal set of vertices, no two of which
are adjacent. The (Δ + 1)-coloring problem is to assign colors from the
palette {1, . . . , Δ + 1} such that no edge is monochromatic.

2With high probability (w.h.p.) means with probability 1− 1/nc, for an
arbitrarily large fixed constant c. All randomized algorithms cited in the
paper finish their computation in the stated time bound, w.h.p.
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which any algorithm for MM or MIS (even randomized)

requires Ω(
√
logn) time. This implies a lower bound of

Ω(min{logΔ,
√
logn}) for these and many other problems.

We will henceforth refer to this result as the KMW bound.

For deterministic algorithms the situation looks quite

different. The fastest MIS and (Δ + 1)-coloring algorithms

on general graphs run in O(Δ + log∗ n) time [3], [16] and

2O(
√

log n) time [2], [27], whereas the fastest MM algorithms

on general graphs run in O(Δ + log∗ n) time [26] and

O(log4 n) time [10]. For certain graph classes the bounds

cited above can be improved. Barenboim and Elkin [3]

showed that on graphs of arboricity λ, MM and MIS can

be computed in time O(logn/ log log n) for λ sufficiently

small (λ must be less than log1−ε n for MM and less than

log1/2−ε n for MIS.) We believe arboricity is an important

graph parameter as it robustly captures the notion of spar-
sity without imposing any strict constraints. A graph has

arboricity λ if its edge set can be covered by λ forests,

or equivalently [24], if every subgraph has density less

than λ.3 Lenzen and Wattenhofer [19] gave a randomized

MIS algorithm for unoriented trees (λ = 1) running in

O(
√
logn · log log n) time.4 The MM and MIS problems

on graphs of bounded growth have also been studied re-

cently [9], culminating in an algorithm [30] running in

O(log∗ n) time on this graph class.

Faster coloring algorithms are known if one allows more

than (Δ + 1) colors. Linial [20] devised a deterministic

O(Δ2)-coloring algorithm requiring log∗ n + O(1) time,

which was improved to 1
2 log

∗ n + O(1) by Szegedy and

Vishwanathan [29]. Kothapalli et al. [15] gave a randomized

O(Δ)-coloring algorithm running in O(logΔ +
√
logn)

time, for all Δ, and Schneider and Wattenhofer [30] devised

a randomized O(Δ+log1+1/k n)-coloring algorithm running

in time O(k + log∗ n). Barenboim and Elkin [5] showed

that Δ1+ε-coloring can be computed in O(logΔ · logn)
time deterministically, for any ε > 0. Graphs of bounded

arboricity λ were shown [3], [5] to be amenable to faster

coloring algorithms.

Our Results: We give a new randomized MM algorithm

running in O(logΔ + log4 logn) time, improving the 25-

year old bound of O(logn) [11] and O(Δ + log∗ n) [26].

According to the KMW lower bound our algorithm is

provably optimal whenever logΔ ∈ [log4 logn,
√
logn].

We give a randomized MIS algorithm running in O(logΔ·√
logn) time, improving the 25-year old O(logn)-time

algorithms of Luby [22] and Alon, Babai, and Itai [1] when

logΔ � √
logn. If Δ = (logn)O(1) we provide an even

faster algorithm running in 2O(
√

log log n) time. These are the

first general MIS algorithms running in sublogarithmic time

3Note that many sparse graph classes have λ = O(1), such as planar
graphs, graphs avoiding a fixed minor, bounded genus graphs, and graphs
of bounded degree or tree/pathwidth.

4The claimed time was O(
√

log n log log n) but there was a flaw in the
analysis. See Section 7 in [6].

for such a wide range of Δ.
For vertex coloring we give a (Δ+1)-coloring algorithm

running in O(logΔ + 2O(
√

log log n)) time, improving an

O(logΔ +
√
logn)-time algorithm of Schneider and Wat-

tenhofer [31]. As a result of this, we can now compute

O(Δ)-colorings in 2O(
√

log log n) time for all Δ, improving

the O(
√
logn)-time algorithm of Kothapalli et al. [15].

As noted above, Δ is a significantly more sensitive graph

parameter than the arboricity λ. We give a new technique for

reducing the symmetry breaking problems on low arboricity

graphs to low degree graphs, which is of independent

interest. As direct corollaries, our reduction shows that MM

and MIS can be solved in O(log λ +
√
logn) time and

O(log λ · √logn + log3/4 n) time, resp., on graphs with

arboricity λ. In particular, for planar graphs (and, more gen-

erally, for graphs that exclude any fixed minor), our MM and

MIS algorithms require only O(
√
logn) and O(log2/3 n)

time, respectively. (Naive substitution of λ = O(1) into the

O(log λ
√
logn+log3/4 n) bound for MIS yields O(log3/4).

Improving that to O(log2/3 n) requires a different approach.)

We also show that the KMW lower bound implies that MM

in unoriented trees requires Ω(
√
logn) rounds. Hence our

upper bound of O(
√
logn) for MM in graphs with arboricity

up to 2O(
√

log n)) is tight up to constant factors.
When λ is very small we give several algorithms that are

faster for certain ranges of Δ. For example, when λ = O(1)
our MM, (Δ+1)-coloring, and MIS algorithms run in time,

respectively, O(logΔ + log log n
log log log n ), O(logΔ + log logn),

and O(log2Δ + log log n). These time bounds are expo-

nentially faster, as a function of n, over previous deter-

ministic algorithms [3], [5]. For the special case of trees

(λ = 1) we give an even faster MIS algorithm whose

running time is the minimum of O(
√
logn log log n) and

O(logΔ log logΔ + log log n
log log log n ), which improves on [19].

See Figure 1 for a comparison of our results with prior

work.
Technical Summary: All of our algorithms take the

following two-phase approach. In Phase I we use some

iterated randomized procedure that, with high probability,

finds a large partial solution (a matching, independent set, or

partial coloring) that effectively breaks the global problem

into a collection of disjoint subproblems with poly(logn)
size or O(

√
logn) diameter. In Phase II we solve each

subproblem using the best available deterministic algorithm.

It is for this reason that our running times are usually

exponentially faster in terms of n than the best deterministic

algorithms, e.g., a 2O(
√

log n) bound becomes 2O(
√

log log n),

a log n
log log n bound becomes log log n

log log log n and so on. This strategy

has been used in other contexts, for example, in Beck’s [7]

algorithmic approach to the Lovász Local Lemma, the local

hypergraph coloring algorithms of Rubinfeld et al. [28],

and the O(Δ)-coloring algorithm of Kothapalli et al. [15].

The main technical difficulty is in the analysis of Phase I’s

iterated randomized procedure.
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Maximal Matching Maximal Independent Set
Citation Running Time Graphs Citation Running Time Graphs

II86 [11] logn general L,ABI [1], [22] logn general

HKP01 [10] log4 n (Det.) general PS95 [27] 2O(
√

log n) (Det.) general

PR01 [26] Δ+ log∗ n (Det.) general BE09,K09 [4], [16] Δ+ log∗ n (Det.) general

BE08 [3] log n
log log n (Det.) λ < log1−ε n BE08 [3] log n

log log n (Det.) λ < log1/2−ε n

BE08 [3] λ+ logn (Det.) general BE09 [4] λ
√
logn (Det.) λ >

√
logn

LW11 [19]
√
logn log log n trees (λ = 1)

L87 [20] Ω(log∗ n) (Rand./Det.) Δ ≥ 2 L87 [20] Ω(log∗ n) (Rand./Det.) Δ ≥ 2

KMW04,10, Ω(
√
logn)

(Rand./Det.) general
KMW04,10, Ω(

√
logn)

(Rand./Det.) general
[18] Ω(logΔ) [18] Ω(logΔ)

logΔ + log4 logn general
logΔ

√
logn general

2O(
√

log log n) Δ = logO(1) n

This paper min
{

log λ+
√
logn

logΔ + λ+ log log n
all λ min

⎧⎨
⎩

log λ
√
logn+ log3/4 n

log2Δ+ λ logΔ + λε log log n

log2Δ+ λ1+ε logΔ + log λ log log n

all λ

logΔ + log log n
log log log n λ < log1−ε logn logΔ(logΔ + log log n

log log log n ) λ ≤ log1/2−ε logn
This paper

log2/3 n λ ≤ log1/3 n

min
{ √

logn log log n

logΔ log logΔ + log log n
log log log n

trees (λ = 1)

logΔ log log n+ 2O(
√

log log n) girth > 6
Vertex Coloring
Citation Colors Running Time Notes
L87 [20] Ω(log∗ n− log∗Δ) all Δ ≥ 2

BE09,K09 [4], [16] Δ+ log∗ n (Det.)

PS95 [27] 2O(
√

log n) (Det.)

SW10 [31] Δ+ 1 logΔ +
√
logn

This paper
logΔ + 2O(

√
log log n)

logΔ +min
{

λ1+ε + log λ log log n
λ+ λε log log n

all λ, fixed ε > 0

This paper Δ+O(λ) logΔ + λε log log n all λ, fixed ε > 0

This paper Δ+ λ1+ε logΔ + log λ log log n all λ, fixed ε > 0

KSOS [15]
√
logn

SW10 [31] k + log∗ n k ≤ log log n, Δ > log1+1/k n

BE10 [5]
O(Δ)

Δε logn (Det.) fixed ε > 0

This paper 2O(
√

log log n)

BE10 [5] O(λ) λε logn (Det.) fixed ε > 0

BE10 [5] Δ1+ε logΔ log n (Det.) fixed ε > 0

BE10 [5] λ1+ε log λ logn (Det.) fixed ε > 0

SW10 [31] Δ log(k) n k k ≤ log∗ n,Δ > log1+1/k n

L92 [21] Δ2 log∗ n (Det.)

Figure 1. A summary of upper and lower bounds for MM, MIS, and vertex coloring. Here Δ is the maximum degree and λ the arboricity. All running
times are randomized (w.h.p.) unless noted otherwise.

Our analyses often bound the running time in terms of

Δ, which can be significantly larger than the arboricity λ.

We give a new reduction that, roughly speaking, reduces the

maximum degree to λ · 2logε n in O(log1−ε n) time, for any

ε ∈ (0, 1). This allows us to achieve sublogarithmic (in n)

running times using algorithms that depend logarithmically

on Δ.

Organization: Section II introduces some terminology

and notation. Our MM, MIS, and (Δ + 1)-coloring algo-

rithms are presented in Sections III–V. Section VI presents a

reduction from graphs with small arboricity to small degree.

II. PRELIMINARIES

All logarithms are base 2 unless noted otherwise. The in-

put graph is G = (V,E). For any V ′ ⊆ V , let G(V ′) be the

subgraph of G induced by V ′. Let ΓG(v) = {u |(v, u) ∈ E}
and degG(v) = |ΓG(v)| be the neighborhood of v in G and

its cardinality. Let Γ̂G(v) = ΓG(v) ∪ {v} be the neigh-

borhood including v. Let Δ = Δ(G) = maxv∈V degG(v)
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be the maximum degree. Let distG(u, v) be the length

of the shortest path (i.e., distance) between u and v in

G. The diameter of G is maxu,v∈V distG(u, v) and the

weak diameter of a subgraph G(V ′) is the maximum

distance between V ′-vertices with respect to G, that is,

max{distG(u, v) | u, v ∈ V ′}. In a directed graph the

indegree (outdegree) of v is the number of edges directed

to (from) v, and the degree of v is the sum of its in and

outdegree. A forest is an acyclic graph. An oriented forest
is a directed forest in which each non-root has outdegree 1;

a pseudoforest is a directed graph in which all vertices have

outdegree 0 or 1.

In our analyses we use several standard concentration

inequalities due to Chernoff, Janson, and Azuma-Hoeffding,

given below. See [8] for their proofs.

Theorem 2.1: (Chernoff with negative correlation) Let

X = X1+· · ·+Xn be the sum of n random variables, where

the {Xi} are independent or negatively correlated. Then for

any t > 0:

Pr[X ≥ E[X]+t],Pr[X ≤ E[X]−t] ≤ exp
( −2t2∑

i(a
′
i − ai)2

)

where ai ≤ Xi ≤ a′i.
Theorem 2.2: (Janson) For X = X1+ · · ·+Xn the sum

of n random variables and t > 0:

Pr[X ≥ E[X]+t],Pr[X ≤ E[X]−t] ≤ exp
( −2t2 · (1/χ)∑

i(a
′
i − ai)2

)

where ai ≤ Xi ≤ a′i and χ is the fractional

chromatic number of the dependency graph GX =
({1, . . . , n}, {(i, j) | Xi and Xj are not independent}).

Theorem 2.3: (Azuma-Hoeffding) A sequence

Y0, . . . , Yn is a martingale with respect to

X0, . . . , Xn if Yi is a function of X0, . . . , Xi and

E[Yi | X0, . . . , Xi−1] = Yi−1. For such a martingale with

bounded differences ai ≤ Yi − Yi−1 ≤ a′i,

Pr[Yn > Y0+t], Pr[Yn < Y0−t] ≤ exp
(
− t2

2
∑

i(a
′
i − ai)2

)

Corollary 2.4: Let Z = Z1 + · · · + Zn be the sum of n
random variables and X0, . . . , Xn be a sequence, where Zi

is a function of X0, . . . , Xi, μi = E[Zi | X0, . . . , Xi−1],
μ =

∑
i μi, and ai ≤ Zi ≤ a′i. Then

Pr[Z > μ+ t], Pr[Z < μ+ t] ≤ exp
(
− t2

2
∑

i(a
′
i − ai)2

)

In our applications of these inequalities we often simplify

the sum
∑

i(a
′
i − ai)2 as follows. If

∑
i(a

′
i − ai) ≤ T and

maxi(a′i − ai) ≤ t then
∑

i(a
′
i − ai)2 ≤ (T/t)t2 = tT .

III. AN ALGORITHM FOR MAXIMAL MATCHING

The Match procedure given below is a generalized version

of the Israeli-Itai MM algorithm [11]. (See also [32].) It

is given two vertex sets U1, U2 (not necessarily disjoint)

and a matching M , and returns a matching on U1 × U2

vertex-disjoint from M .

Match(U1, U2,M)
1) Initialize directed graphs F1 = (U1∪U2, ∅) and F2 =

(U1 ∪ U2, ∅).
2) Each v ∈ U1\V (M) chooses a neighbor u ∈

U2\V (M) uniformly at random and includes (v, u)
in E(F1). (Note: F1 is a pseudoforest.)

3) Each u ∈ U2 with indegF1
(u) > 0 chooses the

v′ ∈ {v : (v, u) ∈ E(F1)} with maximum node

ID and includes (v′, u) in E(F2). (Note: F2 consists

of directed paths and cycles.)

4) If degF2
(v) = 2 then v chooses a bit b(v) ∈ {0, 1}

uniformly at random. Otherwise b(v) = 0 (respec-

tively, 1) if v is at the beginning (resp., end) of a path

in F2.

5) Return the matching {(v, u) ∈ E(F2) : b(v) =
0 and b(u) = 1}.

Note that U1 and U2 are allowed to contain matched

vertices since these are specifically excluded in step 2. Phase

I of our maximal matching algorithm consists of a sequences

of Θ(logΔ) stages. In the pseudocode below Mi is the

matching M just before stage i, Vi = V \V (Mi) is the set

of unmatched vertices before stage i, and degi and Γi are

the degree and neighborhood functions w.r.t. G(Vi). Define

the parameters δi, τi, and νi as

δi =
Δ
√

c1 lnn

ρi
, τi =

2Δ
ρi
√

c1 lnn
, νi =

Δ2

ρ2i
=

δiτi

2

where c1 is a sufficiently large constant and ρ ≈ 1.03 a

constant to be determined precisely later. Define V lo
i = {v ∈

Vi : degi(v) ≤ τi} and V hi
i = {v ∈ Vi : degi(v) > δi}

to be the low and high degree vertices at the beginning of

stage i. In each stage i we supplement the current matching

Mi first with a matching on V lo
i ×V hi

i , then with a matching

on Vi.

Phase I: Initialize M0 ← ∅ and execute stages

0, . . . , c2 logΔ− 1.

Stage i:
1. Mi+1 ← Mi ∪ Match(V lo

i , V hi
i )

2. Mi+1 ← Mi+1 ∪ Match(Vi, Vi)
Phase II: Let C be the connected components induced

by Vc2 log Δ with size at most log9 n. Deterministically

compute a maximal matching M(C) on each C ∈ C
and return Mc2 log Δ ∪

⋃
C∈C M(C).

The algorithm always returns a matching. If, at the be-

ginning of Phase II, C contains all connected components

on Vc2 log Δ then the returned matching is clearly maximal.

Thus, our goal is to show that with high probability, after

Phase I there is no connected component of unmatched

vertices with size at most log9 n. In the proof below deg(S)
is short for

∑
u∈S deg(u) for S ⊂ V .
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Lemma 3.1: Let l be any index for which τl > c3 lnn
for a sufficiently large constant c3. Then for all i ∈ [0, l],
degi+1(v) ≤ δi and deg(2)

i+1(v)
def= degi+1(Γi+1(v)) ≤ νi

with probability 1− 1/poly(n).

Proof: The two calls to Match in stage i are intended

to maintain the two claimed properties: that v’s degree

degrades geometrically in each round and that the sum of

v’s neighbors’ degrees degrades geometrically. The proof

is by induction on i; the base case is trivial. For the sake

of minimizing notation we use degi,Γi, etc. to refer to the

degree and neighborhood functions just before each call to

Match in stage i. Consider a vertex v ∈ Vi at the beginning

of stage i. By the inductive hypothesis degi(v) ≤ δi−1

and deg(2)
i (v) ≤ νi−1, from which it follows that v can

have at most νi−1/τi = Δ
√

c1 ln n
2ρi−2 = δi · (ρ2/2) neighbors

not in V lo
i . If degi(v) > δi (i.e., v ∈ V hi

i ) then in the

first call to Match, v will be matched with probability5

1− (1−1/τi)(1−ρ2/2)δi > 1− e(1−ρ2/2)c1 ln n/2. By a union

bound all vertices in V hi
i are matched with probability at

least 1− 1/nc1(1−ρ2/2)/2−1 = 1/poly(n).

We now argue that after the second call to Match,

deg(2)
i+1(v) ≤ νi. Call a node chosen in the Match procedure

if it has positive indegree in F1. A node v will be guaranteed

to have positive degree in F2 if it is chosen or if it chooses

an edge (v, u) and u has indegree 1 in F1, i.e., u has no
choice but to put (v, u) in F2. Once in a path or cycle in

F2 the probability that v is matched is at least 1/2.

We evaluate the edges chosen by Vi-vertices for F1

sequentially, beginning with all vertices outside of Γi(v),
then to each vertex in Γi(v) one at a time, in descending
order of node ID. (Recall that these were used for tie-

breaking in Match.) Let u ∈ Γi(v) be the current neighbor

under consideration. If at least degi(u)/2 neighbors of u
are currently unchosen (by vertices already evaluated) then

place u in set A, otherwise place u in set B. If u was put

in set A and u does choose a previously unchosen neighbor

(implying that it has positive degree in F2) then also place

u in set A′.

We first analyze the case that degi(A) ≥ deg(2)
i (v)/2 ≥

νi/2, then the case that degi(B) ≥ deg(2)
i (v)/2. (If

deg(2)
i (v) < νi there is nothing to prove.) Observe that each

vertex u, once in A, is moved to A′ with probability at least

1/2, and if so, contributes degi(u) ≤ δi to degi(A′).6 The

probability that after evaluating each u ∈ Γi(v), degi(A′) is

5Note that since V lo
i ∩ V hi

i = ∅, F1 consists of stars and F2 consists
of non-adjacent edges, all of which are added to the matching.

6Note that this process fits in the martingale framework of Corollary 2.4.
Here Xj is the state of the system after evaluating the jth neighbor u of
v and Zj is degi(u) if u joins A′ and 0 otherwise, which is a function
of Xj . Thus, each Zj has a range of at most δi.

less than half its expectation is:

Pr[degi(A′) < 1
2 E[degi(A′)]]

≤ Pr[degi(A′) < 1
4 degi(A)]

≤ exp(− (
1
4 degi(A))2

2
P

u∈A(degi(u))2 ) {Corollary 2.4}
≤ exp(− 1

32
degi(A)2

(degi(A)/δi)δ2
i
) {degi(u) ≤ δi}

≤ exp(− 1
32

degi(A)
δi

)

≤ exp(− 1
128τi) {degi(A) ≥ νi/2 = δiτi/4}

= exp(− Δ
64ρi

√
c1 ln n

)

We proceed under the assumption that degi(A′) ≥
1
4 degi(A) ≥ νi/8. Since each vertex with positive degree in

F2 is matched with probability at least 1/2, E[degi+1(A′)] ≤
1
2 degi(A′). Moreover, whether v ∈ A′ is matched depends

only on the bits selected by its neighbors in F2, that is,

the dependency graph of these events has chromatic number

χ = 3. Thus,

Pr[degi+1(A′) > 3
4 degi(A′)]

≤ exp(− 2(
1
4 degi(A

′))2

χ·Pu∈A′ (degi(u))2 ) {Theorem 2.2}
≤ exp(− 1

24
degi(A

′)2

(degi(A
′)/δi)δ2

i
) {χ = 3,degi(u) ≤ δi}

≤ exp(− 1
24

degi(A
′)

δi
)

≤ exp(− 1
24

τi

16 ) {degi(A
′) ≥ νi/8 = δiτi/16}

≤ exp(− Δ
192ρi

√
c1 ln n

)

We now turn to the case when degi(B) ≥ deg(2)
i (v)/2 ≥

νi/2. As each vertex u ∈ B is evaluated at least degi(u)/2
of its neighbors are already chosen. Let C ⊆ Γi(B) be

the set of chosen vertices in the second call to Match.

For x ∈ C let d(x) ≤ δi be the number of its neighbors

in B and d(C) =
∑

x∈C d(x). Thus, if x is matched

then deg(2)(v) is reduced by at least d(x). It follows that

d(C) ≥ degi(B)/2 ≥ deg(2)
i (v)/4 ≥ νi/4 and therefore

that E[degi+1(B)] ≤ degi(B) − d(C)/2 ≤ 3
4 degi(B).

We bound the probability that degi+1(B) deviates from its

expectation using Janson’s inequality, in exactly the same

way as we handled degi+1(A′). It follows that

Pr[degi+1(B) ≥ degi(B)− d(C)/4]

≤ exp(− 2(
1
4d(C))2

χ·Px∈C d(x)2 ) {Theorem 2.2}
≤ exp(− 1

24
d(C)2

(d(C)/δi)δ2
i
) {χ = 3, d(x) ≤ δi}

≤ exp(− 1
24

τi

8 ) {d(C) ≥ νi/4 = δiτi/8}
≤ exp(− Δ

96ρi
√

c1 ln n
)

Regardless of whether degi(A) ≥ deg(2)
i (v)/2 or

degi(B) ≥ deg(2)
i (v)/2, deg(2)

i+1(v) is at most deg(2)
i (v) −
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degi+1(A′)/4 or deg(2)
i (v) − d(C)/4 with probability 1 −

exp(−Ω(τi)) = 1− 1/poly(n). In either case deg(2)
i+1(v) ≤

(15/16) deg(2)
i (v). Setting ρ =

√
16/15 completes the

induction.

Lemma 3.1 implies that after l = O(ln(Δ/ ln3/2 n))
stages the maximum degree is at most δl = (c1 lnn/2)τl =
O(ln2 n). Lemma 3.2 implies that by the end of Phase I all

surviving connected components have size poly(logn).
Lemma 3.2: At any point in Phase I, if the maximum

degree in the graph induced by unmatched vertices is Δ̃,

then for some constant c4, after c4 log Δ̃ stages all connected

components of unmatched vertices have size Δ̃4 logn, with

probability 1− 1/poly(n).
Proof: The observations made in Lemma 3.1 imply

that in each call to Match(Vi, Vi), each u loses a constant

fraction of its neighbors (either because they are matched or

u itself is matched) with constant probability. Moreover, the

event that this occurs (a success for u) is independent of the

success or failure of any u′ at distance at least 5 from u.

We use the approach of [7], [28] to show that no

components with size > Δ̃4 logn survive c4 log Δ̃ stages.

Consider a subgraph H of G with s vertices. One can

easily see that there is some V0(H) ⊆ V (H) with

|V0(H)| ≥ s/(Δ̃4 + 1) = t such that for all u, u′ ∈ V0(H),
dist(u, u′) ≥ 5 and dist(u, V0(H)\{u}) = 5.7 Such a

set V0(H) corresponds to a tree with size t in the graph

G5 = (V, {(u, u′) | dist(u, u′) = 5}), which has maximum

degree less than Δ̃5. There are fewer than 4t distinct trees

on t vertices and fewer than n · Δ̃5t ways to embed a tree

on t vertices in G5. For any one vertex the probability that

it is not eliminated is at most the probability that it is not

successful O(log Δ̃) times after c4 log Δ̃ stages, which can

be made Δ̃−c5 for any c5 by making c4 sufficiently large.

Since V0(H)-vertices are at distance at least 5 from each

other, these events are independent and the probability that

H survives c4 log Δ̃ stages is at most Δ̃−c5t. By a union

bound, the probability that any such H survives is at most

n · 4t · Δ̃5t−c5t = 1/poly(n) for t = log n.

The deterministic polylogarithmic-time algorithm of [10]

and Lemma 3.2 imply the following result.

Theorem 3.3: A maximal matching can be computed in

O(logΔ+ log4 logn) time w.h.p. in an arbitrary distributed

network.

IV. MAXIMAL INDEPENDENT SET ALGORITHMS

To compute an MIS efficiently we employ the same

general strategy used in our MM algorithm. We run a

randomized algorithm (a variant of Luby’s in this case) for

a certain amount of time then argue that the connected com-

ponents in the graph induced by vertices with degree at least

7For example, repeatedly select a vertex u in V (H) at distance 5 from
some previously selected vertex, then remove all vertices within distance 4
of u.

Δ/2 have weak diameter O(
√
logn) (variant 1), or if Δ =

poly(logn), have size O(poly(log n)) (variant 2). In the

first case we use the trivial O(weak diameter) = O(
√
logn)

MIS algorithm and in the second we use the Panconesi-

Srinivasan [27] algorithm, which runs in 2O(
√

log log n) time.

Applying this halving algorithm logΔ times reduces the

maximum degree to zero. Since O(logΔ
√
logn) is not an

improvement over the logarithmic time MIS algorithms for

Δ > 2
√

log n, we assume in this section that Δ ≤ 2
√

log n.

Phase I of Halve computes independent sets I0 = ∅ ⊆
I1 ⊆ · · · ⊆ Iκ and Phase II computes an MIS on the

components of high-degree (≥ Δ/2) vertices in V \Γ̂(Iκ).
In stage i the active vertices are Ai = V \Γ̂(Ii) and degi

and Γi are the functions with respect to Ai.

Halve—Phase I:
Initialize I0 ← ∅ and execute stages 0, 1, . . . , κ − 1
where κ = c6

√
logn (variant 1) or c6 logΔ (variant

2).

Stage i:
1. Each v ∈ Ai selects itself with probability 1

Δ+1 .

2. Ii+1 ← Ii ∪ {v | v is the only vertex in Γ̂i(v)
that selects itself}.

Halve—Phase II:
Let U = {v ∈ Aκ : degκ(v) ≥ Δ/2} be the set

of active vertices with degree at least Δ/2. Let C be

the set of connected components of G(U) with weak

diameter less than 5
√
logn (variant 1) or size less than

Δ4 logn (variant 2). Deterministically compute an

MIS I(C) for each C ∈ C and return Iκ∪
⋃

C∈C I(C).

The proof of the following lemma is omitted due to space

constraints. See the full version of this paper [6].

Lemma 4.1: Let S ⊆ Ai be such that dist(u, u′) ≥ 5 and

degi(u) ≥ Δ/2 for all u, u′ ∈ S. The probability that S ⊆
Ai+1 is less than p|S| where p = 1−(1−e−1/2)e−1 ≈ 0.85.

In order to prove that U induces components with weak

diameter less than 5
√
logn it suffices to prove that for each

u, u′ ∈ V at distance at least 5(
√
logn−1), every path from

u to u′ contains some vertex not in U . To that end we define

P to be the set of all paths (not necessarily shortest) between

pairs of vertices at distance at least 5(
√
logn− 1). We first

claim that each P = (u1, . . . , ur) ∈ P contains a Q(P ) =
{q1, . . . , q√log n} ⊂ V (P ) such that dist(u, u′) ≥ 5 for

all u, u′ ∈ Q(P ). We generate Q(P ) one vertex at a time

maintaining the invariant that dist(qj , ur) ≥ 5(
√
logn− j).

Define q1 = u1 and once qj is known, define qj+1 = uk

where k is the maximum index such that dist(qj , uk) = 5.

It follows that for all j′ < j, dist(qj′ , qj+1) > 5. By the

triangle inequality, dist(qj , ur) ≥ 5(
√
logn − j) implies

dist(qj+1, ur) ≥ 5(
√
logn− (j + 1)).

Define Q = {Q(P ) | P ∈ P} and W to be the set of all

walks of length exactly 5(
√
logn − 1). Every Q(P ) ∈ Q

can be mapped injectively to a walk in W by taking the

concatenation of arbitrary shortest paths between successive
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vertices in Q(P ). Thus, |Q| ≤ |W| ≤ nΔ5(
√

log n−1).

Lemma 4.2: After κ = c6

√
logn (or κ = c6 logΔ) stages

of Phase I, U induces components with weak diameter

less than 5
√
logn (or size less than Δ4 logn) w.h.p., for

a sufficiently large c6.

Proof: If the weak diameter criterion is violated then

there is some P ∈ P with V (P ) ⊆ U . By Lemma 4.1,

in each stage i that all Q(P )-vertices have degree at least

Δ/2 the probability that none become inactive in stage

i + 1 is exp(−Ω(|Q(P )|)) = exp(−Ω(√logn)). Thus,

after κ iterations the probability that Q(P ) ⊆ U is ε =
exp(−Ω(√logn) · κ) = exp(−Ω(c6 logn)). By a union

bound, the probability that any Q ∈ P has Q(P ) ⊆ U is

ε|Q| < εnΔ5(
√

log n−1) < εn6 (since Δ ≤ 2
√

log n), which is

1/poly(n) for sufficiently large c6. It follows that no P ∈ P
has V (P ) ⊆ U with probability 1 − 1/poly(n) and that

Phase II successfully makes inactive all vertices in U .

The analysis of the second variant of the algorithm follows

that of Lemma 3.2. Each connected subgraph with s vertices

contains a vertex set with size t ≥ s/(Δ4 + 1) that forms

a tree in G5 = (V, {(u, u′) | dist(u, u′) = 5}) with size t.
There are at most n4tΔ5(t−1) trees embedded in G5 with

size t. If each of the t vertices has degree Δ/2 in stage i,
by Lemma 4.1 the probability that all t are active in stage

i + 1 is exp(−Ω(t)) and the probability that all are in U
is ε = exp(−Ω(tκ)) = exp(−Ω(c6t logΔ)). By a union

bound the probability that a component with size s = tΔ4

exists in U is less than εn4tΔ5(t−1), which is 1/poly(n)
for t = log n and sufficiently large c6.

Our main result of this section now follows from Lemma

4.2 and the algorithm of Panconesi and Srinivasan [27].

Theorem 4.3: An MIS can be computed in

O(logΔ
√
logn) time w.h.p. in an arbitrary distributed

network, or in exp(O(
√
log log n)) time w.h.p. when

Δ = poly(logn).
In the full version of this paper [6] we also prove the

following bounds for MIS in graphs of large girth. These

results generalize and slightly improve results of Lenzen and

Wattenhofer [19]. Our proof of these results is based to a

large extent on the proof of [19].

Theorem 4.4: On graphs of girth greater than 6, an MIS

can be computed in time on the order of

logΔ · log log n+ exp{O(
√
log log n)}

Moreover, an MIS of an unoriented tree can be computed

in time

min
{√

logn log log n, logΔ · log logΔ +
log log n

log log log n

}

V. A (Δ + 1)-COLORING ALGORITHM

Schneider and Wattenhofer [31] presented a randomized

(Δ + 1)-coloring algorithm running in O(logΔ +
√
logn)

time and several faster O(Δ)-coloring algorithms assuming

Δ = Ω(logn). Here we give a faster (Δ + 1)-coloring

algorithm running in O(logΔ+ exp(O(
√
log log n))) time,

which also implies that a graph can be O(Δ)-colored in

exp(O(
√
log log n)) time, for any Δ.8

Theorem 5.1: A (Δ + 1)-coloring can be computed in

O(logΔ + exp(O(
√
log log n))) time w.h.p. in an arbitrary

distributed network.
Due to space constraints we can only provide a sketch

of the algorithm and analysis; see [6] for a complete de-

scription. Phase I of the algorithm takes the most natural

randomized approach [13]. Let Ψ = {1, . . . ,Δ+ 1} be the

palette. Let ci : V → Ψ ∪ {⊥} be the partial coloring

before the ith stage of Phase I, where ⊥ indicates no

color, and let Γi(v) = {u ∈ Γ(v) | ci(u) =⊥} be the

uncolored neighborhood of v. In the ith stage each colored

vertex retains its color and each uncolored vertex v selects

a color c′(v) uniformly at random from its available palette

Ψi(v)
def= Ψ\{c(u) | u ∈ Γ(v)}. It sets ci+1(v) = c′(v) if

c′(v) �∈ {c′(u) | u ∈ Γi(v)}.
We first prove that in each stage of Phase I, each vertex is

colored with constant probability. This does not imply that

a constant fraction of a vertex v’s neighborhood Γi(v) is

colored with probability exp(−Ω(degi(v))) as the relevant

events are not independent. They are, however, negatively

correlated, which allows us to invoke Theorem 2.1. In

particular, we prove that in each stage, each high degree
vertex (having degree Ω(logn)) loses a constant fraction of

its high degree neighbors. Therefore, after O(logΔ) stages

all vertices have at most O(logn) neighbors with degree

Ω(logn), though there is no upper bound on the maximum

degree. The subgraph induced by non-high degree vertices

has, by definition, maximum degree O(logn). Once this

subgraph is colored the remaining subgraph of uncolored

vertices also has maximum degree O(logn). Thus, in Phase

II we must solve two subproblems (sequentially) on graphs

with maximum degree Δ̃ = O(logn). Consider one such

subproblem. The argument employed in Theorems 3.3 and

4.3 shows that after O(log Δ̃) = O(log logn) further

stages of the randomized coloring algorithm, all compo-

nents of uncolored vertices have size s = Δ̃4 logn =
O(log5 n). These components can be colored deterministi-

cally in exp(O(
√
log s)) = exp(O(

√
log log n)) time using

the algorithm of [27].

VI. BOUNDED ARBORICITY GRAPHS

Recall that a graph has arboricity λ if its edge set is

the union of λ forests. In the proofs of Lemma 6.1 and

Theorem 6.2, degE′(u) is the number of edges incident to u
in E′ ⊆ E and degV ′(u) = degG(V ′∪{u})(u) is the number

of neighbors of u in V ′ ⊆ V . Due to space constraints the

proof of the following technical lemma is omitted. (See [6].)
Lemma 6.1: Let G be a graph of m edges, n vertices,

and arboricity λ.

8If Δ > log n use Schneider-Wattenhofer [31]; if Δ < log n use our
algorithm.
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1) m ≤ λn.

2) The number of vertices with degree at least t ≥ λ+1
is at most λn/(t− λ).

3) The number of edges whose endpoints both have

degree at least t ≥ λ + 1 is at most λm/(t − λ).

Theorem 6.2: Let G be a graph of arboricity λ and t ≥
max{118 ·λ8, (4(c+1) lnn)7} be a parameter. In O(logt n)
time we can find a matching M ⊆ E(G) (or an independent

set I ⊆ V (G)) such that with probability at least 1− 1/nc,

the maximum degree in the induced graph G(V \V (M)) (or

G(V \Γ̂(I))) is at most tλ.

Proof: In O(logt n) rounds we commit edges to M (or

vertices to I) and remove all incident edges (or incident

vertices). Let G be the graph still under consideration

before some round and let H = {v ∈ V | degG(v) ≥
tλ} be the remaining high-degree vertices. Our goal is

to reduce the size of H by a roughly t1/7 factor. Let

J = {v ∈ H | degH(v) ≥ tλ/2}. It follows that

any vertex v ∈ H′ = H\J has degV \H(v) ≥ tλ/2.

Let Ẽ ⊂ E(H′, V \H) be any set of edges such that for

v ∈ H′, degẼ(v) = tλ/2 (that is, discard all but tλ/2
edges arbitrarily) and let S = {u | v ∈ H′ and (v, u) ∈ Ẽ}
be the neighborhood of H′ with respect to Ẽ. Note that

|S| ≤ tλ|H′|/2. See Figure 2. We define bad S-vertices, bad

. . .

. . .

Figure 2. Good S-vertices have fewer than β neighbors in H′ and
fewer than β2 neighbors in S. Good H′-vertices have at least tλ/4 good
neighbors in S.

Ẽ-edges, and bad H′-vertices as follows, where β = t1/7.

Let BS = {u ∈ S | degẼ(u) ≥ β or degS(u) ≥ β2}, let

BẼ = {(v, u) ∈ Ẽ | u ∈ BS}, and let BH′ = {v ∈
H′ | degẼ\BẼ

(v) < λt/4}.
By Lemma 6.1(3) the number of bad (v, u) ∈ BẼ due to

degẼ(u) ≥ β is at most λ|Ẽ|/(β−λ) ≤ λ(tλ|H′|/2)/(β−
λ). By Lemma 6.1(2) the number of additional bad (v, u) ∈
BẼ due to degS(u) ≥ β2 is at most (β − 1)λ|S|/(β2 −
λ) ≤ (β − 1)λ(tλ|H′|/2)/(β2 − λ) since there are at most

λ|S|/(β2 − λ) such u and each contributes fewer than β
edges in Ẽ. In total |BẼ | < 1.1 · λ2t|H′|/β. (Here we use

that β = t1/7 > 11 · λ, by an assumption of the theorem.)

Note that a bad v ∈ H′ must be incident to more than

tλ/4 edges in BẼ since degẼ(v) = tλ/2. Hence |BH′ | <

|BẼ |/(tλ/4) < 4.4 · λ|H′|/β = 4.4 · λ|H′|/t1/7.
Our goal now is to select some vertices for the MIS (or

edges for the MM) that eliminate all good H′ vertices, with

high probability. Each vertex u ∈ S\BS selects a random

number and joins the MIS if it holds a local maximum.

The probability that u joins the MIS is 1/(degS\BS (u) +
1) ≥ 1/β2 and this event is clearly independent of all

u′ ∈ S\BS at distance (in S\BS ) at least 3. Note that

since the maximum degree in the graph induced by S\BS
is less than β2, the neighborhood of any good v ∈ H′\BH′
contains a subset of at least (tλ/4)/β4 vertices, each pair

of which is at distance at least 3 with respect to S\BS .

(Such a set could be selected greedily.) Thus, the probability

that no neighbor of v ∈ H′\BH′ joins the MIS is at most

(1 − 1/β2)tλ/(4β4) < e−tλ/(4β6) = e−t1/7λ/4 < 1/nc+1.

Thus, with high probability all good H′\BH′ vertices are

eliminated. Any remaining high degree vertices must be

in J or BH′ , which, by Lemma 6.1(2) number at most

λ|H|/(t/2 − λ) + 4λ|H′|/t1/7 < 5λ|H|/t1/7. The number

of high-degree vertices is reduced by a tΩ(1) factor since

t > max{118 · λ8, (4(c + 1) lnn)7}, so after O(logt n)
rounds all high-degree vertices have been eliminated, with

probability at least 1− 1/nc.
The case of MM can be argued in a similar way.
Theorem 6.3: Given a graph of arboricity λ, an MM can

be computed in time on the order of:

min
{
log λ+

√
logn, logΔ + λ+ log log n

}

for all λ, and in O
(
logΔ + log log n

log log log n

)
time for λ <

log1−Ω(1) logn.
Proof: The second and third bounds follow from The-

orem 3.3 by substituting for [10] the deterministic MM

algorithms of Barenboim and Elkin [3] for small arboricity

graphs. Their algorithms run in O( log s
log log s ) time on graphs

with size s and arboricity λ < log1−Ω(1) s and in time

O(λ + log s) in general. In the context of our algorithm,

s ≤ log9 n. The first MM bound is a consequence of Theo-

rem 6.2 and Theorem 3.3. We reduce the maximum degree

to Δ = λt = λ · max{118 · λ8, 2
√

log n} in O(logt n) =
O(
√
logn) time and find an MM of the resulting graph in

O(logΔ + log4 logn) = O(log λ+
√
logn) time.

Note that, in particular, for graphs of constant arboricity

(e.g., planar graphs or graphs that exclude a fixed minor),

the algorithm in Theorem 6.3 constructs an MM within

O(
√
logn) time. The following theorem is proved similarly

to Theorem 6.3, except that t is set to 2log1/4 n. See [6] for

full proof.
Theorem 6.4: Given a graph of arboricity λ, an MIS can

be computed in time on the order of:

min

⎧⎨
⎩

log λ
√
logn+ log3/4 n,

log2Δ+ λ logΔ + λε log log n,

log2Δ+ λ1+ε logΔ + log λ log log n

⎫⎬
⎭
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for all λ and ε > 0, and in O
(
logΔ

(
logΔ + log log n

log log log n

))
time for λ < log1/2−Ω(1) logn.

In particular, the first bound of Theorem 6.4 implies that

for graphs of small and moderate arboricity (λ ≤ 2log1/4 n),
an MIS can be computed in O(log3/4 n) time. Moreover,

next we argue that when the arboricity is small (specifically,

λ ≤ log1/3 n) then an MIS can be computed even faster

than that.

Run the degree reduction algorithm from Theorem 6.2

with t = 2log1/3 n. As a result we reduce the problem to

an MIS in graphs with maximum degree Δ′ = λ · 2log1/3 n,

within O(log2/3) time. Now we invoke the MIS algorithm

given by the second bound of Theorem 6.4. Its running time

is log2Δ′+λ · logΔ′+λε · log log n ≤ (log λ+log1/3 n)2+
λ(log λ+ log1/3 n) + λε · log log n = O(log2/3 n).

Theorem 6.5: In a graph of arboricity λ = O(log1/3 n),
an MIS can be computed in O(log2/3 n) time.

Due to space constraints we skip the (simple) proof of the

next theorem.

Theorem 6.6: Given a graph of arboricity λ and any

fixed ε > 0, a (Δ + λ1+ε)-coloring can be computed

in O(logΔ + log λ log log n) time and a (Δ + O(λ))-
coloring can be computed in O(logΔ + λε log log n) time.

Consequently, a (Δ + 1)-coloring can be computed in time

O(logΔ +min{λ1+ε + log λ log log n, λ+ λε log log n}).
In particular, in graphs of constant arboricity, (Δ + 1)-

coloring can be computed in just O(logΔ+log logn) time.

Our MM algorithm from Theorem 6.3 runs in O(
√
logn)

time for every arboricity λ in the range 1 ≤ λ = 2O(
√

log n).

We argue that this bound is optimal even for constant λ by

appealing to the KMW lower bound of [17], [18]. In [18]

it is shown that there exist constant 0 < c′, c such that any

(possibly randomized) algorithm for computing approximate

minimum vertex cover (henceforth, MVC) in graphs with

girth9 at least c′ ·√logn which runs for c ·√logn rounds or

less (3c < c′) has a super-constant expected approximation

ratio. By way of a standard reduction from 2-approximate

MVC to MM, which we review below, they observe that

computing MM also requires Ω(
√
logn) rounds in expec-

tation. Our goal is showing a similar bound for graphs of

constant arboricity, which does not follow directly from [18]

as their hard graphs have arboricity 2O(
√

log n). As a first

step, we show that any MM algorithm on general graphs
that succeeds with high probability requires Ω(

√
logn) time.

Suppose, for the purpose of obtaining a contradiction,

that there exists an MM algorithm running in time c
√
logn

on the KWM graph that fails with probability at most

p(n) = 1/n. To obtain an approximate MVC algorithm, run

the MM algorithm for c
√
logn rounds. Any matched vertex

joins the vertex cover as well as any vertex that detects a

9The girth is the length of the shortest cycle.

local violation, namely a vertex incident to two matched

edges or an unmatched vertex incident to another unmatched

vertex. As the minimum vertex cover is at least the size

of any maximal matching, the expected approximation ratio

of this algorithm is at most 2 · Pr[no failure occurs] + n ·
Pr[some failure occurs] ≤ 2 + n · 1

n = 3, a contradiction.

Hence there is no algorithm that runs for c·√logn rounds in

graphs with girth at least c′ ·√logn, 3c < c′, that computes

an MM with probability at least 1− 1/n.

We use an indistinguishability argument to show that the

Ω(
√
logn) lower bound also holds for MM on graphs with

constant arboricity, even trees. Observe that to show a lower

bound for a randomized algorithm, it is enough to prove the

same lower bound under the assumption that the identities

of graph vertices were selected independently and uniformly

at random, from, say, [1, n10]. (These new identity numbers

can be tossed before the computation starts.) Suppose there

is, in fact, an algorithm that given a tree with a random (in

the above sense) assignment of identities, constructs an MM

within c ·√logn rounds with success probability at least 1−
1/n2. Run this algorithm for c ·√logn rounds on the KMW

graph G with girth c′ ·√logn, assuming random assignment

of identities in G. Due to the girth bound, the view of every

vertex in G is identical to its view in a tree, and thus from its

perspective a correct MM will be computed with probability

at least 1− 1/n2. By a union bound, a correct MM for the

graph G will be computed with probability at least 1−1/n,

a contradiction.

Corollary 6.7: Any MM algorithm for n-vertex unori-

ented trees that runs for at most c ·√logn rounds, for some

universal constant c > 0, has failure probability at least

1/n2.

The failure probability in Corollary 6.7 can be made

arbitrarily close to 1 by considering a graph consisting of the

union of n1−ε such trees, each with size nε, for some ε > 0.

Note that Corollary 6.7 does not extend to the MIS problem

on trees, even though MIS appears to be just as difficult as

MM. The Ω(
√
logn) lower bound for MIS from [17], [18]

is obtained by considering the line graph of a KWM graph,

which has girth 3 rather than Θ(
√
logn).
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