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Abstract—We prove that the abstract Tile Assembly
Model (aTAM) of nanoscale self-assembly is intrinsically
universal. This means that there is a single tile assembly
system U that, with proper initialization, simulates any
tile assembly system T . The simulation is “intrinsic” in
the sense that the self-assembly process carried out by
U is exactly that carried out by T , with each tile of T
represented by an m×m “supertile” of U . Our construction
works for the full aTAM at any temperature, and it
faithfully simulates the deterministic or nondeterministic
behavior of each T .

Our construction succeeds by solving an analog of the
cell differentiation problem in developmental biology: Each
supertile of U , starting with those in the seed assembly,
carries the “genome” of the simulated system T . At each
location of a potential supertile in the self-assembly of U , a
decision is made whether and how to express this genome,
i.e., whether to generate a supertile and, if so, which tile of
T it will represent. This decision must be achieved using
asynchronous communication under incomplete informa-
tion, but it achieves the correct global outcome(s).

I. INTRODUCTION

Structural DNA nanotechnology, pioneered by See-

man in the 1980s [25], exploits the information-

processing capabilities of nucleic acids to engineer

complex structures and devices at the nanoscale. This

Doty was supported by a Computing Innovation Fellowship under
NSF grant 1019343 and NSF grants CCF-1219274 and CCF-1162589.

Lutz was supported by NSF grants 0652569 and 1143830. Part of
this work was done during a sabbatical at Caltech and the Isaac Newton
Institute for Mathematical Sciences at the University of Cambridge.

Patitz was supported in part by NSF grant CCF-1117672.
Schweller was supported in part by NSF grant CCF-1117672.
Woods was supported by NSF grant 0832824, the Molecular Pro-

gramming Project, and NSF grants CCF-1219274 and CCF-1162589.

is a very “hands-off” sort of engineering: The right

molecules are placed in solution, and the structures and

devices self-assemble spontaneously according to the

principles of chemical kinetics. Controlling such self-

assembly processes is an enormous technical challenge,

but impressive progress has already been made. Regu-

lar arrays [29], polyhedra [13], fractal structures [11],

[23], maps of the world [24], curved three-dimensional

vases [12], DNA tweezers [30], logic circuits [20], neural

networks [21], and molecular robots [17] are a few of the

nanoscale objects that have self-assembled in successful

laboratory experiments. Motivating future applications

include smaller, faster, more energy-efficient computer

chips, single-molecule detection, and in-cell diagnosis

and treatment of disease.

Theoretical computer science became involved with

structural DNA nanotechnology just before the turn of

this century. In his 1998 Ph.D. thesis, Winfree introduced

a mathematical model of DNA tile self-assembly and

proved that this model is Turing-universal, i.e., that it

can simulate any Turing machine [28]. This implies that

nanoscale self-assembly can be algorithmically directed,

and that extremely complex structures and devices can

in principle be engineered by self-assembly. Rothe-

mund and Winfree [22] subsequently refined this model

slightly, formulating the abstract Tile Assembly Model
(aTAM). The (two-dimensional) aTAM is an idealized

model of error-free self-assembly in two dimensions that

has been extensively investigated.

Very briefly, a tile in the aTAM is a unit square with

a kind and strength of “glue” on each of its sides. A
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tile assembly system T consists of a finite collection

T of tile types (with infinitely many tiles of each type

in T available), a seed assembly σ consisting of one

or more tiles of types in T , and a temperature τ .

Self-assembly proceeds from the seed assembly σ, with

tiles of types in T successively and nondeterministically

attaching themselves to the existing assembly. Two tiles

placed next to each other interact if the glues on their

abutting sides match, and a tile binds to an assembly if

the total strength on all of its interacting sides is at least

τ . A more complete description of the aTAM appears in

Section II.

Our topic is the intrinsic universality of the abstract

Tile Assembly Model. We now explain what this means,

starting with what it does not mean. By Winfree’s above-

mentioned result, there is a tile assembly system U that

simulates a universal Turing machine. This universal

Turing machine, and hence U , can simulate any tile

assembly system T (in fact, there are various aTAM

software simulators available, e.g., [19]). But this is only

a computational simulation. It tells us what T does, but it

does not actually do what T does. The task of a Turing

machine is to perform a computation, and a universal

Turing machine performs the same computation as a

machine that it simulates. The task of a tile assembly

system is to perform the process of self-assembly, so a

universal tile assembly system should perform the same

self-assembly process as a tile assembly system that it

simulates. This is what is meant by intrinsic universality.

This paper proves that the abstract Tile Assembly

Model is intrinsically universal.

This means that there is a single tile set U that, with

proper initialization (calling the initialized system U ),

simulates any tile assembly system T . The simulation

is “intrinsic” in the sense that the self-assembly process

carried out by U is exactly that carried out by T , with

each tile of T represented by an m ×m “supertile” of

U . Our construction works for the full aTAM at any

temperature (the simulating system U uses temperature

2), and it faithfully simulates the deterministic or nonde-

terministic behavior of each T . This notion was studied

by Ollinger [18] and others [4], [5], [10], [14]–[16] in

the context of cellular automata and Wang tiling,

Our construction succeeds by solving an analog of the

cell differentiation problem in developmental biology:

Each supertile of U , starting with those in the seed

assembly, carries a complete encoding of the simulated

system T (the “genome” of T ) along each of its sides,

which we call “supersides”. (This genome accounts for

most of the m tiles of U that appear on each super-

side. Additional tiles along the superside identify the

glue of the simulated tile of T and support a variety

of communication mechanisms.) At each location of a

potential supertile a decision is made whether and how to

express this genome, i.e., whether to generate a supertile

and, if so, which tile of T it will represent. (This

latter choice will be nondeterministic precisely insofar

as T is nondeterministic at this location.) This decision

depends on very limited local information, but it achieves

the correct global outcome(s). The self-assembly of U
is thus a “developmental process” in which “supertile

differentiation” is governed by local communication,

while the “genome” is passed intact from supertile to

supertile.

Our construction uses three basic interacting primi-

tives to carry out the asynchronous communication under

imperfect information needed for supertile differentia-

tion and genome copying. These mechanisms are called

frames, crawlers, and probes. The frame of a potential

supertile consists of four layers of tiles just inside each

extant superside. This frame is used for communication

with adjacent supersides, which may or may not exist.

Much of its function is achieved by a symmetry-breaking

“competition” at each corner. Our construction uses

many types of crawlers, which are messengers that copy

and carry various pieces of information from place to

place in the supertile. The probes of a superside are

used to communicate with the opposite superside, which

may or may not exist. The challenge is to program

all this activity without ever blocking a path that may

later be needed for intra-supertile communication. This

summary is greatly oversimplified. An overview of our

construction is presented in Section IV, and the full

construction is presented in [8].

Our result shows that the aTAM is universal for itself,

without recourse to indirect simulations by Turing ma-

chines or other models that obscure important properties

of the model. For example, our result shows that the

tile assembly model is able to simulate local interactions

between tiles, nondeterminism, and tile growth processes

in general, all on a global scale. Thus our intrinsically

universal tile set captures, in a well defined way, all

properties of any tile assembly system.

Intrinsic universality, with its precise notion of “sim-

ulate”, has applications to the theory of self-assembly.

Firstly, a useful type of simulation is where one shows

that for all aTAM systems T there exists a tile assembly

system T ′ in some other self-assembly model that simu-

lates T . This style of ∀ T , ∃ T ′-simulation has been used

previously [1], [2], [6] and is useful when comparing

the power of tile assembly models. However, combining

such a simulation statement with the statement of our
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main result gives the immediate corollary that there is

a single set of tiles U in the other model that, when

appropriately seeded, simulates any aTAM tile assembly

system T . Hence our main result automatically shows

the existence of a single, very powerful, tile set in the

other model, a seemingly strong statement. Secondly,

and more speculatively, our result opens the possibility

for new research directions in self-assembly. For exam-

ple, taken together with the result in [9], we now know of

two classes of tile assembly systems that exhibit intrinsic

universality: the full aTAM (our main result), and the

more restricted locally consistent systems [9]. This gives

a kind of closure property for these classes of systems.

In the field of cellular automata, the notion of intrinsic

universality has led to the development of formal tools to

classify models of computation in terms of their ability

to simulate each other [5]. The intrinsically universal

cellular automata sit at the top of this “quasi-order”.

As an example of a concrete application of this work,

the notion of intrinsic universality has been used [3],

[4] to show that various elementary cellular automata

are strictly less powerful than others. Specifically, it

was shown that the communication complexity of those

systems is too low for them to exhibit intrinsic univer-

sality, and so there is a wide range of behaviors they

can never achieve. Such statements crucially make use

of the fact that intrinsic universality uses a tight notion

of “simulate”. In tile self-assembly, we currently have

very few tools by which to compare the abilities of

models; the main comparisons essentially boil down to

comparing tile complexity, or establishing whether or

not the system can simulate Turing machines and thus

make arbitrary computable shapes. Both comparisons,

especially the latter, are necessarily rather coarse for

comparing the expressibility of models, and we hope

that our result, and the notion of “simulate” that we use,

can inspire the development of work that elucidates a

fine-grained structure for self-assembly.

We conclude this introduction with a brief discussion

of related work. The most recent precursor is [9], in

which some of the present authors showed that a re-

stricted submodel of the aTAM is intrinsically univer-

sal. This was an extensive, computationally expressive

submodel of the aTAM, but its provisos (temperature 2,

no glue mismatches, and no binding strengths exceeding

the temperature) were artificially restrictive, awkward to

justify on molecular grounds, and inescapable from the

standpoint of that paper’s proof technique. Our approach

here is perforce completely different. Both papers code

the simulated system’s genome along the supersides,

but the resemblance ends there. The frames, crawlers,

and probes that we use here are new. (The “probe-like”

structures in [9] are too primitive to work for simulating

the full aTAM.)

As noted in [9], constructions of Soloveichik and

Winfree [26] and Demaine, Demaine, Fekete, Ishaque,

Rafalin, Schweller, and Souvaine [7] can be used to

achieve versions of intrinsic universality for tile as-

sembly at temperature 1, but this appears to be a

severe restriction. Additionally, the latter paper uses a

generalized version of the aTAM (i.e., “hierarchical”

self-assembly or the “two-handed” aTAM) that has a

mechanism for long-range communication that is lacking

in the standard aTAM and that obviates the need for

the distributed communication mechanisms we employ

to build supertiles. Also discussed in [9] are studies of

universality in Wang tiling [27] such as those by Lafitte

and Weiss [14]–[16]. While these studies are very sig-

nificant in the contexts of mathematical logic and com-

putability theory, they are concerned with the existence
of tilings with no mismatches, and not with any process
of self-assembly. In particular, most attempts to adapt

the constructions of Wang tiling studies (such as those

in [14]–[16]) to self-assembly result in a tile assembly

system in which many junk assemblies are formed due

to incorrect nondeterministic choices being made that

arrest any further growth and/or result in assemblies that

are inconsistent with the desired output assembly. We

therefore require novel techniques to ensure that the only

produced assemblies are those that represent the intended

result or valid partial progress toward it. Furthermore,

techniques used in constructing intrinsically universal

cellular automata do not carry over to the aTAM as

the models have fundamental differences; in particular,

when a tile is placed it remains in-place forever, whereas

cellular automata cells can be reused indefinitely. In fact,

many of the challenging issues in proving our result

are related to the fact that tiles, once placed, can block

each other and, of course, that self-assembly is a highly

asynchronous and nondeterministic process.

II. ABSTRACT TILE ASSEMBLY MODEL

This section gives a brief informal sketch of the

abstract Tile Assembly Model (aTAM). See [8] for a

formal definition of the aTAM.

A tile type is a unit square with four sides, each

consisting of a glue label (often represented as a finite

string) and a nonnegative integer strength. We assume a

finite set T of tile types, but an infinite number of copies

of each tile type, each copy referred to as a tile. An

assembly (a.k.a., supertile) is a positioning of tiles on the

integer lattice Z
2; i.e., a partial function α : Z2 ��� T .

Let AT denote the set of all assemblies of tiles from
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T , and let AT
<∞ denote the set of finite assemblies

of tiles from T . Write α � β to denote that α is a

subassembly of β, which means that dom α ⊆ dom β
and α(p) = β(p) for all points p ∈ dom α. Two adjacent

tiles in an assembly interact if the glue labels on their

abutting sides are equal and have positive strength. Each

assembly induces a binding graph, a grid graph whose

vertices are tiles, with an edge between two tiles if they

interact. The assembly is τ -stable if every cut of its

binding graph has strength at least τ , where the weight

of an edge is the strength of the glue it represents. That

is, the assembly is stable if at least energy τ is required

to separate the assembly into two parts.

A tile assembly system (TAS) is a triple T = (T, σ, τ),
where T is a finite set of tile types, σ : Z2 ��� T is a

finite, τ -stable seed assembly, and τ is the temperature.

An assembly α is producible if either α = σ or if β
is a producible assembly and α can be obtained from β
by the stable binding of a single tile. In this case write

β →T
1 α (α is producible from β by the attachment

of one tile), and write β →T α if β →T ∗
1 α (α is

producible from β by the attachment of zero or more

tiles). When T is clear from context, we may write →1

and → instead. An assembly is terminal if no tile can be

τ -stably attached to it. Let A[T ] be the set of producible

assemblies of T , and let A�[T ] ⊆ A[T ] be the set

of producible, terminal assemblies of T . A TAS T is

directed (a.k.a., deterministic, confluent) if |A�[T ]| = 1.

We make the following assumptions that do not affect

the fundamental capabilities of the model, but which

will simplify our main construction. Since the behavior

of a TAS T = (T, σ, τ) is unchanged if every glue

with strength greater than τ is changed to have strength

exactly τ , we assume henceforth that all glue strengths

are in the set {0, 1, . . . , τ}. We assume that glue labels

are never shared between glues of unequal strength.

III. MAIN RESULT

To state our main result, we must formally define what

it means for one TAS to “simulate” another. We focus

in particular on a sort of “direct simulation” via block

replacement (m × m blocks of tiles in the simulating

system represent single tiles in the simulated system).

The intuitive goal of the following definition is identical

to that in [9], and corrects some subtle errors there.

Let m ∈ Z
+. An m-block supertile over tile set T is

a partial function α : Zm × Zm ��� T , where Zm =
{0, 1, . . . ,m − 1}. Let BT

m be the set of all m-block

supertiles over T . The m-block with no domain is said

to be empty. For a general assembly α : Z2 ��� T and

x, y ∈ Z, define αm
x,y to be the m-block supertile defined

by αm
x,y(i, j) = α(mx + i,my + j) for 0 ≤ i, j < m.

A partial function R : BS
m ��� T is said to be a valid

m-block supertile representation from S to T if for any

α, β ∈ BS
m such that α � β and α ∈ dom R, then

R(α) = R(β).
For a given valid m-block supertile representation

function R from tile set S to tile set T , define the

assembly representation function R∗ : AS → AT such

that R∗(α′) = α if and only if α(x, y) = R(α′m
x,y) for all

x, y ∈ Z.1 For an assembly α′ ∈ AS such that R(α′) =
α, α′ is said to map cleanly to α ∈ AT under R∗ if for

all non empty blocks α′m
x,y , (x+ u, y + v) ∈ dom α for

some u, v ∈ {−1, 0, 1}, or if α′ has at most one non-

empty m-block αm
0,0. In other words, α′ may have tiles

on supertile blocks representing empty space in α, but

only if that position is adjacent to a tile in α.
A TAS S = (S, σS , τS) simulates a TAS T =

(T, σT , τT ) at scale m ∈ Z
+ if there exists an m-block

representation R : BS
m → T such that the following

hold:

1) Equivalent Production.

a) {R∗(α′)|α′ ∈ A[S]} = A[T ].
b) For all α′ ∈ A[S], α′ maps cleanly to

R∗(α′).
2) Equivalent Dynamics.

a) If α →T β for some α, β ∈ A[T ], then for

all α′ such that R∗(α′) = α, α′ →S β′ for

some β′ ∈ A[S] with R∗(β′) = β.

b) If α′ →S β′ for some α′, β′ ∈ A[S], then

R∗(α′)→T R∗(β′).
Let REPR denote the set of all supertile representation

functions (i.e., m-block supertile representation func-

tions for some m ∈ Z
+). Let C be a class of tile assembly

systems, and let U be a tile set.2 Note that every element

of C, REPR, and AU
<∞ is a finite object, and hence can

be represented in a suitable format for computation in

some formal system such as Turing machines. We say U
is intrinsically universal for C if there are computable

functions R : C → REPR and S : C → AU
<∞ and

τ ′ ∈ Z
+ such that, for each T = (T, σ, τ) ∈ C, there

is a constant m ∈ N such that, letting R = R(T ),
σT = S(T ), and UT = (U, σT , τ ′), UT simulates T
at scale m and using supertile representation function

R. That is, R(T ) outputs a representation function that

interprets assemblies of UT as assemblies of T , and

S(T ) outputs the seed assembly used to program tiles

from U to represent the seed assembly of T .

1Note that R∗ is a total function since every assembly of S
represents some assembly of T ; the other functions such as R and
α are partial to allow undefined points to represent empty space.

2TAS’s having tile set U are not necessarily elements of C, although
this will be true in our main theorem since C will be the set of all
TAS’s.
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Our main theorem states that there is a single tile set

capable of simulating any tile assembly system.

Theorem III.1. There is a tile set U that is intrinsically
universal for the class of all tile assembly systems.

Our intrinsically universal tile set U works at temper-

ature τ ′ = 2. Throughout this paper, T = (T, σ, τ) will

denote an arbitrary TAS being simulated. Let g ∈ Z
+

denote the number of different glues in T ; note that

g = O(|T |). In our main construction, we achieve scale

factor m = O(g4 log g); an interesting open question is

decreasing this scale factor or proving a nontrivial lower

bound on it.

IV. HIGH-LEVEL DESCRIPTION OF CONSTRUCTION

In the remainder of this extended abstract we sketch

an intuitive overview of the construction. The full con-

struction, including detailed figures, is contained in [8].

Let T = (T, σ, τ) be a TAS being simulated by U =
(U, σT , 2), where U is the universal tile set and σT is

the appropriate seed assembly for U to simulate T . The

seed assembly σT encodes information about the glues

from T that are on the perimeter of σ, with each exposed

tile-side of σ encoded as a “superside” . In particular,

glues are simply encoded as binary strings of length

O(log |T |). (Glue strengths are not explicitly encoded

since their effect on binding is implicitly accounted

for by other parts of the design.) Most importantly,

each of these supersides, as well as each superside of

all subsequently grown supertiles, encodes information

about the entire TAS T . This information is like the

“genome” of the system that is transported to each

supertile of the assembly in order to help direct its

growth based on the contents of T .

A. The fundamental problem of simulating arbitrary tile
systems

The basic problem faced by any superside adjacent to

an empty supertile is this: the superside must determine

what other superside(s) are adjacent to the same empty

supertile, what glue(s) are on those sides, whether those

glues are part of a tile type t ∈ T and whether they

have enough strength to bind t (and to choose among

multiple tile types if more than one match the glues),

and if so, the supersides on the remaining sides of t
must be constructed (i.e., placed as “output” on empty

supersides). This must be done in concert with other su-

persides that will be attempting the same thing, possibly

“unaware” of each others’ presence, and it must be done

without prior knowledge of which other supersides will

eventually arrive and the order and timing of their arrival.

S

S

N

N N

?

?

?

?

(a) The north side has to talk with the south side, and the consensus
is that there is no tile whose north side is ‘N’ and whose south side
is ‘S’. Better luck next time!

S

S

N

N

EW

W

?

? ?

?

WE

W

S

(b) Uh oh! Sometime later on, there seems to be no way to “com-
municate” from the west side to the east that the ‘WE’ tile should be
represented here.

Fig. 1: How should supertiles communicate across a gap
without “cutting the supertile in two”?

To illustrate the nontriviality of this problem, consider

the following scenario illustrated in Figure 1a. Two

supertiles arrive at positions that are north and south

of an empty supertile position, with the east and west

positions being unoccupied. The south superside has no

choice but to attempt to “contact” the north superside, for

it may be the case that their glues match that of some tile

type t ∈ T , in which case the west and east supersides

representing the sides of t must be put in place. But

suppose that although there is a north superside, the glue

it represents is not shared with the south glue on any

tile type in T , or perhaps their combined strength is

less than τ . (See Figure 1a.) Intuitively, it seems that

to determine this, the north and south supersides must

connect, in order to bring their glues together and do a

computation/lookup to find that no tile type in T shares

them. But once they have connected, the west and east

sides of the supertile are now sealed off from each other.

Suppose that at a later time, a superside arrives on the

west, and its encoded glue is shared with the west glue

on some tile type t ∈ T (with a north glue mismatching

that of the supertile already present there; see Figure 1b).

This means that t’s east glue must now be represented

by constructing an east output superside; however, this

information cannot be communicated from the west side
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of the supertile because the previous attempt to connect

the south and north has created a barrier between east

and west.

Note that such problems do not appear in Wang tiling

constructions because the nondeterministic operator can

simply guess what the other sides are.

This is not the only potential pitfall to be faced, but

it illustrates an example of the difficulty of coordinating

interaction between multiple supersides in the absence of

knowledge about which supersides will eventually arrive,

the order in which they will arrive, and what glues they

will represent.3

B. Basic protocol

Here we give a high-level overview of our construc-

tion.

1) Frame: Each superside fills in a 4-layer “frame” in

the supertile before doing anything else. The purpose of

the frame is to give each superside as much information

as possible about the other available supersides, to help

coordinate their interaction. Each superside attempts to

“become an input superside” of the supertile by compet-

ing to place a single tile at a particular position on its

left end, and another on its right end. It is competing

with a (potential) adjacent superside near their common

corner; for example, the south superside competes on

its left end with the west superside (at the southwest

corner) and on its right end with the east superside (at the

southeast corner). Therefore there are four competitions,

one at each corner, and for each corner there is both a

winner superside and a loser superside. The “loser” may

simply be a superside that is not present and never will

be, or it may be a superside that is present but lost the

competition because it arrived later. Corner tiles initiate

the growth of the first (outermost) layer of the frame, and

it is by the initiation from a corner that it lost that a losing

side gains the information that there was an adjacent

side to compete with. For corners that it won, it cannot

know whether an adjacent superside is present and lost,

or whether there is simply no adajacent superside.4

The first layer of the frame grows from the corners

of the superside to its center, at which point the entire

3These problems would be easier (if cumbersome) to overcome by
growing in three dimensions, but achieving a planar construction is
nontrivial. Furthermore, since two is the standard number of dimen-
sions in tile assembly, a planar construction is required if we want our
result to be most applicable to other (future) results in the abstract tile
assembly model, as well as in the wide spectrum of other tile assembly
models.

4Parallel programmers may be reminded of a similar phenomenon:
a thread locking a mutex does not know whether other threads will
eventually attempt to access it, but a thread encountering a locked
mutex knows for sure that another thread is currently accessing it.

superside knows whether it won or lost each corner.

The subsequent layers of the frame allow the pattern

of wins and losses for each side to be propagated

among adjacent sides in a well defined way. The careful

design of the frame and the algorithm for passing this

information allows the large set of possible scenarios

(of all subsets of sides which may be present in all

possible orderings) to be condensed into a much smaller

set of equivalent classes of scenarios which can then be

properly handled by the next portions of the supertile to

grow (as necessary) from the frame: “crawlers” which

grow along adjacent supersides, and “probes” which

grow across the centers of supertile spaces attempting

to communicate with opposite supersides (if they exist).

It is notable that, as the frame grows, it propagates all

information from the superside of the adjacent supertile

(which is acting as an output side for that supertile that

initiates the formation of this potential input side for a

new supertile), including the encoding of the glue on

that superside and the encoding of the system T (i.e.

the “genome”), into the interior of the new supertile.

Reference [8] details the algorithm used to grow the

frame to achieve this gathering of information.

2) Crawlers and lookup tables: Once the frame has

formed, information about the glues represented by the

supersides, the simulated tile system T , and the win/loss

status of each side (possibly along with information

about additional sides) is presented on the inside of

the frame. At this point, pairs of adjacent edges (i.e.

those sharing a corner) may initiate the growth of a

“crawler” component. (The determination of whether or

not a particular pair will do so is discussed later.) At

a high level, when a crawler is initiated it contains the

encoding of the glue for one superside, and as it forms

it grows across the adjacent superside, gathering the

information of the glue on that side as it grows across

it. Next, it grows across the encoding of a “tile lookup

table” which is an encoding of the tile set T that allows it

to determine if the glues that it has collected so far match

a tile in t ∈ T and have sufficient strength for t to bind. If

so, then this supertile should simulate t and the crawler’s

job becomes to grow around the remaining sides of the

supertile and to create output supersides for those sides

which aren’t already occupied by input supersides.

Of course, this is an ideal scenario; what could go

wrong? Perhaps the glues do not match a tile type.

Perhaps another superside arrived while we were at-

tempting to output on that side. Perhaps there are only

supersides on the south and north, and they must reach

across the gap of the empty supertile between them to

cooperate and place east and west output supersides.
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More generally, a crawler crawls around a supertile

“collecting” input glues. It starts in an unfilled state

until a tile lookup reveals that it has collected glues with

sufficient strength to place an output tile type; at this

point the crawler enters a full state. However, it has

not yet committed to creating an output tile type because

there may be other crawlers present that are also full.

Some symmetry-breaking is used to determine when a

full crawler changes to an output state and takes

responsibility for determining the output tile type and

placing output supersides. Our main goal in justifying the

correctness of the construction is proving that if subsets

of supersides represent glues that are sufficient to bind

a tile, then eventually exactly one crawler will enter the

output state and decide the output tile type t (or two

crawlers in the special case where they originate from

meeting probes and are guaranteed to make the same

output decision).

3) More general crawler protocol: The more general

protocol followed by crawlers is this. Whenever two

supersides “connect”, at a corner as in Figure 2a, or by

reaching across the gap as in Figure 2b, they (sometimes,

depending on information supplied by the frame) initiate

a crawler that first combines their glues and does a

lookup to see if a tile matches these glues. Crawlers

always move counterclockwise around a supertile. The

general rule is: Initiate a crawler when two sides meet,
unless we have enough information from the frame to see
that another crawler will be on its way from another
corner. Note that sometimes two crawlers are initiated

because the “later” crawler (the crawler in the more

counterclockwise direction) does not “know” (based on

only its two adjacent sides) about the first crawler. If

the lookup is successful, the crawler becomes full
and will attempt to place output supersides if there are

potentially empty supersides. On each potential output

superside, the crawler first “tests” to see if an output

side is already present, only outputting if necessary. If

the lookup is unsuccessful (i.e., the glues available to the

crawler were not sufficient to bind a tile), the unfilled
crawler crawls to the edge of the supertile to wait for a

potential new input superside to arrive. If this superside

ever does arrive, it will initiate its own crawler that will

combine the information from the first crawler (and its

two glues), to see if all three glues are sufficient by

performing a new lookup. This new crawler will follow

the same protocol.

4) Multiple crawlers: As previously mentioned, there

are some situations in which two crawlers may be

initiated and begin growth. In such a situation, a crawler

c1 may arrive at a side to find that another crawler

c2 has already begun growth from there; if so, c1
crawls over the “back” of c2 to see if c2 became

full (i.e., had a successful table lookup). If c2 is

full, c1 stops, allowing c2 to take responsibility for

outputting. Otherwise, c1 does its own lookup using

all glues (whatever glues that c1 has already collected

before encountering c2, plus the new glue on the side

that initiated the growth of c2). It is possible for c1
to receive this additional information from c2 because

crawlers pass all collected and computed information

up through themselves. This is necessary for supporting

such “piggybacking” crawlers, as well as making the

necessary information available when it becomes time

to create output supersides. In this case c1 may overtake

c2 to place output.

In cases where all four supersides are present, al-

though the output crawler does not need to deposit

output supersides, it must still decide on an output tile

type so that the representation function can uniquely

decode which tile type is represented by the supertile.

In this case, it may be the case that two crawlers exist

but one of them does not run into the other. However, we

still require symmetry-breaking so that only one of them

changes to the output state. In this case, once a crawler

has encountered the fourth superside (which happens

after it has traversed the full length of two supersides,

it has complete information (gathered from the frame)

about the win-loss configuration and therefore knows

whether another crawler was independently initiated. In

this case, a precedence ranking on corners that initiate

crawlers (NW > SW > SE > NE) is used to determine

whether to transition to the output state or to simply

die (in effect, letting the other, higher-precedence crawler

become the unique output crawler).

5) Probes: “Probes” are used for communication

across a gap between two potential input supersides on

opposite sides (i.e. north and south or east and west)

when necessary. Suppose the south superside needs to

communicate with the north superside. Recall that the

south superside’s frame either won or lost on each end of

the superside. If either end lost, then this means there is a

supertile adjacent to both south and north (west if south

lost in the southwest corner, and east if south lost in the

southeast corner). Therefore there is no need for probes,

since crawlers will eventually connect the south glue

with the north glue. Only if the south superside is “win-

win” does it send probes to potentially connect with the

north superside. Since all supersides follow this rule, this

ensures that at most two sides ever grow probes, and if

so, then they are opposite sides (since adjacent sides

cannot both be win-win). This ensures that orthogonal
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(a) Three-sided binding with input supersides on the north, west and
south (the scenario described in Fig. 1). A single (orange) crawler
is initiated from the north-west corner and outputs to the east. North
and south grow probes, that do not meet.
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(b) Two-sided binding for two opposite sides on north and south.
North and south grow probes (red and blue), which meet and initiate
two (orange) crawlers. These crawlers output to the east and west
respectively.

Fig. 2: Two examples of how probes and crawlers work together to enable cooperative binding of supersides.

probes cannot grow and interfere with each other.

The design of probes ensures that they “close the gap”

(connect two sides of the supertile) if and only if their

supersides represent glues that map to a tile type t ∈ T
and have sufficient strength for t to bind. The probes

grow from a region on the superside known as the “probe

region”. Each glue in T has its own unique subregion

in the probe region . The supersides do not grow probes

symmetrically: north and east grow probes in one way,

and west and south grow them in a complementary way.

Suppose the glue on the north is n and the glue on the

south is s. The north superside will grow a probe in the

subregion associated with n. For every glue g that has the

property that there is some tile type t ∈ T with g on the

north, s on the south, and g and s have combined strength

at least τ , the south superside will grow a probe in the

subregion associated with that g. If no tile type matches

glue s on the south and n on the north (or if n and s have

insufficient combined strength), but both north and south

probes form, they will be guaranteed to leave sufficiently

wide gaps for crawlers, which may be initiated and arrive

later, to make their way around and between the probes

. This is because each probe subregion is at least Ω(|T |)
tiles from its adjacent probe subregions, but crawlers are

only O(log |T |) tiles wide. If the probes do meet in the

middle of the supertile (indicating that a tile type t ∈ T
matches the north/south glues and has sufficient strength

to bind), they initiate their own crawlers which can place

the output supersides representing the west and east sides

of t.

6) Simulation of nondeterministic tile systems: In

each of these cases, if the simulated system T is

nondeterministic, there may be more than one tile type

that matches a given set of input glues. To handle

this scenario, a “random number” is produced through

nondeterministic attachment of tile types to a special

“random number selector component” and used as an

index to select one of the possible tile types. (A similar

mechanism was used in [9].) It is crucial that if two

probes cut off two sides of a supertile from each other,

each side’s crawlers must use the same random number

to select the tile type to output, or else they may

choose differently and place output glues that are not

consistent with any single tile type in T . This is why

probes generate a random number and advertise it to

each side of the probe. However, if probes do not meet,

then eventually a single crawler will be responsible for

choosing an output tile type, so it is sufficient for the

crawler to generate a random number just before it

begins a tile lookup.

The full details of the construction are described in

reference [8].
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