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Abstract—In this paper, we study the cell probe complexity
of evaluating an n-degree polynomial P over a finite field
F of size at least n1+Ω(1). More specifically, we show that
any static data structure for evaluating P (x), where x ∈ F,
must use Ω(lg |F|/ lg(Sw/n lg |F|)) cell probes to answer a
query, where S denotes the space of the data structure in
number of cells and w the cell size in bits. This bound holds in
expectation for randomized data structures with any constant
error probability δ < 1/2. Our lower bound not only improves
over the Ω(lg |F|/ lg S) lower bound of Miltersen [TCS’95], but
is in fact the highest static cell probe lower bound to date: For
linear space (i.e. S = O(n lg |F|/w)), our query time lower
bound simplifies to Ω(lg |F|), whereas the highest previous
lower bound for any static data structure problem having d
different queries is Ω(lg d/ lg lg d), which was first achieved by
Pǎtraşcu and Thorup [SICOMP’10].

We also use the recent technique of Larsen
[STOC’12] to show a lower bound of tq =
Ω(lg |F| lg n/ lg(wtu/ lg |F|) lg(wtu)) for dynamic data
structures for polynomial evaluation over a finite field F of
size Ω(n2). Here tq denotes the expected query time and
tu the worst case update time. This lower bound holds
for randomized data structures with any constant error
probability δ < 1/2. This is only the second time a lower
bound beyond max{tu, tq} = Ω(max{lg n, lg d/ lg lg d}) has
been achieved for dynamic data structures, where d denotes
the number of different queries and updates to the problem.
Furthermore, it is the first such lower bound that holds for
randomized data structures with a constant probability of
error.

Keywords-cell probe model, lower bounds, data structures,
polynomials

I. INTRODUCTION

The field of data structure lower bounds has received

much attention over the last decades. As a consequence,

numerous models of computation have emerged over the

years, in one way or another trying to capture the inherent

difficulties of various problems. These models include for

instance the semi-group model, pointer machine model and

the cell probe model. While the community has been ex-

tremely successful in understanding the complexity of data

structure problems in the semi-group model and pointer
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machine model, progress has been considerably slower in

the more general cell probe model.

In this paper, we study the cell probe complexity of

evaluating polynomials. More specifically, we study the

polynomial evaluation problem. In this data structure prob-

lem, the input consists of an n-degree polynomial P (x) =
anxn + · · · + a1x + a0 with coefficients an, . . . , a0 drawn

from a finite field F. The goal is to preprocess P into a

data structure, such that given an element x0 ∈ F, one

can efficiently compute P (x0) over the field F. The cell

probe lower bound we obtain for polynomial evaluation

not only improves over the previous highest lower bound

for the problem, but is in fact the highest lower bound to

date for any static data structure problem. In addition, our

lower bound holds also for randomized data structures with

a constant error probability δ < 1/2.

We also prove a cell probe lower bound for a dynamic

version of the polynomial evaluation problem. Here we think

of P as being represented by its n roots rn, . . . , r1, i.e.

P (x) = (x − rn)(x − rn−1) · · · (x − r1)1. The goal is to

support updating the roots, i.e. given an element y0 ∈ F and

an index i ∈ {1, . . . , n}, we must support updating ri to

y0. Initially, we have rn = · · · = r1 = 0. A query to this

problem still asks to evaluate P (x0) for a query element

x0 ∈ F. The lower bound we prove for this problem holds

for randomized data structures with a constant probability

of error δ < 1/2, and is the highest cell probe lower bound

to date for dynamic data structures that are allowed to err.

A. The Cell Probe Model

In the cell probe model, a static data structure consists of

a memory of cells, each containing w bits that may represent

arbitrary information about the input. The memory cells all

have an integer address amongst [2w] = {0, . . . , 2w − 1}
and we say that the data structure uses S cells of space if

only cells of addresses {0, . . . , S− 1} are used. A common

assumption that we also make is that a cell has enough bits

to address the input, i.e. we assume w = Ω(lg n), where n
is the input size.

1Note that if the field is not algebraically closed, it is not possible
to represent all polynomials over the field in this form. Since we are
considering lower bounds, this is not an issue.
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When presented with a query, a static data structure reads

(probes) a number of cells from the memory, and at the end

must announce the answer to the query. The cell probed at

each step may be any function of the query and the contents

of the previously probed cells, thus all computations on read

data are free of charge. The worst case query cost is defined

as the maximum over all pairs of an input I and a query q,

of the number of cells probed when answering q on input

I . Clearly lower bounds in this model also apply to data

structures developed in one of the most popular and least

restrictive upper bound models, the word-RAM.

A dynamic data structure in the cell probe model must

also support updates. When presented with an update, a

dynamic data structure may both read and write to memory

cells. We refer to reading or writing a cell jointly as probing

the cell. Again, the cells probed and the contents written to

cells during an update may be arbitrary functions of the

previously probed cells and the update itself. The worst

case cost of answering a query is defined as for static

data structures, but where the maximum is over pairs of

queries and update sequences. The worst case update cost
is defined as the maximum over all pairs of an update u
and a sequence of updates U , of the number of cells probed

when performing the update u after processing the updates

U .

Randomization: In this paper, we also consider ran-

domized data structures. When answering queries, a random-

ized data structure is given access to a stream of uniform

random bits. The cells probed when answering queries are

allowed to depend also on this random stream. The expected
query cost is defined as the maximum over all pairs of a

query q and an input I (update sequence U ), of the expected

number of cells probed when answering q on input I (after

processing the updates U ).

Furthermore, we allow randomized data structures to

return an incorrect result when answering queries. We define

the error probability of a randomized data structure as the

maximum over all pairs of an input I (update sequence U )

and a query q, of the probability of returning an incorrect

result when answering q on input I (after processing the

updates U ).

By a standard reduction, any randomized data structure

with a constant probability of error δ < 1/2 and expected

query cost t, can be transformed into a randomized data

structure with the same error probability and worst case

query cost O(t), see Section II. Hence, when stating query

cost lower bounds for randomized data structures with a

constant error probability δ < 1/2, we omit whether the

lower bound is for the expected query cost or the worst

case query cost.

B. Previous Results

In the following, we first give a brief overview of the

previous techniques and highest lower bounds obtained in

the field of static and dynamic cell probe lower bounds. We

finally present the previous results on polynomial evaluation.

Static Data Structures: Many outstanding results and

techniques were proposed in the years following Yao’s

introduction of the cell probe model [24]. One of the most

notable papers from that time was the paper by Miltersen

et al. [15], relating asymmetric communication complexity

and static data structures. During the next decade, a large

number of results followed from their techniques, mainly

related to predecessor search, partial match and other nearest

neighbor type problems [1], [13], [3], [4], [12], [2], [22]. Un-

fortunately these techniques could not distinguish near-linear

space data structures from data structures using polynomial

space, thus for problems where the number of queries is

polynomial in the input size, all these results gave no query

cost lower bounds beyond Ω(1), even for linear space data

structures (there are at most nO(1) queries, which is trivially

solved in polynomial space and constant query time).

This barrier was not overcome until the milestone papers

of Pǎtraşcu and Thorup [20], [21]. The technique they

introduced has since then evolved (see e.g. [18]) into an

elegant refinement of Miltersen et al.’s reduction from static

data structures to asymmetric communication complexity,

and it has triggered a renewed focus on static lower bounds,

see e.g. [17], [18], [23], [8], [9]. Their results pushed the

highest achieved query lower bound to Ω(lg d/ lg lg d) for

data structures using n lgO(1) d cells of space, where d is the

number of different queries to the data structure problem.

This lower bound was proved also for randomized data

structures with any constant error probability δ < 1/2.

Their technique thus provided the first non-trivial lower

bounds when d = nO(1), and their results remains until

today the highest achieved lower bounds for any explicit

problem. We note that their technique cannot be used to

prove lower bounds beyond Ω(lg d/ lg lg d), even for linear

space deterministic data structures.

Recently, Panigrahy et al. [16] presented another tech-

nique for proving static cell probe lower bounds. Their

technique is based on sampling cells of the data structure

instead of relying on communication complexity. Using

this technique, they reproved the bounds of Pǎtraşcu and

Thorup [21] for various nearest neighbor search problems.

We note that the idea of sampling cells has appeared before

in the world of succinct data structures, see e.g. the papers

by Gál and Miltersen [6] and Golynski [7].

Dynamic Data Structures: Lower bounds for dynamic

data structures have almost exclusively been proved by

appealing to the seminal chronogram technique of Fredman

and Saks [5]. The basic idea is to divide a sequence of n
updates into epochs of exponentially decreasing size. From

these epochs, one partitions the cells of a data structure

into subsets, one for each epoch i. The subset associated

to an epoch i contains the cells that where last updated

when processing the updates of epoch i. Lower bounds now
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follow by arguing that to answer a query after the n updates,

one has to probe Ω(1) cells associated to each epoch. For

technical reasons, the epoch sizes have to decrease by a

factor of at least wtu, where tu is the worst case update

cost of the data structure. Thus one obtains lower bounds

no higher than tq = Ω(lg n/ lg(wtu)), where tq is the

expected query cost of the data structure. This bound peaks

at max{tu, tq} = Ω(lg n/ lg lg n) for any polylogarithmic

cell size. We note that by minor modifications of these ideas,

the same bound can be achieved when tu is the amortized
update cost.

The bounds achieved using the chronogram technique re-

mained unchallenged until the seminal paper of Pǎtraşcu and

Demaine [19]. They presented an extension of the chrono-

gram technique, allowing them to obtain lower bounds of

max{tu, tq} = Ω(lg n), where tu is the amortized update

cost and tq the expected query cost. They applied their

technique to several fundamental problems, including partial
sums and dynamic connectivity.

Very recently, Larsen [11] showed how to combine the

cell sampling approach of Panigrahy et al. [16] with the

chronogram technique of Fredman and Saks [5]. This com-

bination essentially allows one to argue that when answering

a query, one has to probe Ω(lg n/ lg(wtu)) cells from each

epoch instead of Ω(1), yielding lower bounds of tq =
Ω((lg n/ lg(wtu))2), where tu is the worst case update cost

and tq the expected query cost. Larsen applied his technique

to the weighted range counting problem in 2-d and noted

that the technique is limited to proving lower bounds for

problems where the number of bits in the output of a query

is more than the number of bits needed to describe a query.

Polynomial Evaluation: The particular problem of

polynomial evaluation has seen a rather large amount of

attention, in particular from a lower bound perspective.

Miltersen [14] was the first to prove cell probe lower bounds

for polynomial evaluation over a finite field F. His lower

bound states that t = Ω(lg |F|/ lg S) whenever |F| is at

least n1+ε for an arbitrarily small constant ε > 0. Here t is

the worst case query cost. This lower bound unfortunately

degenerates to t = Ω(1) for |F| = nO(1). In [6], Gál and

Miltersen considered succinct data structures for polynomial

evaluation. Succinct data structures are data structures that

use space very close to the information theoretic minimum

required for storing the input (in this case (n + 1) lg |F|
bits). In this setting, they showed that any data structure

for polynomial evaluation must satisfy tr = Ω(n) when

|F| ≥ (1 + ε)n for any constant ε > 0. Here t is the worst

case query cost and r is the redundancy, i.e. the additive
number of extra bits of space used by the data structure

compared to the information theoretic minimum. If data

structures are allowed non-determinism (i.e. they can guess

the right cells to probe), then Yin [25] proved a lower bound

matching that of Miltersen [14].

On the upper bound side, Kedlaya and Umans [10]

showed that there exists a static word-RAM data structure

(and hence cell probe data structure) for polynomial evalu-

ation, having space usage n1+ε lg1+o(1) |F| and worst case

query cost lgO(1) n lg1+o(1) |F| for any constant ε > 0.

C. Our Results

In this paper, we further investigate the cell sampling

technique proposed by Panigrahy et al. [16]. Surprisingly,

we show that with a small modification, the technique is

more powerful than the communication complexity frame-

work of Pǎtraşcu and Thorup [21]. More specifically,

we apply the technique to the static polynomial evalu-

ation problem and obtain a query cost lower bound of

Ω(lg |F|/ lg(Sw/n lg |F|)) when |F| is at least n1+ε for

an arbitrarily small constant ε > 0. This lower bound

holds for randomized data structure with any constant error

probability δ < 1/2. For linear space data structures (i.e.

S = O(n lg |F|/w)), this bound simplifies to Ω(lg |F|).
This is the highest static cell probe lower bound to date,

and is a lg lg |F| factor larger than what can possibly be

achieved using the communication framework. Furthermore,

our lower bound gives the first non-trivial bounds for poly-

nomial evaluation when |F| = nO(1), improving over the

result of Miltersen [14].

Secondly, we apply the recent technique

of Larsen [11] to obtain a lower bound of

tq = Ω(lg |F| lg n/ lg(wtu/ lg |F|) lg(wtu)) for the dynamic

polynomial evaluation problem over a field of size at least

Ω(n2). Here tu is the worst case update time and tq is the

query cost of any randomized data structure with a constant

error probability δ < 1/2. This is the first time a lower

bound beyond max{tu, tq} = Ω(max{lg n, lg d/ lg lg d})
has been proved for dynamic data structures that are

allowed to err. Here d denotes the maximum of the

number of different queries and different updates to the

data structure problem. Furthermore, Larsen’s lower

bound [11] for weighted range counting peaks at

max{tu, tq} = Ω((lg n/ lg lg n)2) whereas this lower

bound increases even further if |F| is super-polynomial in

n.

II. STATIC POLYNOMIAL EVALUATION

In this section, we prove a cell probe lower bound

for static polynomial evaluation. In the proof we consider

polynomial evaluation over a finite field F, where we assume

|F| = n1+Ω(1).

We are aiming at proving a lower bound for randomized

data structures with error probability δ and expected query

cost t, where δ is an arbitrary constant less than 1/2. So

assume the availability of such a randomized data structure.

To ease calculations, we first modify this data structure in

the following standard way: When presented with a query,

we repeat the query algorithm a sufficiently large constant

number of times and then return the majority answer. By this
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procedure, we have effectively obtained a randomized data

structure with error probability at most 1/19, while main-

taining the same asymptotic expected query cost. Secondly,

we modify the data structure by letting it return an arbitrary

answer whenever the query algorithm does not terminate

within a number of steps that is bounded by a sufficiently

large constant times the expected query cost. By Markov’s

inequality, this yields a randomized data structure with error

probability at most 1/18 and worst case query cost O(t).
Finally, by fixing the random bits, this implies the exis-

tence of a deterministic data structure with error probability

at most 1/18 and worst case query cost O(t), where the

error probability of the deterministic data structure is defined

as the probability that it returns an incorrect result when

answering a uniform random query on a uniform random

input polynomial.

We show that such a deterministic data structure must

have worst case query cost Ω(lg |F|/ lg(Sw/n lg |F|)),
which completes the proof.

Notation: We let P denote a random variable giving a

uniform random n-degree polynomial with coefficients in the

field F, i.e. each of the n + 1 coefficients of P is a uniform

random element from F. Clearly H(P) = (n + 1) lg |F|,
where H(·) denotes binary entropy.

An Encoding Proof: Assume for contradiction that a

deterministic data structure solution for polynomial evalua-

tion over F, using S cells of space, with worst case query

cost t = o(lg |F|/ lg(Sw/n lg |F|)) and error probability

1/18 exists. Assume furthermore |F| = n1+Ω(1). Under

this assumption, we show how to encode P using less than

H(P) = (n + 1) lg |F| bits in expectation, a contradiction.

Following Panigrahy et al. [16], the high level idea of

the encoding procedure is to implement the claimed data

structure on P. Letting D(P) denote the set of cells stored

by the data structure on input P, we then find a subset of cells

that resolves a large number of queries which do not err, and

hence the cell set reveals much information about P. Here

we say that a set of cells C ⊆ D(P) resolves a query q, if the

query algorithm probes only cells in C when answering q on

input P. If the found set of cells can be described in fewer

bits than the resolved queries reveal about P, this gives the

contradiction. The following is our main technical result:

Lemma 1. With probability at least 1/2 over the choice
of P, there exists a set of cells C ⊆ D(P) and an integer
t∗, where 1 ≤ t∗ ≤ t, which satisfy all of the following
properties:

1) |C| = n lg |F|/5w.
2) Let GC

t∗(P) be the set of queries that succeed on input
P (good queries), where furthermore each query q in
GC

t∗(P) is resolved by C on input P and the query
algorithm probes exactly t∗ cells when answering q
on input P. Then |GC

t∗(P)| = |F|1−o(1) = n1+Ω(1).
3) Similarly, let BC

t∗(P) be the set of queries that err on

input P (bad queries), where furthermore each query
q in BC

t∗(P) is resolved by C and the query algorithm
probes exactly t∗ cells when answering q on input P.
Then |BC

t∗(P)| ≤ |GC
t∗(P)|/2.

Before giving the proof of Lemma 1, we show how we

use it in the encoding and decoding procedures. We first

give a high-level interpretation of Lemma 1: Examining the

lemma, we see that for half of all possible input polynomials,

the claimed (too fast) data structure must contain a set of

cells C, such that C can be described in less than H(P)
bits, and at the same time, many queries can be answered

solely from the contents of the cells in C. Now observe

that knowing the answer to an evaluation query provides a

point on the polynomial P. Hence from C, we can recover

|GC
t∗(P)| = n1+Ω(1) points on the polynomial P. Since an

n-degree polynomial over a field is uniquely determined

from any n+1 distinct points on the polynomial, it follows

that (ignoring the queries that err for now) P is uniquely

determined from C, which gives a contradiction since C
can be described in fewer than H(P) bits. The remaining

parts of the lemma ensure that we can recover P even when

facing a number of queries that err. The details of this will

become apparent in the encoding and decoding procedures

below.

We note that to prove Lemma 1, we have to extend on

the ideas in Panigrahy et al. [16] since their cell sampling

technique would leave us with a set C of size a factor t larger

than what we obtain. Readjusting parameters, this would

loose a factor lg lg |F| in the lower bound and bring us back

to what can be achieved using the communication approach.

We discuss this further when we give the proof of Lemma 1.

Encoding Algorithm: The algorithm for encoding P
does the following:

1) First we construct the claimed data structure on P
and obtain the set of cells D(P). If for every integer

1 ≤ t∗ ≤ t, D(P) does not contain a set of cells

C satisfying the properties of Lemma 1, we simply

encode P as a 0-bit followed by a naive encoding of

P, taking a total of 1 + �(n + 1) lg |F|� ≤ 2 + H(P)
bits.

2) If the integer 1 ≤ t∗ ≤ t and the cell set C does exist,

we first write a 1-bit. We then encode both t∗ and C,

including addresses and contents of the cells in C, for

a total of 1+lg t+|C|(w+lg S) ≤ 3|C|w ≤ 3/5·H(P)
bits.

This completes the encoding procedure. Next we show

how to recover P from the encoding:

Decoding Algorithm: To recover the polynomial P
from the above encoding, we do the following: We start

by examining the first bit. If this is a 0, we immediately

recover P from the remaining part of the encoding. If the

first bit is 1, we obtain the set of cells C and the integer

t∗ from the encoding. We now simulate the query algorithm
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for each of the |F| possible queries. For each such query q,

if the query algorithm requests a cell outside C we simply

discard q. Otherwise we recover the contents of the requested

cell from the encoding and continue the simulation until we

either discard the query or obtain the answer to it (possibly

incorrect answer). Once this procedure is done we are left

with all the queries that are resolved by C. We now prune

this set by deleting all queries where the query algorithm

did not probe exactly t∗ cells. We are then left with the set

GC
t∗(P)∪BC

t∗(P), including the correct answer to each query

in GC
t∗(P) and an incorrect answer to each query in BC

t∗(P)
(but we do not know which queries belong to each set).

We finally iterate through all possible input polynomials and

return as our candidate for P, the polynomial which agrees

with the most of the answers we have obtained for queries

in GC
t∗(P) ∪BC

t∗(P).
To see that the returned polynomial in fact is P, first recall

the standard fact that any n-degree polynomial over a field

is uniquely determined from n + 1 distinct points on the

polynomial. This implies that any two distinct polynomials

over the input field F can agree on the answer to at most

n evaluation queries. Thus any polynomial different from P
can agree with at most n of the answers obtained for queries

in GC
t∗(P) and possibly all answers obtained for queries in

BC
t∗(P). By Lemma 1, this is bounded by n+|BC

t∗(P)| ≤ n+
|GC

t∗(P)|− |GC
t∗(P)|/2 = |GC

t∗(P)|+n−n1+Ω(1) < |GC
t∗(P)|

query answers. But P agrees on all answers in GC
t∗(P) and

hence it follows that the returned polynomial indeed is P.

Analysis: Invoking Lemma 1, we get that the encoding

uses at most

1/2 · (2 + H(P)) + 1/2 · 3/5 ·H(P) < 9/10 ·H(P)

bits in expectation, i.e. a contradiction.

Proof of Lemma 1: In this paragraph, we prove the

main technical result, namely Lemma 1. As noted, our

approach differs slightly from that of Panigrahy et al. [16].

In their paper, they find a set of cells resolving many queries

by picking t random samples of cells, one for each cell probe

by the data structure. Our key idea is to pick one sample for

all t probes simultaneously. This small difference is crucial

to obtain the improved lower bounds when the space is less

than a factor t from linear.

First, by Markov’s inequality, we get that with probability

at least 1/2, there are at most 2 · |F|/18 = |F|/9 queries that

err on input P. When this happens, we show that there exists

t∗ and C satisfying all the properties of Lemma 1. This boils

down to counting arguments:

We first choose t∗. For this, initialize a candidate set

T = {1, . . . , t} of values for t∗. Now define G(P) as

the set of queries that succeed on input P and similarly

define B(P) as the set of queries that err on input P. By

assumption we have |B(P)| ≤ |F|/9 and hence |G(P)| ≥
8/9 · |F| ≥ 8|B(P)|. Examine each i ∈ T in turn and

collect for each choice the set Gi(P), consisting of all

queries in G(P) that probe exactly i cells on input P. For

each i where |Gi(P)| < |G(P)|/2t, we remove i from

T , i.e. we set T ← T \ {i}. After this step, we have∑
i∈T |Gi(P)| ≥ |G(P)|/2 and |Gi(P)| ≥ |G(P)|/2t for

each i ∈ T .

Next, we examine each remaining i ∈ T and remove all

such i where |Bi(P)| > |Gi(P)|/4. Here Bi(P) is the set of

queries in B(P) that probe exactly i cells on input P. Since

∑
i∈T

|Gi(P)| ≥ |G(P)|/2 ≥ 4|B(P)| ≥ 4
∑
i∈T

|Bi(P)|,

it follows that T is non-empty after this pruning step. We

let t∗ equal an arbitrary remaining value in T , thus we have

|Gt∗(P)| ≥ 4|Bt∗(P)| and |Gt∗(P)| ≥ |G(P)|/2t.

We find C in a similar fashion. For ease of notation, define

Δ = n lg |F|/5w. First initialize a candidate set Y , con-

taining all Δ-sized subsets of cells in D(P). We thus have

|Y | = (
S
Δ

)
. For a set C ′ ∈ Y , we define GC′

t∗ (P) (BC′
t∗ (P)) as

the subset of queries in Gt∗(P) (Bt∗(P)) that are resolved by

C ′, i.e. they probe only cells in C ′ on input P. Observe that

each query in Gt∗(P) and Bt∗(P) is resolved by precisely(
S−t∗
Δ−t∗

)
sets in Y , hence

∑
C′∈Y |GC′

t∗ (P)| = |Gt∗(P)|(S−t∗
Δ−t∗

)
and

∑
C′∈Y |BC′

t∗ (P)| = |Bt∗(P)|(S−t∗
Δ−t∗

)
.

We now prune Y by deleting all sets C ′ ∈ Y for

which |GC′
t∗ (P)| < |Gt∗(P)|(S−t∗

Δ−t∗
)
/2

(
S
Δ

)
. We then have∑

C′∈Y |GC′
t∗ (P)| ≥ |Gt∗(P)|(S−t∗

Δ−t∗
)
/2 and |GC′

t∗ (P)| ≥
|Gt∗(P)|(S−t∗

Δ−t∗
)
/2

(
S
Δ

)
for all remaining C ′ ∈ Y .

As the last step, we remove all C ′ ∈ Y for which

|BC′
t∗ (P)| > |GC′

t∗ (P)|/2. Again, since

∑
C′∈Y

|GC′
t∗ (P)| ≥ |Gt∗(P)|

(
S − t∗

Δ− t∗

)
/2

≥ 2|Bt∗(P)|
(

S − t∗

Δ− t∗

)

≥ 2
∑

C′∈Y

|BC′
t∗ (P)|,

we conclude that Y is non-empty after this step, and we let

C equal an arbitrary remaining set. We have thus obtained

t∗ and C satisfying

1)

|GC
t∗(P)| ≥ |Gt∗(P)|

(
S − t∗

Δ− t∗

)
/2

(
S

Δ

)

≥ |G(P)|
(

S − t∗

Δ− t∗

)
/4t

(
S

Δ

)
.

2)

|BC
t∗(P)| ≤ |GC

t∗(P)|/2.
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Lemma 1 now follows since

|G(P)|
(

S−t∗
Δ−t∗

)
4t
(

S
Δ

) ≥ 2|F|
(

S−t∗
Δ−t∗

)
9t
(

S
Δ

)
= |F| 2(S − t∗)!Δ!

9tS!(Δ− t∗)!

≥ |F|2(Δ− t∗)t∗

9tSt∗

≥ |F|
(

n lg |F|
6Sw

)t

= |F|1−o(1),

where the last step followed from the contradictory assump-

tion that t = o(lg |F|/ lg(Sw/n lg |F|)). We finally conclude:

Theorem 1. Any static cell probe data structure for evalu-
ating an n-degree polynomial over a finite field F must have
query cost t = Ω(lg |F|/ lg(Sw/n lg |F|)) if F has size at
least n1+Ω(1). Here S is the space usage in number of cells
and w is the cell size. This lower bound holds for randomized
data structures with any constant error probability δ < 1/2.
For linear space (i.e. S = O(n lg |F|/w)), this lower bound
simplifies to t = Ω(lg |F|).

III. DYNAMIC POLYNOMIAL EVALUATION

In this section, we prove a lower bound for dynamic

polynomial evaluation over a finite field F, where we assume

|F| = Ω(n2). We furthermore assume there is some arbitrary,

but fixed ordering on the elements of F.

We obtain the lower bound by giving a hard distribution

over sequences of updates and then bound the expected

query cost of any deterministic data structure with error

probability at most 1/18 over the distribution. To be precise,

the expectation in the query cost is measured over a uniform

random choice of query and a sequence of updates drawn

from the hard distribution. Similarly, the error probability is

defined as the probability that the data structure returns an

incorrect answer on a uniform random query and a sequence

of updates drawn from the hard distribution. By arguments

similar to those in Section II, this translates into an equiva-

lent lower bound on the expected query cost for randomized

data structures with any constant error probability δ < 1/2.

The first step of the proof is thus to design a hard

distribution over updates, followed by a uniform random

query.
Hard Distribution: The hard distribution is simple: We

first execute n updates, where the ith update sets the ith root

of the maintained polynomial to a uniform random element

from F. Following the n updates, we execute an evaluation

query at a uniform random element in F. This concludes the

hard distribution.

We use xi to denote the random variable giving the

uniform random element from F that is used in the ith update

operation. We let X = x1 · · · xn be the random variable

giving all the n updates. Finally we let q denote the uniform

random element in F that is used in the query.

High-Level Proof: For the remainder of this section, we

assume the availability of a deterministic data structure for

dynamic polynomial evaluation, having worst case update

time tu and error probability 1/18 over the hard distribution.

Our goal is to lower bound the expected query cost of this

data structure.

For this, conceptually divide the updates X = x1 · · · xn

into lgβ n epochs of size βi for i = 0, . . . , lgβ n − 1,

where β = (wtu)2. Epoch 0 consists of the last update xn,

and generally epoch i consists of updates xni+1, . . . , xni+βi

where ni = n−∑i
j=0 βj .

We let Xi = xni+1 · · · xni+βi denote the random variable

giving the updates of epoch i. For a sequence of updates X,

we define D(X) as the set of cells stored by the available

data structure after the sequence of updates X. We addition-

ally partition D(X) into sets Di(X) for i = 0, . . . , lgβ n−1,

where Di(X) consists of the subset of cells in D(X) that was

updated in epoch i, but not in epochs j < i, i.e. Di(X) is

the set of cells last updated in epoch i. Finally, we define

ti(X, q) as the number of cells in Di(X) that is probed by

the query algorithm when answering q after the updates X.

With this notation, our goal is to show

Lemma 2. If β = (wtu)2, then E[ti(X, q)] =
Ω(lg |F|/ lg(wtu/ lg |F|)) for all epochs i ≥ 1.

Before giving the proof of Lemma 2, we show that it

immediately gives the claimed lower bound. Since the cells

sets Di(X) are disjoint, we get that the number of cells

probed when answering q is at least
∑

i ti(X, q) (due to

rounding, there are some updates happening before epoch

lgβ n− 1, therefore at least and not exactly). It now follows

from linearity of expectation that the expected number of

cells probed when answering q is Ω(lg |F|/ lg(wtu/ lg |F|) ·
lgβ n) = Ω(lg |F|/ lg(wtu/ lg |F|) · lg n/ lg(wtu)).

What remains is thus to prove Lemma 2, which will be

the focus of Section III-A.

A. Bounding the Probes to Epoch i (Proof of Lemma 2)

To prove Lemma 2 we assume for contradiction

that the available data structure satisfies E[ti∗(X, q)] =
o(lg |F|/ lg(wtu/ lg |F|)) for some epoch i∗ ≥ 1. Now

observe that H(X | x1 · · · xni∗ ) = H(X) − ni∗ lg |F| =
(n−ni∗) lg |F| ≥ βi∗ lg |F|. We finish the proof by showing

that, conditioned on x1 · · · xni∗ , we can use the claimed data

structure to encode X in less than H(X | x1 · · · xni∗ ) bits

in expectation, i.e. a contradiction. As a technical detail,

note that in contrast to Section II, we are encoding a

sequence of updates and not just a polynomial, thus it is

important that the encoding not only recovers the polynomial

corresponding to the updates X, but it must also recover the

ordering of the updates.

Before giving the encoding and decoding procedures, we

present the main technical lemma. This lemma shows exactly
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what happens if the data structure probes too few cells from

epoch i∗.

Lemma 3. Let i∗ ≥ 1 be an epoch for which
E[ti∗(X, q)] = o(lg |F|/ lg(wtu/ lg |F|)). Partition the field
F into |F|1/4 consecutive groups of |F|3/4 elements, denoted
F1, . . . , F|F|1/4 (based on the ordering on F). Then there
exists a choice of index 1 ≤ j∗ ≤ |F|1/4 such that with
probability at least 1/2 over the choice of X, there exists a
subset of cells Ci∗ ⊆ Di∗(X) such that the following holds

• All updates x1, . . . , xn are unique, i.e. xi 
= xj for i 
=
j.

• |Ci∗ | ≤ 1/25 · βi∗ lg |F|/w.
• Let GCi∗

j∗ (X) denote the subset of queries from Fj∗

that do not err on input X, and where furthermore
the query algorithm probes no cells in Di∗(X) \ Ci∗

when answering a query in GCi∗
j∗ (X) after the updates

X. Then |GCi∗
j∗ (X)| = |F|74/100−o(1) ≥ n + 1.

As with Lemma 1, this lemma shows that if a data

structure is too efficient, then there must exist a small subset

of cells that solves many queries. However, in the dynamic

setting, we need several additional properties to obtain a

contradiction. As demonstrated by Larsen [11], we can reach

a contradiction by encoding a subset of queries for which to

simulate the query algorithm and obtain the corresponding

answers. Since the answer to an evaluation query reveals at

most lg |F| bits, encoding these queries must take less than

lg |F| bits per query to obtain a contradiction. This is the

reason why we focus on one particular subset of queries Fj∗ :

Since |Fj∗ | = |F|3/4, encoding queries from Fj∗ can be done

in lg |F|3/4 bits. This buys us lg |F| − lg |F|3/4 = 1/4 lg |F|
bits per query, which is enough to reach the contradiction.

We defer the proof of Lemma 3 to the end of the section,

and instead move on to show how we use Lemma 3 in the

encoding and decoding procedures.

Encoding: Given the sequence of updates X, we

first construct the claimed data structure on X and obtain

the cell set D(X) as well as the partitions into subsets

Dlgβ n−1(X), . . . , D0(X). We now encode X using the fol-

lowing simple procedure:

1) We first examine D(X) to determine whether a cell

set Ci∗ ⊆ Di∗(X) and a query set GCi∗
j∗ (X) exists,

satisfying all the properties of Lemma 3. This is done

simply by trying all choices for Ci∗ and GCi∗
j∗ (X) (note

that j∗ is the same for all choices of X, thus it is

assumed known both in the encoding and decoding

procedure). If such sets do not exist, or if x1, . . . , xn

are not all distinct, we first write a 0-bit, followed by

a naive encoding of updates xni∗+1, . . . , xn, taking a

total of 1+�(n−ni∗) lg |F|� ≤ 2+H(X | x1 · · · xni∗ )
bits.

2) If the claimed sets Ci∗ and GCi∗
j∗ (X) exists and

x1, . . . , xn are all distinct, we instead start by writing

a 1-bit. We then examine GCi∗
j∗ (X) and find a subset,

Qi∗ ⊆ GCi∗
j∗ (X), of βi∗ + 1 queries, such that none

of the queries in Qi∗ evaluate the polynomial at

one of the roots that was set during the updates of

epochs j 
= i∗, i.e. no query in Qi∗ is amongst

x1, . . . , xni∗ , xni∗−1+1, . . . , xn. Since GCi∗
j∗ (X) con-

tains at least n+1 elements, we can always find such

a set of queries. We now write down a description of

Ci∗ and Qi∗ , including addresses and contents of the

cells in Ci∗ . Accounting for also writing down |Ci∗ |
this takes a total of 1 + w + |Ci∗ |2w + lg

(|F|3/4

|Qi∗ |
) ≤

3/25 ·βi∗ lg |F|+lg
( |F|3/4

βi∗+1

)
bits (here we exploit that

GCi∗
j∗ (X) ⊆ Fj∗ to get the exponent 3/4).

3) Next we write down all updates following

epoch i∗, xni∗−1+1, . . . , xn, and all cell sets

Di∗−1(X), . . . , D0(X). This takes another∑i∗−1
j=0 O(|Dj(X)|w + βj lg |F|) = O(βi∗−1(lg |F| +

wtu)) bits.

4) In the last step, we consider the sorted sequence of

the updates in epoch i∗, i.e. sorted by the ordering in

F of the values they assign the roots, and not by the

time of executing the updates. From this sequence, we

write down the permutation that brings the sequence

back into sorted order of execution time, taking a total

of �lg(βi∗ !)� bits.

Decoding: In the following we show how to recover

X from the encoding. Recall that we are recovering X
conditioned on the updates preceding epoch i∗, i.e. we are

given access to x1 · · · xni∗ when recovering X. The decoding

procedure does the following:

1) We start by examining the first bit of the encoding.

If this is a 0-bit, we immediately recover X from

the remainder of the encoding and the given updates

x1 · · · xni∗ .

2) If the first bit is a 1, we start by executing updates

x1 · · · xni∗ on the claimed data structure. From this,

we obtain cell sets D∗lgβ n−1(X), . . . , D∗i∗+1(X), where

D∗i (X) denotes the set of cells that were updated

in epoch i but not during epochs i − 1, . . . , i∗ +
1. Note that Di(X) ⊆ D∗i (X) for i = lgβ n −
1, . . . , i∗ + 1. From the encoding, we furthermore

recover Di∗−1(X), . . . , D0(X) as well as updates

xni∗−1+1, . . . , xn. Finally, we recover Ci∗ and Qi∗

from the encoding.

3) The next step is to recover the answer to each query in

Qi∗ as if the query was executed after all updates X.

For this, we examine each query in Qi∗ in turn. For a

query q ∈ Qi∗ , we execute the query algorithm of the

claimed data structure. For each cell c that is requested

by the query algorithm, we first examine cell sets

Di∗−1(X), . . . , D0(X) and if c is contained in any of

them, we have immediately recovered the contents of

299



c as it is in D(X). If c is not in Di∗−1(X), . . . , D0(X)
we continue by examining Ci∗ . If c is contained

therein, we have again recovered the contents of c in

D(X) and we continue executing the query algorithm.

If c is also not in Ci∗ , then since Qi∗ ⊆ GCi∗
i∗ (X) we

know by Lemma 3 that c is not in Di∗(X)\Ci∗ . There-

fore, the contents of c has not been updated during

epochs i∗, . . . , 0 and therefore we recover the contents

of c in D(X) from D∗lgβ n−1(X), . . . , D∗i∗+1(X). Thus

regardless of which cell the query algorithm requests,

we can recover the contents as it is in D(X). It follows

that the query algorithm terminates with the answer to

q after updates X. Finally, since no queries in Qi∗ err

on input X, we conclude that the recovered answers

are also correct.

4) Recovering X is now straightforward. From updates

x1, . . . , xni∗ and xni∗−1+1, . . . , xn we know n − βi∗

points on the polynomial P (X) corresponding to X
since all xi’s are unique. Since the queries in Qi∗ do

not evaluate P (X) at x1, . . . , xni∗ , xni∗−1+1, . . . , xn

and |Qi∗ | = βi∗ + 1, the answers to queries

in Qi∗ give us another βi∗ + 1 points on P (X).
Hence P (X) is uniquely determined from the en-

coding. From P (X), we find the βi∗ roots that are

not amongst x1, . . . , xni∗ , xni∗−1+1, . . . , xn, i.e. we

find the βi∗ unique elements of F corresponding to

xni∗+1, . . . , xni∗−1 , but we do not know how they

are permuted in X. We finally recover X from the

encoding of how to permute these elements.

Analysis: In the following, we bound the expected size

of the encoding and finally reach a contradiction. We start

by analysing the size of the encoding when the conditions

of Lemma 3 are satisfied. In this case, we write down a total

of

3/25 · βi∗ lg |F|+ lg
( |F|3/4

βi∗ + 1

)

+O(βi∗−1(lg |F|+ wtu)) + lg(βi∗ !)

bits. Since β = (wtu)2, this is bounded by

3/25 · βi∗ lg |F|+ (βi∗ + 1) lg(|F|3/4/βi∗)
+O(βi∗ lg |F|/wtu) + βi∗ lg(βi∗) + O(1).

This is again upper bounded by

βi∗(lg |F|3/4 + 3/25 lg |F|+ o(lg |F|))

bits, which finally gives

(87/100 + o(1))βi∗ lg |F| ≤ 9/10H(X | x1 · · · xni∗ )

bits. From Lemma 3, we get that this is the amount of bits

spend with probability at least 1/2, hence the expected size

of the encoding is at most

1/2 · (2 + H(X | x1 · · · xni∗ ))
+1/2 · (9/10H(X | x1 · · · xni∗ ))

< H(X | x1 · · · xni∗ ),

i.e. a contradiction.

Proof of Lemma 3: To prove Lemma 3, let i∗ ≥ 1 be

an epoch in which E[ti∗(X, q)] = o(lg |F|/ lg(wtu/ lg |F|)).
We first partition F into the |F|1/4 consecutive groups

F1, . . . , F|F|1/4 of |F|3/4 elements each (i.e. based on the

ordering on F). We choose j∗ in the following way:

Let δj denote the error probability of the data struc-

ture when restricted to the queries in Fj , i.e. δj is

the probability of returning an incorrect result when an-

swering a query drawn uniformly from Fj after a se-

quence of updates drawn from the hard distribution. Clearly∑
j δj/|F|1/4 ≤ 1/18 since the error probability over

all queries is at most 1/18. Also let tji∗(X) denote the

average number of cells probed by the queries in Fj

on input X, i.e. tji∗(X) =
∑

q∈Fj
ti∗(X, q)/|Fj |. We

similarly have
∑

j E[tji∗(X)]/|F|1/4 = E[ti∗(X, q)] =
o(lg |F|/ lg(wtu/ lg |F|)). It follows immediately from

Markov’s inequality and a union bound that there must

exist a choice of j∗ such that both δj∗ ≤ 4/18 and

E[tj
∗

i∗ (X)] ≤ 4E[ti∗(X, q)] = o(lg |F|/ lg(wtu/ lg |F|)). We

let j∗ equal an arbitrary such choice of index.

The last step is to show that the cell set Ci∗ exists with

probability at least 1/2 over the choice of X. For this, let

Gj∗(X) denote the subset of queries in Fj∗ that succeed on

input X. Now using a union bound and Markov’s inequality,

we get that with probability at least 1/2, there are both at

most |Fj∗ |17/18 queries in Fj∗ that err on input X, i.e.

|Gj∗(X)| ≥ 1/18|Fj∗ |, and at the same time, we have

tj
∗

i∗ (X) ≤ 100E[tj
∗

i∗ (X)] = o(lg |F|/ lg(wtu/ lg |F|)) and

finally all xi’s are unique (we have |F| = Ω(n2), thus all

queries are unique with a very good constant probability

when the constant in Ω(n2) is large enough). When this

happens, we show that the cell set Ci∗ exists. First observe

that since |Gj∗(X)| = Ω(|Fj∗ |) it follows that the average

number of cells from Di∗(X) probed when answering a

query in Gj∗(X) is O(tj
∗

i∗ (X)) = o(lg |F|/ lg(wtu/ lg |F|)).
Hence there are Ω(|Gj∗(X)|) = Ω(|Fj∗ |) queries in Gj∗(X)
that probe o(lg |F|/ lg(wtu/ lg |F|)) cells from Di∗(X). We

thus prune Gj∗(X) by deleting all queries that probe at

least 1/100(lg |F|/ lg(wtu/ lg |F|)) cells from Di∗(X) and

we still have |Gj∗(X)| = Ω(|Fj∗ |) = Ω(|F|3/4).
Now consider all subsets of Δ = 1/25 ·βi∗ lg |F|/w cells

in Di∗(X). Since any remaining query in Gj∗(X) probes at

most μ = 1/100(lg |F|/ lg(wtu/ lg |F|)) cells from Di∗(X),
we get that there must exist a subset C′ ⊆ Di∗(X) of Δ cells,

for which at least |Gj∗(X)|(|Di∗ (X)|−μ
Δ−μ

)
/
(|Di∗ (X)

Δ

)
queries in
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Gj∗(X) probes no cells in Di∗(X) \ C′. Since

|Gj∗(X)|
(|Di∗ (X)|−μ

Δ−μ

)
(|Di∗ (X)|

Δ

) = Ω
(
|F|3/4 (|Di∗(X)| − μ)!Δ!

|Di∗(X)|!(Δ− μ)!

)

= Ω
(
|F|3/4 (Δ− μ)μ

|Di∗(X)|μ
)

= |F|3/4

(
Ω
(

lg |F|
wtu

))μ

= |F|74/100−o(1),

we conclude that the claimed set Ci∗ exists. We finally get

Theorem 2. Any dynamic cell probe data structure for
evaluating an n-degree polynomial over a finite field F must
have query cost Ω(lg |F| lg n/ lg(wtu/ lg |F|) lg(wtu)) if F
has size Ω(n2). Here tu is the worst case update time and
w is the cell size. This lower bound holds for randomized
data structures with any constant error probability δ < 1/2.
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