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Abstract—We consider the problem of finding a minimum
edge cost subgraph of an undirected or a directed graph
satisfying given connectivity requirements and degree bounds
b(·) on nodes. We present an iterative rounding algorithm
for this problem. When the graph is undirected and the
connectivity requirements are on the element-connectivity with
maximum value k, our algorithm computes a solution that is
an O(k)-approximation for the edge cost in which the degree
of each node v is at most O(k) · b(v). We also consider the
no edge cost case where the objective is to find a subgraph
satisfying connectivity requirements and degree bounds. Our
algorithm for this case outputs a solution in which the degree
of each node v is at most 6 ·b(v)+O(k2). These algorithms can
be extended to other well-studied undirected node-connectivity
requirements such as uniform, subset and rooted connectivity.
When the graph is directed and the connectivity requirement
is k-out-connectivity from a root, our algorithm computes a
solution that is a 2-approximation for the edge cost in which
the degree of each node v is at most 2 · b(v) +O(k).

I. INTRODUCTION

A. Problem definition

The degree-bounded survivable network design for undi-

rected graphs is the problem of constructing a subgraph of a

given undirected graph that satisfies both degree-bounds on

nodes and certain connectivity requirements between nodes

with minimum edge cost. More formally, the problem is

defined as follows.

Degree-bounded Survivable Network Design (SND): An

undirected graph G = (V,E) with edge costs c : E → R+,

connectivity requirements r : V × V → Z+, and degree-

bounds b : B → Z+ on a subset B of V are given. Find a

minimum cost F ⊆ E such that the degree of v ∈ B is at

most b(v) and the connectivity between u, v ∈ V is at least

r(u, v) in the subgraph (V, F ) of G.

A node v ∈ V is called terminal if there exists u ∈ V \{v}
such that r(u, v) > 0. We let T denote the set of terminals.

Moreover we represent maxu,v∈V r(u, v) by k and |V | by

n throughout the paper.

If B = V , b(v) = 2 for all v ∈ B, and a solution

is required to be a connected spanning subgraph, then

the degree-bounded SND is the Hamiltonian path problem,

and hence it is NP-hard even to find a feasible solution.

Therefore we consider bi-criteria approximations by relaxing

the constraints on degree-bounds. We say that an algorithm

is (α, β(b(v)))-approximation for α ∈ R+ and a function

β : Z+ → R+ if it always outputs a solution such that its

cost is at most α times the optimal value, and the degree

of each v ∈ B is at most β(b(v)) for each instance which

admits a feasible solution.

We also discuss a special case of degree-bounded SND

with no edge costs that we call the degree-bounded subgraph

problem.

Degree-bounded subgraph problem: Given an undirected

graph G = (V,E), connectivity requirements r : V × V →
Z+, a subset B of V , and degree-bounds b : B → Z+, find

F ⊆ E such that the degree of v ∈ B is at most b(v) and

the connectivity between u, v ∈ V is at least r(u, v) in the

subgraph (V, F ) of G.

We say that an algorithm is β(b(v))-approximation for

some function β : Z+ → R+ if it outputs a subgraph such

that the connectivity between u, v ∈ V is at least r(u, v) and

the degree of v ∈ B is at most β(b(v)) for each instance

which admits a feasible solution.

Notice that the degree-bounded subgraph problem con-

tains the problem of finding a subgraph of required connec-

tivity minimizing the maximum degree. This can be done

by letting B = V , and defining b(v) as the uniform bound

on the optimal value for all v ∈ B, which can be computed

by the binary search.

In this paper, we are interested in element-connectivity

and node-connectivity requirements. The definition of the

element-connectivity supposes that a terminal set T is given.

The element-connectivity λT (u, v) between two terminals

u, v ∈ T is the maximum number of (u, v)-paths that are

pair-wise disjoint in edges and in non-terminal nodes. On

the other hand, the node-connectivity κ(u, v) between two

vertices u, v ∈ V is defined as the maximum number of

(u, v)-paths that are pair-wise openly (or node) disjoint.

Special cases of the above problems are defined according

to the given connectivity requirements as follows.

• The degree-bounded SND is called element-
connectivity SND and the degree-bounded subgraph
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problem is called element-connectivity subgraph
problem if they demand λT (u, v) ≥ r(u, v) for each

u, v ∈ T where T ⊆ V is a given terminal set.

• The degree-bounded SND is called node-connectivity
SND and the degree-bounded subgraph problem is called

node-connectivity subgraph problem if they demand

κ(u, v) ≥ r(u, v) for each u, v ∈ V .

• Rooted k-connectivity SND and rooted k-connectivity
subgraph problem are respectively special cases of the

node-connectivity SND and the node-connectivity sub-

graph problem in which r(u, v) = k holds if {u, v} ⊆ T
and {u, v} contains a specified vertex s called root, and

r(u, v) = 0 otherwise.

• Subset k-connectivity SND and subset k-connectivity
subgraph problem are respectively special cases of

the node-connectivity SND and the node-connectivity

subgraph problem such that r(u, v) = k if {u, v} ⊆ T ,

and r(u, v) = 0 otherwise where T ⊆ V is a given

terminal set.

• k-connectivity SND and k-connectivity subgraph
problem are respectively special cases of the subset-

connectivity SND and the subset-connectivity subgraph

problem in which T = V .

Whereas we defined the above problems for undirected

graphs, they can be defined also for digraphs. In this paper,

we investigate the following problems for digraphs.

k-out-connectivity SND and directed k-connectivity
SND: We are given a digraph G = (V,E) with arc costs

c : E → Q+, in-degree-bounds b− : B− → Z+ on

B− ⊆ V , and out-degree-bounds b+ : B+ → Z+ on

B+ ⊆ V . In k-out-connectivity SND, the connectivity

requirements demand that κ(s, v) ≥ k for each v ∈ V \ {s}
with a given root s ∈ V . In directed k-connectivity SND,

the connectivity requirements demand that κ(u, v) ≥ k for

each u, v ∈ V . The task is to find a minimum cost F ⊆ E
such that the in-degree of v ∈ B− is at most b−(v), the out-

degree of v ∈ B+ is at most b+(v), and the connectivity

requirements are satisfied in the subgraph (V, F ).

For α ∈ R+ and functions β, β′ : Z+ → R+, an algo-

rithm for k-out-connectivity SND or directed k-connectivity

SND is called (α, β(b−(v)), β′(b+(v)))-approximation if it

outputs a solution such that its cost is at most α times the

optimal value, the in-degree of each v ∈ B− is at most

β(b−(v)), and the out-degree of each v ∈ B+ is at most

β′(b+(v)) for each instance which admits a feasible solution.

B. Previous work

SND without degree-bounds is a typical combinatorial

optimization problem, and a large number of studies on

it have been presented so far especially for the case with

edge-connectivity requirements. One of the most important

achievement among them is iterative rounding, that was

invented in the context of a 2-approximation algorithm by

Jain [9]. He showed that every basic optimal solution to an

LP relaxation for the edge-connectivity SND always has a

variable of value at least 1/2. The 2-approximation algo-

rithm is obtained by repeatedly rounding up such variables

and iterating the procedure until the rounded subgraph is

feasible.

The degree-bounded SND was regarded as a difficult

problem for a long time because of the above-mentioned

hardness on feasibility. A breakthrough was given by Lau,

Naor, Salavatipour and Singh [13], [14] and Singh and

Lau [21]. They gave a (2, 2b(v) + 3)-approximation for the

degree-bounded edge-connectivity SND, and a (1, b(v) +
1)-approximation algorithm for the degree-bounded span-

ning tree problem. The former result was improved to a

(2, b(v) + 6k + 3)-approximation by Lau and Singh [16]

afterwards. After their work, many efficient algorithms have

been proposed for various types of degree-bounded SND

such as directed network design problem [3], matroid base

and submodular flow problems [11], and matroid intersection

and optimization over lattice polyhedra [2]. Almost all of

them deal with edge-connectivity requirements and are based

on iterative rounding. See [15] for a comprehensive survey

on iterative rounding.

Despite the success of iterative rounding for edge-

connectivity requirements, the degree-bounded SND with

element- and node-connectivity requirements still remain

difficult to address with this method. The (2, 2b(v) + 3)-
approximation algorithm due to Lau, Naor, Salavatipour and

Singh [13], and the (2, b(v) + 6k + 3)-approximation algo-

rithm due to Lau and Singh [16] for the edge-connectivity

SND can be extended to the element-connectivity SND

but they need to assume that degree-bounds were given

on terminals only. Lau, Naor, Salavatipour and Singh also

showed that the subset k-connectivity subgraph problem

admits no 2log
1−ε n-approximation algorithm for some ε > 0

unless NP ⊆ DTIME(npolylog(n)) in [14]. For the k-

connectivity subgraph problem, Feder, Motwani and Zhu [7]

presented an O(k log n)-approximation algorithm, which

runs in nO(k) time. Khandekar, Kortsarz and Nutov [10]

proposed a (4, 6b(v) + 6)-approximation algorithm for the

k-connectivity SND with k = 2. Very recently, Nutov [20]

applied iterative rounding for the element- and node-

connectivity SNDs both for undirected graphs and digraphs.

The approximation guarantees achieved by his algorithms

can be found in Table I. Notice that his approximation

guarantees on the degree-bounds on non-terminals for the

element-connectivity SND and on arbitrary nodes for other

problems are exponential on k.

As we can observe from the above, degree-bounds on

non-terminals in the element-connectivity SND and those

(on arbitrary nodes) in the node-connectivity SND incur

large violation in previous work. One reason for this is

the difficulty in dealing with node-connectivity requirements

by iterative rounding directly even if we have no degree-
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bounds. Most approximation algorithms proposed for node-

connectivity SND without degree-bounds so far are based on

a decomposition approach [6], [12], [17], [18], [19]. Roughly

speaking, papers adopting this approach solve the problem

by decomposing it into instances of problems with edge- or

element-connectivity requirements, or their generalizations.

As for iterative rounding, Cheriyan, Vempala and Vetta [4]

showed that it achieves O(
√
n/ε)-approximation for the

k-connectivity SND where ε is a positive real with k ≤
(1 − ε)n. Fleischer, Jain and Williamson [8] showed that

iterative rounding achieves a 2-approximation for the node-

connectivity SND with k ≤ 2. Both of these results

hold only for the case without degree-bounds, and use a

standard LP relaxation in which connectivity requirements

are formulated by bisets (or its equivalent notion set-pairs).

Since the methods based on the decomposition approach

in [6], [17] only achieves O(log k log n
n−k )-approximation

for the k-connectivity SND without degree-bounds, iterative

rounding gives a much better result than the decomposition

approaches but only for k ≤ 2. Aazami, Cheriyan and

Laekhanukit [1] presented an instance of the k-connectivity

SND without degree-bounds for which the basic optimal

solution to the LP relaxation has no variable of value Ω( 1√
k
).

Their instance shows that it is hard for iterative rounding to

achieve an approximation factor better than O(
√
k) for the

k-connectivity SND with general k.

C. Our results and techniques

A biset is an ordered pair Ŝ = (S, S+) of subsets of V
such that S ⊆ S+. S is called the inner-part of Ŝ and S+ is

called the outer-part of Ŝ. We call S+ \ S the boundary of

Ŝ, denoted by Γ(Ŝ). We represent the size of Γ(Ŝ) by γ(Ŝ).
When E is a set of undirected edges, δE(Ŝ) denotes the set

of edges in E joining nodes in S with those in V \ S+.

When E is a set of arcs, δ−E (Ŝ) denotes the set of arcs in E
that have their heads in S and their tails in V \ S+. As we

will see in Section II, the element- and node-connectivity

requirements can be represented by requiring
∑

e∈δE(Ŝ)

x(e) ≥ f(Ŝ) for each biset Ŝ (1)

in undirected graphs, and
∑

e∈δ−E (Ŝ)

x(e) ≥ f(Ŝ) for each biset Ŝ (2)

in digraphs where x(e) ∈ {0, 1} is a variable for rep-

resenting whether an edge/arc e ∈ E is chosen or not,

and f is some biset function defined from the connectivity

requirements.

1) Element-connectivity SND: We give an iterative round-

ing (O(k), O(k) · b(v))-approximation algorithm for the

element-connectivity SND. Our algorithm exploits the LP

relaxation in which the connectivity requirements are formu-

lated by (1). This is a natural extension of the LP relaxation

usually used for SND with edge-connectivity requirements.

In SND with edge-connectivity requirements, the analysis

of iterative rounding depends on the laminarity of the tight

cut constraints defining the basic solutions. On the other

hand, it is known [20] that if the biset function f is defined

from the element-connectivity, then the tight biset constraints

defining the basic solutions to our LP has a certain type of

laminarity, that will be introduced in Section IV. Despite

this observation, we still have some difficulty in carrying out

the standard token argument from edge-connectivity problem

particularly in the case of bisets that have exactly one child

in the laminar family. To tackle this, we use a careful

structural lemma (Lemma 2) that bounds the number of such

one-child bisets that need careful handling. This leads to our

bounds for the element-connectivity SND (Corollary 1).

2) k-out-connectivity SND: We have the same lami-

narity of the independent tight biset constraints for the

k-out-connectivity. Hence it is not difficult to see that

our idea for the element-connectivity SND gives an

(O(k), O(k) · b−(v), O(k) · b+(v))-approximation for the k-

out-connectivity SND. However we find that it is possible to

achieve a better result. Here the key interaction is between

the size of the laminar family of independent tight con-

straints for the extreme point, and the size of the set of nodes

whose degree-bounds are tight and are linearly independent

at this extreme point. Depending upon the relative sizes

of these two sets, we modify the earlier token argument

to get our improved result. When the set of nodes with

tight degree-bounds is smaller than the laminar family of

independent tight constraints, we show that a known iterative

rounding proof for the case without degree-bounds can be

modified for the case with degree-bounds. When the set of

nodes with tight degree-bounds is larger, we use that our

structural lemma on the laminar family to give a better token

distribution scheme work for the k-out-connectivity SND.

By these observations, we give a (2, k, 2b+(v) + O(k))-
approximation algorithm for the k-out-connectivity SND.

3) Element-connectivity subgraph problem: The above

token distribution idea for the k-out-connectivity SND does

not work for undirected graphs. However, by introducing

a more careful token redistribution idea based on more

sophisticated structural lemma than the one used for the

element-connectivity SND, we can see that there exists a

fractional edge in the basic solution for the corresponding

LP relaxation with value at least 1/6 or a degree-bounded

node of degree at most 16k2−4k−7 in the support graph of

the basic solution (Theorem 5). This achieves approximation

factor 6b(v) +O(k2) for the element-connectivity subgraph

problem.

4) Other node-connectivity requirements: It has been

shown in the previous work on the node-connectivity SND

that the other connectivity requirements can be decomposed

into element-connectivity or k-out-connectivity require-

ments. Hence out results for the element-connectivity and
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Table I
APPROXIMATION GUARANTEES FOR THE DEGREE-BOUNDED SND AND THE DEGREE-BOUNDED SUBGRAPH PROBLEM

edge cost (approx. factors) degree note

element-connectivity
(undirected)

2 (b(v) + 6k + 3,+∞)* Lau, Singh [16]

O(log k) (O(log k · b(v) + k), O(2k) · b(v))* Nutov [20]
4k − 1 (4k − 1) · b(v) + 4k − 2 This paper
+∞ 6b(v) +O(k2) This paper

node-connectivity
(undirected)

O(k3 log k log |T |) O(2kk3 log |T |) · b(v) Nutov [20]
O(k4 log |T |) O(k4 log |T |) · b(v) This paper
+∞ O(k3 log |T | · b(v) + k5 log |T |) This paper

rooted k-connectivity
(undirected)

O(log k) O(2k) · b(v) only for T = V , Nutov [20]

O(k2 log k log |T |) O(2kk2 log |T |) · b(v) Nutov [20]
4 2b(v) + 5k − 1 only for T = V , This paper
O(k2 log k) O(k2 log k) · b(v) This paper
+∞ O(k log k · b(v) + k3 log k) This paper

subset k-connectivity
(undirected)

O(k2 log k log |T |) O(2kk2 log |T |) · b(v) Nutov [20]
O(k2 log k) O(k2 log k) · b(v) This paper
+∞ O(k log k · b(v) + k3 log k) This paper

k-connectivity
(undirected)

O(k) O(2k) · b(v) Nutov [20]
O(k) 2b(v) +O(k2) This paper

k-out-connectivity
(directed)

O(log k) (+∞, O(2k) · b+(v)) Nutov [20]
1 (b−(v),+∞) Nutov [20]
2 (k, 2b+(v) + 4k − 1) This paper

directed k-connectivity
(directed)

O(k) (+∞, O(2k) · b+(v)) Nutov [20]
O(k) (O(k2), 2b+(v) +O(k2)) This paper

*The two-tuples denote the degrees of terminals and of non-terminals respectively.

k-out-connectivity give new approximation algorithms for

these requirements. The approximation guarantees achieved

by our algorithms are summarized in Table I. Approximation

guarantee β(b(v)) for the degree-bounded subgraph problem

is represented by (+∞, β(b(v))) in the table.

Although we do not give a proof due to the space

limitation, if the biset function f is defined for the k-

connectivity requirements and n > 3k − 3, then the tight

biset constraints defining a basic solution for our LP is

laminar, which has been never observed before as far as

we know. Therefore our results for the laminar bisets in

undirected graphs show that applying iterative rounding

directly gives an (O(k), O(k) · b(v))-approximation for the

k-connectivity SND and a (6b(v) + O(k2))-approximation

for the k-connectivity subgraph problem when n > 3k − 3.

This is not important in terms of approximation guarantees

because we can achieve better guarantees by decomposing

the k-connectivity requirement into the k-out-connectivity

SND requirements. Nevertheless we believe that this fact

is worth noting even for the case without degree-bounds

because this O(k) guarantee on the fractionality of the basic

optimal solution to the LP relaxation is much better than the

earlier bound O(
√

n/ε) due to [4].

II. PRELIMINARIES ON BISETS

For a graph G = (V,E), we denote the set of all bisets of

V by V . If Ŝ = (S, S+) ∈ V satisfies S 	= ∅ and V \S+ 	= ∅,
then Ŝ is called proper. For two bisets X̂ = (X,X+) and

Ŷ = (Y, Y +), we define X̂∩Ŷ as (X∩Y,X+∩Y +), X̂∪Ŷ
as (X ∪ Y,X+ ∪ Y +), and X̂ \ Ŷ as (X \ Y +, X+ \ Y ).

Suppose that G = (V,E) is undirected. For a biset Ŝ,

χE(Ŝ) denotes the incidence vector of δE(Ŝ) (i.e., χE(Ŝ) is

the |E|-dimensional vector whose component corresponding

to e ∈ E is 1 if e ∈ δE(Ŝ), and 0 otherwise).

Let g : V → Z+. g is called symmetric when g(Ŝ) =
g(Ŝ′) holds for any Ŝ = (S, S+) ∈ V and Ŝ′ = (V \
S+, V \S). g is called intersecting supermodular if for any

bisets X̂ and Ŷ with g(X̂) > 0, g(Ŷ ) > 0, X ∩ Y 	= ∅
and V \ (X+ ∪ Y +) 	= ∅, g(X̂) + g(Ŷ ) ≤ g(X̂ ∩ Ŷ ) +
g(X̂ ∪ Ŷ ) holds, and is called skew supermodular if for

any two bisets X̂ and Ŷ with g(X̂) > 0 and g(Ŷ ) > 0,

we have (i) g(X̂) + g(Ŷ ) ≤ g(X̂ ∩ Ŷ ) + g(X̂ ∪ Ŷ ) or (ii)

g(X̂) + g(Ŷ ) ≤ g(X̂ \ Ŷ ) + g(Ŷ \ X̂).
From T ⊆ V and r : T×T → Z+, define a biset function

felt : V → Z by felt(Ŝ) = maxu∈S∩T,v∈T\S+ r(u, v) −
γ(Ŝ) if S ∩ T 	= ∅ 	= T \ S+ and T ∩ Γ(Ŝ) = ∅, and by

felt(Ŝ) = 0 otherwise. By Menger’s theorem, an undirected

graph (V,E) satisfies λT (u, v) ≥ r(u, v) for each u, v ∈ T
if and only if |δE(Ŝ)| ≥ felt(Ŝ) for each Ŝ ∈ V . Thus felt
represents element-connectivity requirements.

Theorem 1 ([8]): felt is symmetric and skew supermod-

ular.

For k ∈ Z+ and s ∈ V , define a function fout : V →
Z by fout(Ŝ) = k − γ(Ŝ) if S 	= ∅ and s 	∈ S+, and

by fout(Ŝ) = 0 otherwise. Then a digraph (V,E) satisfies

κ(s, v) ≥ k for each v ∈ V \ {s} if and only if |δ−E (Ŝ)| ≥
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fout(Ŝ) for each Ŝ ∈ V . In other words, fout represents the

k-out-connectivity requirements. It is not difficult to see the

following property of fout.
Theorem 2: fout is intersecting supermodular.

An arbitrary set F of undirected edges satisfies both

|δF (X̂)| + |δF (Ŷ )| ≥ |δF (X̂ ∩ Ŷ )| + |δF (X̂ ∪ Ŷ )| and

|δF (X̂)| + |δF (Ŷ )| ≥ |δF (X̂ \ Ŷ )| + |δF (Ŷ \ X̂)| for any

X̂, Ŷ ∈ V . Hence felt − |δF (·)| is skew supermodular.

Similarly an arbitrary set F of directed edges satisfies

|δ−F (X̂)|+ |δ−F (Ŷ )| ≥ |δ−F (X̂ ∩ Ŷ )|+ |δ−F (X̂ ∪ Ŷ )| for any

X̂, Ŷ ∈ V . Hence fout−|δ−F (·)| is intersecting supermodular.

III. ITERATIVE ROUNDING ALGORITHMS

A. Degree-bounded SND with symmetric skew supermodu-
lar functions in undirected graphs

For applying iterative rounding, we define F ⊆ E as the

set of edges which have not been chosen by the algorithm

yet. The edges in E\F have already been chosen as a part of

the current solution by the algorithm. Let x ∈ RF be a vari-

able vector each component of which corresponds to an edge

in F . For any F ′ ⊆ F , we let x(F ′) denote
∑

e∈F ′ x(e). Let

f : V → Z+ be a symmetric skew supermodular function,

where we define f by f(Ŝ) = felt(Ŝ)− |δE\F (Ŝ)|, Ŝ ∈ V
when we apply our algorithm to the element-connectivity

SND. The LP relaxation we use is

minimize
∑

e∈F c(e)x(e)

subject to x(δF (Ŝ)) ≥ f(Ŝ) for each Ŝ ∈ V ,

x(δF (v)) ≤ b(v) for each v ∈ B,

0 ≤ x(e) ≤ 1 for each e ∈ F .

(3)

Suppose that x∗ is the basic optimal solution to (3). If

the constraint corresponding to Ŝ ∈ V (resp., v ∈ B) in (3)

is tight with regard to x∗, then Ŝ (resp., v) is called tight.
For iterative rounding to work, we need to show that the

fractionality of x∗ is low or there exists a node v ∈ B of

low degree in (V, F ) [15].

Theorem 3: Let G = (V,E) be an undirected graph G,

and f : V → Z+ be a symmetric skew supermodular

function such that max{γ(Ŝ) | f(Ŝ) > 0} < k. Then there

exists e ∈ F such that x∗(e) = 0 or x∗(e) ≥ 1/(4k−1), for

the basic optimal solution x∗ to (3), or there exists v ∈ B
such that |δF (v)| ≤ 4k − 1.

We prove Theorem 3 in Section IV. If there exists an

edge e ∈ F such that x∗(e) = 0 or x∗(e) ≥ 1/α, or if

there exists v ∈ B such that |δF (v)| ≤ β, then a standard

iterative rounding algorithm achieves (α, α · b(v) + β − 1)-
approximation for the degree-bounded SND (see [13], [14]).

Hence Theorem 3 implies the following results.

Corollary 1: The degree-bounded SND admits the fol-

lowing approximation guarantees:

(i) (4k − 1, (4k − 1) · b(v) + 4k − 2) for the element-

connectivity SND;

(ii) (O(k4 log |T |), O(k4 log |T |) · b(v)) for the node-

connectivity SND;

(iii) (O(k2 log k), O(k2 log k) · b(v)) for the rooted k-

connectivity SND;

(iv) (O(k2 log k), O(k2 log k) · b(v)) for the subset k-

connectivity SND.

Proof: (i) is immediate from the simmetry and the skew

supermodularity of felt− |δE\F (·)|. (ii) is obtained from (i)

and the decomposition of the node-connectivity SND into

O(k3 log |T |) instances of the element-connectivity SND

due to Chuzhoy and Khanna [5]. (iii) and (iv) also can be

derived by a decomposition presented in [18], [19].

B. Degree-bounded SND with intersecting supermodular
functions in digraphs

We let f : V → Z+ be an intersecting supermodular func-

tion. When we apply our algorithm to the k-out-connectivity

SND, we define f by f(Ŝ) = fout(Ŝ)− |δ−E\F (Ŝ)| S ∈ V .

Our LP relaxation for this case is

minimize
∑

e∈F c(e)x(e)

subject to x(δ−F (Ŝ)) ≥ f(Ŝ) for each Ŝ ∈ V ,

x(δ+F (v)) ≤ b+(v) for each v ∈ B+,

0 ≤ x(e) ≤ 1 for each e ∈ F .

(4)

Theorem 4: Let G be a digraph, f : V → Z+ be a

intersecting supermodular function such that max{γ(S) |
f(S) > 0} < k. Then there exists an arc e ∈ F such that

x∗(e) = 0 or x∗(e) ≥ 1/2, for the basic optimal solution x∗

to (4), or there exists a node v ∈ B+ such that |δ+F (v)| ≤ 4k.

We prove Theorem 4 in Section V.

Corollary 2: The degree-bounded SND admits the fol-

lowing approximation guarantees:

(i) (2, k, 2b+(v) + 4k − 1)-approximation for the k-out-

connectivity SND;

(ii) (4, 2b(v) + 5k − 1)-approximation for the rooted k-

connectivity SND with T = V ;

(iii) (O(k), O(k2), 2b+(v) + O(k2))-approximation for the

directed k-connectivity SND;

(iv) (O(k), 2b(v) + O(k2))-approximation for the k-

connectivity SND.

Proof: The guarantees on the arc costs and the out-

degree in (i) is immediate from Theorem 4 and the intersect-

ing supermodularity of fout−|δ−E\F (·)|. Nutov [20] showed

that the in-degree of each node is at most k in every minimal

solution for the degree-bounded SND in digraphs when the

connectivity requirements are represented by intersecting

supermodular functions. The guarantee on the in-degree in

(i) follows from this fact.

(ii) is proven by applying (i) to the digraph obtained by

replacing each undirected edge uv by arcs uv and vu with

degree-bounds defined by B− = B+ = B and b−(v) =
b+(v) = b(v) for each v ∈ B.

(iii) follows from (i) and the theorem due to Nu-

tov [20] which shows that if the k-out-connectivity SND

problem admits an (α, β(b−(v)), β′(b+(v)))-approximation,

then the directed spanning SND problem admits an (α +
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O(k), β(b−(v))+O(k2), β′(b+(v))+O(k2))-approximation.

(iv) is obtained from (iii) as (ii) is obtained from (i).

C. Degree-bounded subgraph problem with symmetric skew
supermodular functions in undirected graphs

For the degree-bounded subgraph problem, we use the

following LP relaxation.

maximize x(F )

subject to x(δF (Ŝ)) ≥ f(Ŝ) for each Ŝ ∈ V ,

x(δF (v)) ≤ b(v) for each v ∈ B,

0 ≤ x(e) ≤ 1 for each e ∈ F .

(5)

In this case, Theorem 3 can be improved to obtain the

next theorem.

Theorem 5: Let G = (V,E) be an undirected graph, and

f : V → Z+ be a symmetric skew supermodular function

such that max{γ(Ŝ) | f(Ŝ) > 0} < k. Then there exists

e ∈ F such that x∗(e) = 0, or x∗(e) ≥ 1/6 for the basic

optimal solution x∗ to (5), or there exists v ∈ B such that

|δF (v)| ≤ 16k2 − 4k − 7.

We prove Theorem 5 in Section VI.

Corollary 3: The degree-bounded subgraph problem ad-

mits the following approximation guarantees:

(i) 6b(v) + O(k2) for the element-connectivity subgraph

problem;

(ii) O(k3 log |T | · b(v) + k5 log |T |) for the node-

connectivity subgraph problem;

(iii) O(k log k ·b(v)+k3 log k) for the rooted k-connectivity

subgraph problem;

(iv) O(k log k ·b(v)+k3 log k) for the subset k-connectivity

subgraph problem.

Proof: The claims can be proven by applying Theo-

rem 5 as in the proof of Corollary 1.

IV. PROOF OF THEOREM 3

Here we discuss the structure of tight bisets defining x∗.
Our aim is to prove “laminarity” of the tight bisets, but what

is the laminarity of bisets? We can find an answer to this

question in previous works [8], [20].

Definition 1: A family F of bisets is called laminar if

it satisfies all of the following conditions: (i) Set family

{S | Ŝ ∈ F} is laminar; (ii) If X̂, Ŷ ∈ F satisfy X ⊂ Y ,

then X+ ⊆ Y +; (iii) If X̂, Ŷ ∈ F satisfy X = Y , then

Y + ⊆ X+ or X+ ⊆ Y +.

We have the following property of tight constraints which

define the basic optimal solution x∗ to (3). This can be

proven by a standard uncrossing technique. See other papers

such as [4], [8], [20] for the proof.

Lemma 1: Let G be an undirected graph, and f : V →
Z+ be a skew supermodular function such that max{γ(S) |
f(Ŝ) > 0} < k. Let x∗ be the basic optimal solution to

(3) such that 0 < x∗(e) < 1 for each e ∈ F , and C be a

maximal subset of {v ∈ B | x∗(δF (v)) = b(v)} such that

{χF (v) | v ∈ C} is linearly independent. Then there exists a

laminar family L of proper tight bisets such that |L|+ |C| =
|F |, the vectors in {χF (Ŝ) | Ŝ ∈ L} ∪ {χF (v) | v ∈ C}
are linearly independent, and x∗ is the unique solution to

{x(δF (Ŝ)) = f(Ŝ) | Ŝ ∈ L} ∪ {x(δF (v)) = b(v) | v ∈ C}.
We now prove Theorem 3. Suppose for a contradiction

that 0 < x∗(e) < 1/(4k− 1) for each e ∈ F and |δF (v)| ≥
4k for each v ∈ B. Let L be the laminar family of tight

bisets and C be the set of tight degree-bounded nodes in

Lemma 1.

By Definition 1, {S | Ŝ ∈ L} is laminar, and if X̂, Ŷ ∈ L
satisfy X = Y , then X+ ⊂ Y + or Y + ⊂ X+. Identifying

each v ∈ C as a biset ({v}, {v}), we use L′ to denote the

family L∪C of bisets. L′ is also laminar. We define a partial

order ≺ on L′ so that X̂ ≺ Ŷ holds when (i) X ⊂ Y , or (ii)

X = Y and X+ ⊂ Y +. This order defines a forest structure

on L′. In the rest of this paper, “minimal” and “maximal”

are defined with respect to this order. For X̂, Ŷ ∈ L′, we

say that Ŷ is the parent of X̂ and X̂ is a child of Ŷ if Ŷ
is the minimal biset with X̂ ≺ Ŷ .

Let e = uv ∈ F ; we distribute two tokens for this edge e
to some bisets in L′ using the following rules.

(i) Note that there is a biset X̂ ∈ L′ such that u ∈ X and

v ∈ V \ X+ since e is included in F . We denote the

minimal such biset X̂ by Ŝ(e,u), and give it the first

token of e.

(ii) Suppose there also exists a biset Ŷ ∈ L′ such that

v ∈ Y and u ∈ V \ Y + then we denote the minimal

such biset Ŷ by Ŝ(e,v) and give it the second token of

e. Otherwise, e gives the second token to the biset Ẑ
which is minimal in {Ẑ ∈ L′ | Ŝ(e,u) ≺ Ẑ, v ∈ Z+}.
In the former case when both Ŝ(e,u) and Ŝ(e,v) exist,

we say that e is missed by the biset Ẑ which is minimal

in {Ẑ ∈ L′ | Ŝ(e,u) ≺ Ẑ, v ∈ Z+}.
Induction proof

Observe that each edge in F distributes at most two

tokens. In what follows, we show that it is possible to

rearrange the tokens so that each biset in L′ obtains at

least two tokens, each maximal biset in L′ obtains at least

2k+2 tokens, and obtains 4k tokens unless it has exactly one

child. This proves Theorem 3 because it means that 2|L′| =
2(|L|+|C|) = 2|F | ≥ (the number of distributed tokens) >
2|L′|, which is a contradiction.

Our proof is by induction on the height of the forest

defined from the partial order on L′. The base case of our

induction is when the height of the forest is 1. That is to say,

each biset in L′ has no child. In this case, each biset Ŝ ∈ L′
obtains one token from each edge in δF (Ŝ). If Ŝ ∈ L, then

|δF (Ŝ)| ≥ 4k follows from x∗(δF (Ŝ)) = f(Ŝ) ≥ 1 and

x∗(e) < 1/(4k − 1) for e ∈ δF (Ŝ). If S = ({v}, {v}) for

some v ∈ C, then the assumption indicates |δF (Ŝ)| ≥ 4k.

In either case, Ŝ obtains at least 4k tokens.

Now let us discuss the case where the forest contains a

tree of height more than one. Let R̂ be the biset maximal in
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Figure 1. Ŝi and Ŝj with i, j ∈ I and i �= j in the proof of Lemma 2

the tree. Suppose that R̂ has at least two children. Then by

induction, we can arrange the tokens in the subtree rooted

at each child so that the claim holds, i.e., each biset has at

least two tokens and each child of R̂ has at least 2k + 2
tokens. From each child of R̂, move 2k tokens to R̂. Then

R̂ obtains 4k tokens and each child keeps 2 tokens. Thus

the claim holds in this case.

The remaining case is when R̂ has exactly one child. Let

Ŝ1 be the maximal descendent of R̂ which has more than

one child or has no child. Let Ŝ2, Ŝ3, . . . , Ŝp−1 be the bisets

on the path from Ŝ1 to R̂ in the tree, and assume that Ŝ1 ≺
Ŝ2 ≺ · · · ≺ Ŝp−1 ≺ Ŝp = R̂. Note that the only child of

each Ŝi, i ∈ {2, 3, . . . , p} is Ŝi−1. We apply the induction

hypothesis for the subtree rooted at Ŝ1. That is to say, we

arrange the tokens in the subtree so that each biset below

Ŝ1 has two tokens, and Ŝ1 has 4k tokens. Then we show

that the tokens owned by Ŝ1, Ŝ2, . . . , Ŝp can be distributed

so that each Ŝi, i ∈ {1, 2, . . . , p−1} has at least two tokens

and Ŝp has 2k + 2 tokens.

Let i ∈ {2, 3, . . . , p}. The linear independence between

χF (Ŝi) and χF (Ŝi−1) implies that |δF (Ŝi) \ δF (Ŝi−1)| +
|δF (Ŝi−1)\δF (Ŝi)| > 0. In particular |δF (Ŝi)\δF (Ŝi−1)|+
|δF (Ŝi−1) \ δF (Ŝi)| ≥ 2 by the fact that x∗(δF (Ŝi)) and

x∗(δF (Ŝi−1)) are integers and x∗(e) < 1 for each e ∈ F .

Ŝi obtains one token from each edge in δF (Ŝi) \ δF (Ŝi−1).
Hence we are done if |δF (Ŝi) \ δF (Ŝi−1)| ≥ 2.

Consider the case where |δF (Ŝi) \ δF (Ŝi−1)| ≤ 1. Then

|δF (Ŝi−1) \ δF (Ŝi)| ≥ 1. Let e = uv ∈ δF (Ŝi−1) \ δF (Ŝi)
with u ∈ Si−1 ⊆ Si and v ∈ S+

i \ S+
i−1. If Ŝ(e,v) does not

exist, then Ŝi gets the second token of e. Otherwise, e is

missed by Ŝi. Thus Ŝi obtains two tokens unless Ŝi misses

an edge.

After applying the induction hypothesis, Ŝ1 has 4k tokens.

As we have observed, Ŝi, i ≥ 2 has two tokens unless Ŝi

misses an edge. In the next lemma, we show that at most

k − 1 bisets in Ŝ2, Ŝ3, . . . , Ŝp miss some edges. Then we

can prove the claim by making Ŝ1 give two tokens to each

of such bisets (potentially including Ŝp), and 2k tokens to

Ŝp. This completes the proof of Theorem 3.

Lemma 2: At most k − 1 bisets in Ŝ2, Ŝ3, . . . , Ŝp miss

some edges.

Proof: Let I ⊆ {2, . . . , p} be the set of indices such

that each Ŝi, i ∈ I misses an edge ei = uivi ∈ F . Suppose

that ui ∈ Si−1 ⊆ Si and vi ∈ S+
i \ S+

i−1 for each i ∈ I .

Let i ∈ I . Since S+
i ⊆ S+

p , vi ∈ S+
p . If vi ∈ Sp, then

S(ei,vi) ⊆ Sp by the laminarity of {S | Ŝ ∈ L}, but this

contradicts the fact that each Ŝi, i ≥ 2 has only one child.

Thus vi ∈ Γ(Ŝp). vi 	= vj holds for any i, j ∈ I with i 	= j
because vi ∈ S+

i \ S+
i−1 for each i ∈ I . Figure 1 illustrates

these facts. Since γ(Ŝp) ≤ k−1, |I| ≤ k−1. In other words,

at most k − 1 bisets in Ŝ2, Ŝ3, . . . , Ŝp miss some edges.

V. PROOF OF THEOREM 4

The following lemma shows that a family of tight bisets

characterizing the basic optimal solution to (4) is laminar.

Lemma 3 ([20]): Let G = (V,E) be a digraph, f : V →
Z+ be an intersecting supermodular function, and x∗ be the

basic optimal solution to (4) such that 0 < x∗(e) < 1 for

each e ∈ F . Then there exists a laminar family L of proper

tight bisets and a set C+ ⊆ B+ of tight degree-bounded

nodes such that |L| + |C+| = |F |, the vectors in {χ−F (Ŝ) |
Ŝ ∈ L} ∪ {χ+

F (v) | v ∈ C+} are linearly independent,

and x∗ is the unique solution to {x(δ−F (Ŝ)) = f(Ŝ) | Ŝ ∈
L} ∪ {x(δ+F (v)) = b+(v) | v ∈ C+}.

For the sake of arriving at a contradiction, suppose that

each arc e ∈ F satisfies 0 < x∗(e) < 1/2, and each v ∈ B+

satisfies |δ+F (v)| ≥ 4k+1. Define L and C+ as in Lemma 3.

Let E denote the set of leaf bisets in L. We use one of two

arguments according to whether |E| ≥ |C+| holds or not.

First, let us consider the case where |E| ≥ |C+|. We

modify the proof for the existence of an integer-valued

variable when degree-bounds are not given [15]. For e ∈ F ,

we let Ŝe denote the minimal biset Ŝ ∈ L such that

e ∈ δ−F (Ŝ). Ŝe always exists since otherwise x∗(e) = 0.

We make each e ∈ F distribute one token to Ŝe. Then each

Ŝ ∈ E has |δ−F (Ŝ)| ≥ 2f(Ŝ)+1 tokens. We make each biset

in E give one token to a node in C+. Since |E| ≥ |C+|,
each node in C+ obtains one token and each Ŝ ∈ E owns

2f(Ŝ) ≥ f(Ŝ) + 1 tokens after this. As in the proof of [15]

for the no degree-bounds case, we can show via induction

that the tokens owned by bisets in L can be redistributed so

that each biset Ŝ ∈ L has at least one token, and at least

f(Ŝ)+1 tokens if Ŝ is maximal. This implies a contradiction

that |F | < |L|+ |C+|.
Now we consider the case where |E| < |C+|. The

argument for this case is similar to the one for Theorem 3.

We make each e = uv ∈ F distribute two tokens according

to the following rules:

(i) e gives one token to Ŝe;

(ii) If u ∈ C+, then e gives one token to u;

(iii) If u 	∈ C+, then e gives one token to the minimal biset

X̂ ∈ L such that Ŝe ≺ X̂ and e 	∈ δ−F (X̂).

The total number of tokens distributed by arcs is at most

2|F |. We show how to redistribute these tokens such that

each biset in L and each node in C+ can obtain at least two

tokens and one extra token remains, giving a contradiction.
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Let v ∈ C+. Since v obtains one token from each arc

in δ+F (v) and |δ+F (v)| ≥ 4k + 1, v obtains at least 4k + 1
tokens. These tokens are redistributed as follows.

(iv) v keeps 2 tokens;

(v) If the minimal biset X̂ in {Ŝ ∈ L | v ∈ S} has a

unique minimal descendent Ŷ such that v ∈ Y +, then

2 tokens are given to Ŷ ;

(vi) 4k − 3 tokens are given to a biset in E .

Since |E| < |C+|, each biset in E receives 4k − 3 tokens

from a node in C+ by rule (vi). By rule (iv), each node in

C+ has already owned 2 tokens. In what follows, we discuss

the tokens for L. We claim that it is possible to arrange the

tokens given to them so that

• each biset in L has at least 2 tokens;

• each maximal biset in L has at least 2k+2 tokens, and

has 4k tokens unless it has exactly one child.

We prove the claim by induction on the height of the

forest representing L. In the base case when the height of

the forest is one, it is not difficult to prove the claim. Hence

let us consider the case where the height is at least two. Let

R̂ be a maximal biset of L. If R̂ has at least two children,

then the proof is immediate; Since each child has at least

2k+2 tokens by the induction hypothesis, let the child keep

2 tokens and give 2k tokens to R̂. Thus suppose that R̂ has

only one child.

Let Ŝ1 be the maximal descendent of R̂ such that it has

more than one child or has no child. Let Ŝ2, Ŝ3, . . . , Ŝp−1 be

the bisets on the path from Ŝ1 to R̂ in the forest, and assume

that Ŝ1 ≺ Ŝ2 ≺ · · · ≺ Ŝp−1 ≺ Ŝp = R̂. We apply the

induction hypothesis for the subtree rooted at Ŝ1 to arrange

the tokens in the subtree so that each biset below Ŝ1 has

2 tokens, and Ŝ1 has 4k tokens. As in Section IV, we can

observe that Ŝi has two tokens from the edges unless the tail

of each e ∈ δ−F (Ŝi−1) \ δ−F (Ŝi) is in (Γ(Ŝi)∩Γ(Ŝp)) \S+
i−1

for each i ∈ {2, 3, . . . .p}, and there are at most k − 1 such

bisets in Ŝ2, Ŝ3, . . . , Ŝp. By moving two tokens from Ŝ1 give

to each of such bisets, and 2k tokens to Ŝp, we can prove

the claim.

VI. PROOF OF THEOREM 5

For proving Theorem 5, we suppose for the sake of

arriving at a contradiction that each e ∈ F satisfies 0 <
x∗(e) < 1/6, and |δF (v)| ≥ 16k2 − 4k − 6 holds for

each v ∈ B. Even if we replace (3) by (5), we have a

laminar family L of tight bisets and a set C ⊆ B of tight

degree-bounded nodes in Lemma 1 because (3) and (5) are

different only in their objective functions. In fact L is not

only laminar, but it is non-overlapping, which is a stronger

property than laminarity. Refer to [4] for the definition of

non-overlapping families of bisets. Since the property of

non-overlapping is closed under replacing a biset (S, S+)
by (V \ S+, V \ S), we assume without loss of generality

that each Ŝ ∈ L satisfies |S| ≤ |V \ S+|.

Moreover, if x∗ is the basic optimal solution to (5), we

have an extra property that every edge in F is incident to

a node in C; Each e ∈ F is incident to a tight degree-

bounded node in B since otherwise x∗(e) = 1; Since C
is a maximal set of tight degree-bounded nodes such that

{χF (v) | v ∈ C} is linearly independent, at least one of the

end nodes of every e ∈ F is included in C.

Below we derive a contradiction that |F | is larger than

|L|+ |C| by new token arguments. Recall that E is the set

of leaves of L. We use one of two arguments according to

whether |E| < (4k + 3)|C| holds or not.

A. Token argument when |E| < (4k + 3)|C|
Each edge e = vu ∈ F distributes two tokens. In

particular, for each pair of e = vu ∈ F and an end node

v of e, one token is distributed according to the following

rules applied in this order:

(i) If v ∈ C, then e gives one token to v;

(ii) If v 	∈ C and Ŝ(e,v) exists, then e gives one token to

Ŝ(e,v);

(iii) If v 	∈ C, Ŝ(e,v) does not exist and Ŝ(e,u) exists, then e

gives one token to the biset X̂ ∈ L which is minimal

in {X̂ ∈ L | Ŝ(e,u) ≺ X̂, v ∈ X+}.
Let v ∈ C. Since |δF (v)| ≥ 16k2−4k−6 holds, v obtains

at least 16k2−4k−6 tokens. These tokens are redistributed

as follows.

(iv) v keeps 2 tokens;

(v) 4 tokens are given to the minimal biset Ŝ ∈ L such

that v ∈ S;

(vi) 16k2−4k− 12 = (4k− 4)(4k+3) tokens are given to

4k + 3 bisets in E so that each of those 4k + 3 bisets

obtains 4k − 4 tokens.

Since |E| < (4k + 3)|C|, each biset in E receives 4k − 4
tokens by rule (vi). By rule (iv), each v ∈ C has already

owned 2 tokens. We claim that it is possible to arrange

tokens so that

• each biset in L has at least 2 tokens;

• each maximal biset has at least 2k+2 tokens, and has

4k tokens unless it has exactly one child.

We do not give a proof for this claim since it is almost

same as the proof of Theorem 3. The main thing to note

here is that the tokens given to nodes in C have already

been distributed now.

B. Token argument when |E| ≥ (4k + 3)|C|
We again make each e = uv ∈ F distribute 2 tokens. For

each pair of e = uv ∈ F and an end node v of e, we make

e give a token as follows.

(i) If v 	∈ C and there exists Ŝ(e,v), then e gives one token

to Ŝ(e,v);

(ii) If v ∈ C or Ŝ(e,v) does not exist, and if Ŝ(e,u) exists,

then e gives one token to the minimal biset X̂ in {X̂ ∈
L | Ŝ(e,u) ≺ X̂, v ∈ X+}.
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We call Ŝ ∈ L white if S ∩ C = ∅, and black otherwise.

Note that by definition we cannot have a white biset X̂ and

a black biset Ŷ such that Ŷ � X̂ . If a black biset is minimal

in {Ŝ ∈ L | v ∈ S} for some v ∈ C, then it is called strictly
black. The number of strictly black bisets is at most |C|.

Now each node in C has no token. A black biset may

have tokens, but it received no tokens from the edges whose

end nodes in its inner-part are in C. On the other hand, each

white minimal biset Ŝ owns 7 tokens because |δF (Ŝ)| ≥ 7
by x∗(δF (Ŝ)) = f(Ŝ) ≥ 1 and x∗(e) < 1/6 for e ∈ δF (Ŝ),
and the end node of e ∈ δF (Ŝ) in S is not in C. We make

each white minimal biset give one token. The total number

of tokens given by the white minimal bisets is at least |E|−
|C| ≥ (4k + 3)|C| − |C| = (4k + 2)|C|. We allocate these

tokens to nodes in C and strictly black bisets so that

• Each strictly black biset has 4k tokens;

• Each node in C has 2 tokens.

We then prove by induction that we can rearrange the

tokens so that each biset in L and each node in C obtains

at least 2 tokens, and each maximal biset obtains more than

2 tokens.

White bisets: We begin with a tree which consists of only

white bisets.

Lemma 4: Let R̂ ∈ L be a white biset, and L′ = {Ŝ ∈
L | Ŝ � R̂}. If |L′| > 1, then we can rearrange tokens so

that each biset in L′ has at least 2 tokens, each minimal

biset in L′ has 4 tokens, and R̂ has 4 tokens. If |L′| = 1,

then R̂ has at least 6 tokens.

Proof: We prove by the induction on the height of L′. If

the height is one, then the lemma is obvious. Hence suppose

that the height is more than one.

If R̂ has at least two children, then the lemma is proven by

applying the induction hypothesis to the trees rooted on the

children of R̂ and by making each child give 2 tokens to R̂.

Hence assume that R̂ has only one child Q̂. Since Q̂ can give

2 tokens to R̂, it suffices to find two more tokens for R̂. We

show that each edge in (δF (R̂)\ δF (Q̂))∪ (δF (Q̂)\ δF (R̂))
gives one token to R̂, which proves the lemma because there

are at least two such edges.

Let e ∈ δF (R̂)\δF (Q̂). Then e has an end node v ∈ R\Q
and R̂ = Ŝ(e,v). v 	∈ C follows from the fact that R̂ is white.

Hence e gives one token to R̂. Next, let e ∈ δF (Q̂)\δF (R̂).
The end node v of e in V \ Q+ is in C because the other

end node is not in C by the fact that Q̂ is white. Notice that

v ∈ R+ because e 	∈ δF (R̂). Hence e gives this token to R̂
by rule (ii). Therefore the lemma is proven.

Black bisets: We next present a proof for a tree whose

maximal biset is black. In this case, we show how to

rearrange the tokens so that each biset obtains at least two

tokens, the maximal biset obtains at least 2k+2 tokens, and

obtains 4k tokens unless the number of its black children

is exactly one. Our proof is by the induction on the height

of the tree again. If the height is one, then the claim holds

Figure 2. Structure of the tree rooted at a black biset R̂ (black bisets are
represented by filled circles and white bisets are represented by the void
circles)

because it consists of a strictly black biset. Hence suppose

that the height is at least two.

Let R̂ be the maximal biset. If R̂ has at least two black

children, apply the induction hypothesis for the subtrees

rooted at the black children of R̂, and Lemma 4 for those

rooted at the white children of R̂. Then by making each of

the black children give 2k tokens to R̂, we can prove the

claim. If R̂ has no black child, then it already has 4k tokens

because R̂ is strictly black. In what follows, we discuss the

case where R̂ has exactly one black child.

Let Ŝ1 be the maximal black biset which has more than

one black child or has no black children in the subtree rooted

at R̂. Let Ŝ2, Ŝ3, . . . , Ŝp−1 be the bisets on the path from

Ŝ1 to R̂, and assume that Ŝ1 ≺ Ŝ2 ≺ · · · ≺ Ŝp−1 ≺
Ŝp = R̂. Note that each Ŝi, i ∈ {1, 2, . . . , p} is black. Let

X̂1, X̂2, . . . , X̂q be the white children of Ŝ2, Ŝ3, . . . , Ŝp, and

L̂1, L̂2, . . . , L̂� be the minimal bisets in the subtrees rooted

at X̂1, X̂2, . . . , X̂q . Figure 2 illustrates these definitions.

Applying the induction hypothesis for the subtree

rooted at Ŝ1, and Lemma 4 for the subtrees rooted at

X̂1, X̂2, . . . , X̂q , we allocate tokens so that

• Ŝ1 has 4k tokens,

• each of X̂1, X̂2, . . . , X̂q has at least 4 tokens,

• each of L̂1, L̂2, . . . , L̂� has at least 4 tokens,

• if X̂i = L̂j , then it has 6 tokens,

• each of the other bisets in the subtrees rooted at Ŝ1 and

X̂1, X̂2, . . . , X̂q has 2 tokens.

Let i ∈ {2, 3, . . . , p}. If Ŝi has a white child, then the

child can give two tokens to Ŝi. If Ŝi is strictly black, then

it has 4k tokens. Thus assume that Ŝi has no white child (i.e.,

Ŝi−1 is its only child) and it is not strictly black. |δF (Ŝi) \
δF (Ŝi−1)|+ |δF (Ŝi−1) \ δF (Ŝi)| ≥ 2 holds.

Let e = uv ∈ δF (Ŝi) \ δF (Ŝi−1), and assume without

loss of generality that u ∈ Si \ Si−1 and v ∈ V \ S+
i ⊆

V \S+
i−1. Then e gives one token to Ŝi because Ŝi = Ŝ(e,u)

and u 	∈ C since Ŝi is not strictly black. Next, let e = uv ∈
δF (Ŝi−1) \ δF (Ŝi), and assume without loss of generality

that u ∈ Si−1 ⊆ Si and v ∈ (V \ S+
i−1) ∩ S+

i . If v ∈ C,

then e gives one token to Ŝi by rule (ii). Then e gives one

token to Ŝi unless v 	∈ C and Ŝ(e,v) exists. Summarizing,

if Ŝi does not obtain two tokens, then there exists an edge
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e = uv ∈ δF (Ŝi−1) \ δF (Ŝi) such that u ∈ Si−1 ⊆ Si,

v ∈ (S+
i \S+

i−1)\C, and Ŝ(e,v) exists. The next lemma shows

that there exist at most k−1+
 such bisets in Ŝ2, Ŝ3, . . . , Ŝp

(We do not present the proof due to the space limitation).

Lemma 5: Let I ⊆ {2, 3, . . . , p} be the set of indices i
such that there exists an edge ei = uivi ∈ δF (Ŝi−1)\δF (Ŝi)
with ui ∈ Si−1 ⊆ Si and vi ∈ (S+

i \S+
i−1) \C, and Ŝ(ei,vi)

exists. If L is a non-overlapping family such that |S| ≤
|V \ S+| for each Ŝ ∈ L, then |I| ≤ k − 1 + 
.

Recall that Ŝ1 has 4k − 2 extra tokens, and each L̂i, i =
1, 2, . . . , 
 has two extra tokens. From these tokens, give

two tokens to Ŝi for each i ∈ I . Then each biset in the

tree rooted at Ŝp (including Ŝp) obtains two tokens, and

4k−2+2
−2|I| ≥ 4k−2+2
−2(k−1+ 
) = 2k tokens

still remain. By moving these tokens to Ŝp, we can arrange

tokens as required.

VII. CONCLUSION

We have presented iterative rounding algorithms for the

degree-bounded SND and for the degree-bounded subgraph

problem. Our result for the degree-bounded SND with

requirements represented by skew supermodular functions

are based on the laminarity of a family of tight bisets.

However, the family has a stronger property, which is called

strong laminarity in [20]. After announcing our results,

Nutov pointed out to us that our analysis can be improved to

(O(1), O(1) · b(v) + O(k))-approximation for the element-

connectivity SND using strong laminarity. We will include

this in a full version of this paper.
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