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Abstract—We prove a strong limitation on the ability of
entangled provers to collude in a multiplayer game. Our
main result is the first nontrivial lower bound on the class
MIP* of languages having multi-prover interactive proofs
with entangled provers; namely MIP* contains NEXP, the
class of languages decidable in non-deterministic expo-
nential time. While Babai, Fortnow, and Lund (Compu-
tational Complexity 1991) proved the celebrated equality
MIP = NEXP in the absence of entanglement, ever since
the introduction of the class MIP* it was open whether
shared entanglement between the provers could weaken
or strengthen the computational power of multi-prover
interactive proofs. Our result shows that it does not weaken
their computational power: MIP* contains MIP.

At the heart of our result is a proof that Babai, Fortnow,
and Lund’s multilinearity test is sound even in the presence
of entanglement between the provers, and our analysis of
this test could be of independent interest. As a byproduct
we show that the correlations produced by any entangled
strategy which succeeds in the multilinearity test with
high probability can always be closely approximated using
shared randomness alone.

Keywords-quantum interactive proofs; multiple provers;
entanglement

I. INTRODUCTION

Multiprover interactive proof systems [6] are at the
heart of much of the recent history of complexity
theory, and the celebrated characterization MIP =
NEXP [4] is one of the cornerstones on which the PCP
theorem [3], [2] was built. While the key assumption on
the multiple provers in an interactive proof system is
that they are not allowed to communicate, traditionally
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this has been taken to mean that their only distributed
resource was shared randomness. In a quantum uni-
verse, however, it is natural to relax this assumption
and allow the provers to share entanglement. While still
not allowing them to communicate, this increases their
ability to collude against the verifier by exploiting the
nonlocal correlations allowed by entanglement. The
corresponding complexity class MIP∗ was introduced
in [11], raising a fundamental question: what is the
computational complexity of entangled provers?

Even before their modern re-formulation in the lan-
guage of multiplayer games, starting with the work
of Bell in the 1960s [5] the strength of the nonlocal
correlations that could be obtained from performing
local measurements on entangled particles has been in-
tensely investigated through the use of Bell inequalities
(upper bounds on the strength of classical correlations)
and Tsirelson inequalities (upper bounds on the strength
of quantum correlations). Games, or proof systems,
generalize this setup by introducing an additional
layer of interaction: in this new context, we think of
the experimenter (the verifier) as interacting with the
physical devices (the provers) through the specific
choice of settings (questions) that he makes, and the
outcomes (answers) that he observes. The arbitrary
state and measurements that are actually made inside
the devices are reflected in the provers’ freedom in
choosing their strategy. The fundamental observation
that quantum mechanics violates certain Bell inequali-
ties translates into the fact that there exists interactive
proof systems in which entangled provers can have
a strictly higher success probability than could any
classical, non-entangled provers.

A dramatic demonstration of this possibility is given
by the Magic Square game [26], [28], a simple one-
round game for which the maximum success prob-
ability of classical provers is 8/9, but there exists a
perfect winning strategy for entangled provers. Cleve,
Høyer, Toner, and Watrous [11] were the first to draw
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complexity-theoretic consequences from such non-local
properties of entanglement. They study the class ⊕MIP
of languages having two-prover interactive proofs in
which there is a single round of interaction, each of
the provers is restricted to answering a single bit, and
the verifier only bases his accept/reject decision on
the parity of the two bits that he received. While it
follows from work of Håstad [14] that this class equals
NEXP (and is thus as powerful as the whole of MIP) for
an appropriate setting of completeness and soundness
parameters, Cleve et al. show that the corresponding
entangled-prover class ⊕MIP∗ collapses to EXP for any
choice of completeness and soundness parameters that
are separated by an inverse polynomial gap.1

Despite intense efforts, for a long time little more
was known, and prior to our work the best lower
bound on MIP∗ resulted from the trivial observation
that multiple entangled provers are at least as powerful
as a single prover, hence IP = PSPACE ⊆ MIP∗,
where the first equality is due to [25], [31].2 The main
difficulty in improving this trivial lower bound is the
following: while the PCP theorem gives us a variety
of two-prover interactive proof systems for NEXP-
complete problems, there is no a priori reason (see e.g.
the Magic Square game, which has a similar structure
to that of basic proof systems for MAX-3-XOR, or the
aforementioned collapse of ⊕MIP∗) that they should
remain sound in the presence of entanglement. The
fact that entanglement, as a shared resource, is poorly
understood is also reflected in the complete absence of
reasonable upper bounds on the complexity class MIP∗:
while the inclusion MIP ⊆ NEXP is straightforward,
we do not know of any limits on the dimension of
entanglement that may be useful to the provers in a
given interactive proof system, and as a result their
maximum success probability is not even known to be
computable (see [30], [12], [27] for more on this aspect).

Since existing protocols may no longer be sound
in the presence of entanglement between the provers,
previous work has focused on finding ways to modify
a given protocol in a way that would make it entan-
glement resistant; that is, honest provers (in the case
of a YES-instance) can convince the verifier without
shared entanglement while dishonest provers (in the
case of a NO-instance) cannot convince the verifier

1This was later improved [33] to the inclusion of ⊕MIP∗ in the
class of two-message single-prover interactive proofs QIP(2) ⊆
PSPACE [19].

2It was recently shown that quantum messages are no more
powerful than classical messages in single-prover interactive proof
systems [18]: QIP = PSPACE. That result, however, has no direct
relationship with our work: in our setting the messages remain
classical; rather the “quantumness” manifests itself in the presence of
entanglement between the provers, which is a notion that only arises
when more than one prover is present.

with high probability even with shared entanglement.
This was the route taken in [21], [17], [16], which
introduced techniques to limit the provers’ use of their
entanglement. They proved non-trivial lower bounds
on variants of the class MIP∗, but with error bounds
that are weaker than the standard definitions allow
for. These relatively weak bounds came as a result of
the “rounding” technique developed in these works:
by adding additional constraints to the protocol, one
ensures that optimal entangled strategies are in a sense
close to classical, un-entangled strategies. This close-
ness, however, was shown using a rounding procedure
that had a certain “local” flavor, inducing a large loss
in the quality of the approximation.3

In addition, [16], based on [21], showed that PSPACE
has two-prover one-round interactive proofs with entan-
gled provers, with perfect completeness and exponen-
tially small soundness error. Prior to our work, this was
the best lower bound known on single-round multi-
prover interactive proof systems with entanglement.

Additional related work: Given the apparent diffi-
culty of proving good lower bounds on the power of
multi-prover interactive proof systems with entangled
provers, researchers have studied a variety of related
models. Maybe the most natural extension of MIP∗
consists in giving the verifier more power by allowing
him to run in quantum polynomial-time, and exchange
quantum messages with the provers. The resulting
class is called QMIP∗ (the Q stands for “quantum veri-
fier”, while the ∗ stands for “entangled provers”), and
it was formally introduced in [24], where it was shown
that QMIP∗ contains MIP∗ (indeed, the verifier can
always force classical communication by systematically
measuring the provers’ answers in the computational
basis). Little more is known of QMIP∗; in fact it is
believed to equal MIP∗ [9]. Ben-Or et al. [7] introduced
a model in which the verifier is quantum and the
provers are allowed communication but no entangle-
ment, and showed that the resulting class contains
NEXP. Other works attempt to characterize the power
of MIP∗ systems using tensor norms [29], [20]; so far
however such norms have either led to computable,
but very imprecise, approximations, or have remained
(to the best of our knowledge) intractable.

II. RESULTS

Let MIP∗(k, m, c, s) be the class of languages that can
be decided by an m-round interactive proof system
with k (possibly entangled) provers and with complete-
ness c and soundness error s.4 Our main result is the

3See the “almost-commuting implies nearly-commuting” conjec-
ture in [21] for more on this aspect.

4We refer to Appendix A for a more complete definition of the
class MIP∗.
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following.

Theorem 1. All languages in NEXP have a four-prover
poly-round interactive proof system with perfect complete-
ness and exponentially small soundness error against en-
tangled provers. That is, for every q ∈ poly, it holds that

NEXP ⊆ MIP∗(4, poly, 1, 2−q).

Theorem 1 resolves a long-standing open ques-
tion [24], showing that entanglement does not weaken
the power of multi-prover interactive proof systems:
together with the inclusion MIP ⊆ NEXP, it implies
that MIP ⊆ MIP∗. We note that the proof system in
Theorem 1 does not require honest provers to use any
entanglement in order to achieve perfect complete-
ness in the case of a YES-instance. In other words,
if we denote by MIPer the class of languages having
entanglement resistant multi-prover interactive proof
systems with bounded error, our proof of Theorem 1
shows that NEXP ⊆ MIPer. Because MIPer ⊆ MIP by
definition, this implies MIPer = NEXP.

The interactive proof system used in the proof of
Theorem 1 uses four provers and a polynomial number
of rounds of interaction. We do not know if the number
of provers can be reduced; however if one is willing
to increase it by one then the amount of interaction
required can be reduced to a single round, i.e. one
message from the verifier to each prover, and one
message from each prover to the verifier. Indeed, our
proof system has the additional property of being non-
adaptive: the verifier can select his questions for all the
rounds before interacting with any of the provers. It
is shown in [15] that a non-adaptive entanglement-
resistant protocol may be parallelized to a single round
of interaction at the cost of adding an extra prover.
Applying this result to Theorem 1 gives the following
corollary.

Corollary 2. All languages in NEXP have a five-prover
one-round interactive proof system with perfect complete-
ness and soundness error against entangled provers bounded
away from 1 by an inverse polynomial, that is:

NEXP ⊆ MIP∗(5, 1, 1, 1− 1/ poly).

Prior results on the complexity of multi-prover inter-
active proofs with entangled provers have often been
stated using the languages of games [11], [21], [22]. The
main difference, in terms of computational complexity,
is in the way the input size is measured. In the case
of games the input is an explicit description of the
game, including a list of all possible questions and
valid answers, while in the setting of proof systems
the messages may be described implicitly: it is their
length that is polynomial in the input size.

Because of this difference in scaling, our results do
not immediately imply any NP-hardness result in the
setting of multi-player games with entangled players.
Nevertheless, by adapting the proof of Theorem 1 and
using the PCP theorem one can show the following.
There is a constant κ > 1 and a procedure that, given
as input an arbitrary 3-SAT formula with n variables
and m = poly(n) clauses, runs in time 2O(logκ n) and
produces an explicit description of a four-player game
of size S = 2O(logκ n) (i.e. the number of rounds of
interaction and the total number of questions and
answers that can be sent and received is at most S).
The game has the property that, if the 3-SAT formula
was satisfiable, then there is a perfect strategy for the
players, which does not require any entanglement.
If, however, the 3-SAT formula was not satisfiable,
then there is no strategy for the players, even using
entanglement, that succeeds with probability greater
than 1/2.

If one could show the above with constant κ = 1
then it would follow that finding a constant-factor
approximation to the maximum success probability of
four entangled players in a game with polynomially
many rounds and questions is NP-hard; our result is
limited to obtaining some possibly large κ > 1. The
main point, however, is that the hardness of approx-
imation is up to constant factors. This is in contrast
to all previous results which were limited to hardness
of approximation up to factors approaching 1 very
quickly as the input size grew (even after arbitrary
sequential or even parallel repetition).5

At the heart of the proof of Theorem 1 is a soundness
analysis of Babai, Fortnow, and Lund’s multilinear-
ity test in the presence of entanglement between the
provers: we show that it is in a sense “immune” to the
strong non-local correlations that entangled provers
may in general afford. We believe that this analysis
should be of wider interest, and we explain the test
and give an overview of its analysis in the presence of
entanglement in Section IV. We first outline the overall
structure of our proof system in Section III. It is very
similar to the one introduced by Babai, Fortnow, and
Lund [4] to prove NEXP ⊆ MIP; our contribution
consists in proving its soundness against entangled
provers.

5Cleve, Gavinsky, and Jain [10] obtained a constant-factor hardness
result for games with constant answer size, but in which the number
of questions sent by the verifier is exponential.
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III. A PROTOCOL FOR NEXP

Our interactive proof system, just as the one by
Babai et al.,6 verifies membership in a specific NEXP-
complete language, Oracle-3-satisfiability (see Prob-
lems 1 and 2 in Appendix B for a definition). We
give a four-prover, poly-round interactive protocol for
it that has perfect completeness and soundness error
bounded away from 1 by an inverse-polynomial in
the input size. (Theorem 1 is obtained by sequentially
repeating this interactive proof system.)

Simplifying a little bit, the verifier in our protocol
is given as input two integers n, N in unary (think
of N as much larger than n, but still polynomial), a
description of a finite field F of size N, and a low-
degree polynomial f : (Fn)3 × (F)3 → F. His goal is
to verify whether there exists a multilinear function
g : Fn → F such that f (x, y, z, g(x), g(y), g(z)) = 0 for
all x, y, z ∈ {0, 1}n ⊂ Fn. If this is the case then the
input is a YES-instance, whereas if for all functions g
that are “close” to multilinear functions at least one
of the constraints f (x, y, z, g(x), g(y), g(z)) = 0 is not
satisfied then it is a NO-instance. The difficulty, of
course, is that there are exponentially many constraints
to verify, and all must be satisfied for the instance to
be a YES-instance.

The protocol is divided into two distinct parts, which
only weakly interact with each other. In the first part
of the protocol, the verifier performs a polynomial-
round low-degree sum-check test with a single prover,
say the last prover. This test is based on ideas already
introduced by Lund, Fortnow, Karloff, and Nisan [25]
and can be used to verify that a low-degree function
defined over Fk vanishes on all of {0, 1}k. We will
apply it to the low-degree function h : (Fn)3 → F

defined by h(x, y, z) = f (x, y, z, g(x), g(y), g(z)). An
important point for us is that, in the LFKN protocol,
the verifier eventually only needs to evaluate h at
a single point (x, y, z) ∈ (Fn)3 chosen uniformly at
random.

Of course, the verifier only knows f , not g, and
the goal of the second part of the protocol is for the
verifier to learn the three values g(x), g(y), g(z). Note
that here the function g is arbitrary (we are trying to
verify its existence), except that it has to be multilinear.
Hence the verifier will perform one of two tests with
the three remaining provers: either directly ask them
for the values g(x), g(y), g(z), or perform a certain
“multilinearity test”, which enforces that, however the
provers answer their queries, it must be according to

6We emphasize that the proof system we use is not new, as it is
essentially the same as the one introduced in [4]. We nevertheless
outline it because there is a small difference in how the “oracle” in [4]
is simulated by provers, which is the reason our protocol, unlike the
one in [4], requires more than two provers.

a function that is close to a multilinear function. The
two tests will be indistinguishable from the point of
view of the provers because the marginal distribution
on the question to each prover is uniform over Fn in
both cases.

Completeness of the protocol is easy to verify, and in
the case of a YES-instance honest provers do not need
any entanglement to be accepted with probability 1.
To prove soundness, assuming four entangled provers
succeed with probability that is polynomially close to
1, we wish to conclude that the instance given as input
to the verifier must be a YES-instance.

Note that provers successful in the overall protocol
must, in particular, succeed with high probability in
the multilinearity test. The key step in the analysis
consists in showing the following: Any three entangled
provers that succeed in the multilinearity test with
high probability are “indistinguishable” from classical
provers who use shared randomness to jointly sample
a multilinear function g, and then answer question x
with g(x). This step is the one that requires the most
work, and we explain it in more detail in the next
section. (In particular, we will clarify what is meant
by “indistinguishable”.)

Assuming this informal statement holds, it is not too
hard to conclude the analysis of the protocol. Indeed,
having replaced the three provers used in the multi-
linearity test by three classical provers, there is only a
single “quantum” prover left, the one used to perform
the sum-check test in the first part of the protocol.
But entanglement cannot be useful to a single prover,
and hence we may also assume that this last prover
behaves classically. Since all provers are now classical,
we have reduced our analysis to the classical setting
and can appeal to the results in [4] to conclude. We
refer to the full version for a more detailed presentation
and soundness analysis of the protocol.

IV. THE MULTILINEARITY GAME

The key step in the proof of Theorem 1 is the
analysis of the multilinearity test of [4], which gen-
eralizes the celebrated linearity test of Blum, Luby,
and Rubinfeld [8] and is essential in constructing a
protocol for NEXP that has messages of polynomial
length.7 The test can be formulated as a game played
between the verifier and three players. The game is
parametrized by a finite field F and an integer n. In
the game, the verifier performs either of the following
with probability 1/2 each:

7One can devise a protocol based on the linearity test alone, but it
requires the verifier to send messages with exponential length to the
provers. Such use of the linearity test was already key in establishing
the early result NP = PCP(poly, 1); see e.g. Theorem 2.1.10 in [2].
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• Consistency test. The verifier chooses x ∈ Fn uni-
formly at random and sends the same question x
to all three players. He expects each of them to
answer with an element of F, and accepts if and
only if all the answers are equal.

• Linearity test. The verifier chooses i ∈ {1, . . . , n},
x ∈ Fn and yi, zi ∈ F uniformly at random, and
sets yj = zj = xj for every j ∈ {1, . . . , n} \ {i}. He
sends x, y, z to the three players, receives a, b, c ∈
F, and accepts if and only if

b− a
yi − xi

=
c− b

zi − yi
=

c− a
zi − xi

.

Babai, Fortnow, and Lund show that, if any three
deterministic players are accepted by the verifier with
probability at least 1− ε in this game, then the func-
tions they each apply to their questions in order to
determine their respective answers are close to a single
multilinear function g : Fn → F (see Theorem 4.16 in [4]
for an analysis of a variant of the test over the integers).
That is, for all but at most a fraction roughly O(n2ε)
(provided |F| is large enough) of x ∈ Fn, the players’
answer to question x is precisely g(x).

A major hurdle in proving a similar statement in
case the players are allowed to use quantum mechanics
already arises in formulating the statement to be proven:
even in the case of players restricting their use of
entanglement as shared randomness, what meaning
should one ascribe to their strategies being “close
to multilinear”? Indeed, it could be that the answer
of each player to a fixed question, when taken in
isolation, is uniformly random: the whole substance of
the strategy is in the correlations between the answers
of different players. This difficulty is usually set aside
by “fixing the randomness”. Entanglement, however,
cannot be “fixed”, and this forces us to face even
the presumably simpler case of randomized strategies
head on. We show that the following is an appropriate
formulation of Babai et al.’s multilinearity test in the
general setting of entangled (or even just randomized)
players.

Theorem 3 (Informal). Suppose that three entangled play-
ers who share a permutation-invariant state |Ψ〉 succeed in
the multilinearity game with probability 1− ε where each
player uses the set of measurements8 {Aa

x}a∈F to determine
his answer to the verifier’s question x ∈ Fn.

Then there exists a single measurement {Vg}, indepen-
dent of any question and with outcomes in the set of all
multilinear functions g : Fn → F, such that, in the mul-
tilinearity game, each player’s action is indistinguishable

8A measurement is a collection of non-negative matrices {Pa}a∈A
such that ∑a Pa = Id (this is usually called a Positive Operator-Valued
Measure, or POVM).

from that of player whom, upon receiving his question x,
would

1) Measure his share of |Ψ〉 with {Vg}, obtaining a
multilinear function g as an outcome,

2) Answer his question x with g(x).

Moreover, the multilinear functions used by the three players
are identical with high probability.

In case the players are classical, but may use shared
randomness, the theorem makes the following sim-
ple statement: players successful in the multilinearity
game are “indistinguishable” from players who would
first look up their random string, based on that alone
select a multilinear function g, and finally answer
their respective questions xi with g(xi). While such a
statement is a direct corollary of Babai, Fortnow, and
Lund’s analysis, our contribution is to prove it without
first “fixing the randomness” — and to show that it
also holds for the case of players using entanglement.

An appropriate notion of distance on entangled-prover
strategies: Crucial to the applicability of Theorem 3
is the precise notion of “indistinguishability” used.
Indeed, while there is no hope of making statements on
the players’ measurements or their shared entangled
state themselves (since the verifier has no direct access
to them throughout the protocol), one still needs to use
a notion that is strong enough to be meaningful even
when the multilinearity game is executed as a building
block in the larger protocol explained in the previous
section.

The measure we use is based on the notion of consis-
tency between two measurements, and we introduce it
here in a simplified setting (we refer to the full version
for more complete definitions). Let {Ai}i∈I and {Bi}i∈I
be two quantum measurements of the same dimension
and indexed by the same set of outcomes: Ai, Bi ≥ 0
for all i ∈ I, and ∑i Ai = ∑i Bi = Id. Let |Ψ〉 be a
bipartite state that is invariant under permutation of
its two subsystems, and ρ its reduced state on either.
We say that A and B are ε-consistent if the following
holds:

CON(A, B) := ∑
i
〈Ψ|Ai ⊗ Bi|Ψ〉 ≥ 1− ε. (1)

This definition has an operational interpretation: the
two measurements A and B, when performed on the
two subsystems of |Ψ〉, give the same outcome except
with probability ε . The key fact about consistent
measurements is the following. Suppose that A and
A, B and B, and A and B are all ε-consistent. Then A
and B are indistinguishable in the sense that

∑
i

∥∥
√

Aiρ
√

Ai −
√

Biρ
√

Bi
∥∥

1 = O(
√

ε). (2)
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This last expression corresponds to a more familiar
notion of closeness of two measurements: they are
close if the post-measurement states resulting from
applying either are close in trace distance. The fact
that (1) essentially implies (2) relies on Winter’s “gentle
measurement” lemma [34, Lemma 9] (see also Aaron-
son’s “almost as good as new” lemma [1, Lemma 2.2]),
a key tool in our analysis.

Henceforth we will consider two measurements to
be close whenever they are consistent, having the
assurance that this notion of closeness implies the
more traditional one expressed by (2). In particular,
it is not hard to verify that (2) implies that either
measurement may be “replaced” by the other even in
a wider context; for lack of space we refer to the full
version for more details on how this can be done. The
advantage of using the notion of ε-consistency is that it
arises naturally from the analysis of the multilinearity
game, and it is a notion that is very convenient to work
with.

Rounding entangled strategies in the multilinearity
game: Theorem 3 states that success in the multilinear-
ity game forces even entangled players to make a triv-
ial use of their entanglement: since the measurement
{Vg} is independent of their respective questions, they
might as well perform it before the game starts, in
which case they are not using their entanglement at all.
Hence the theorem implies that entangled players are
no more powerful than classical players in that game.
A key insight of our work, however, is to avoid any
attempt to prove such a statement directly. Instead, our
proof technique consists in progressively manipulating
the players’ strategies themselves, without explicitly
trying to relate them to a classical strategy.

Our goal is to show how the measurement {Vg} can
be extracted from the initial set of measurements {Aa

x}
which depend on x ∈ Fn.9 More precisely, we show
how, starting from the original measurements {Aa

x
}

,
one may remove the dependence of {Aa

x} on x ∈ Fn

one coordinate at a time — eventually reaching the
measurement {Vg}. Towards this we construct a se-
quence of measurements {Bg

xk+1,...,xn

}
g, for k = 1, . . . , n,

with outcomes g in the set of multilinear functions
Fk → F. Each of these measurements has the following
key property: the respective strategies corresponding
to (i) measuring according to {Aa

x} and answering a or
(ii) measuring according to {Bg

xk+1,...,xn} and answering
g(x1, . . . , xk) are consistent, in the sense described in
Eq. (1): two distinct players using either strategy will
obtain the same answer with high probability (pro-

9While we do give an explicit, inductive algorithmic procedure
showing how {Vg} can be constructed, this is not necessary: the
point is only in proving its existence.

vided they started with the same question).
This sequence of measurements is defined by induc-

tion, and we only explain the one-dimensional case
here. Our construction is intuitive: {Bg} corresponds
to measuring using {Aa

x1
} twice, in succession, using

two randomly chosen values of x1, and returning the
unique linear function g which interpolates between
the two outcomes obtained. This can be interpreted as
a quantum analogue of the reconstruction procedure
already used in the linearity test of Blum, Luby, and
Rubinfeld: to recover a linear function it suffices to
evaluate it at two random points, and then interpolate.
We refer the reader to the full version for the general
claim, which states a quantum analogue of Babai et
al.’s “pasting lemma” [4, Lemma 5.11].

An additional hurdle arises as a result of the in-
duction: the quality of the approximation between
the original measurements {Aa

x} and the constructed
measurements {Bg

xk+1,...,xn} blows up exponentially with
k. In order to control this error, one has to perform an
additional step of self-improvement. This step was a key
innovation in the work of Babai, Fortnow, and Lund,
and extending it to the setting of entangled strategies
requires substantially more work. While for the case of
deterministic strategies Babai et al. were able to show,
using the expansion properties of the hypercube, that
any “reasonably good” k-linear approximation g at any
point in the induction was automatically “extremely
good”, in our case we need to actively update the
measurements through a self-correction procedure, ob-
taining the “improved” measurements as the optimum
of a certain convex optimization problem. The need
for such active correction is not a limitation of our
approach, but rather reflects a fundamental difference
between the quantum and the classical, deterministic
settings: while two binary-valued functions either fully
agree or fully disagree at any point, two quantum
measurements can produce outcomes according to dis-
tinct but arbitrarily close distributions (think of one of
the measurements as being obtained from the other
by a small perturbation, such as an arbitrarily small
rotation). It is this kind of “error” that needs to be
corrected, and we refer to the full version for more
detailed explanations on how this is done.

V. DISCUSSION AND OPEN QUESTIONS

Improving the parameters in Theorem 1 and Corol-
lary 2 is an open problem. For example, it might be
possible to reduce the number of provers to two, and
the number of rounds of interaction to one, while
still preserving exponentially small soundness error,
resulting in the inclusion NEXP ⊆ MIP∗(2, 1, 1, 2−q)
for every polynomial q. This would be an analogue of
the known containment NEXP ⊆ MIP(2, 1, 1, 2−q) [13].
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Our overall protocol for NEXP requires four provers,
and five provers if we would like to parallelize it
by using [15]. We leave the problem of reducing the
number of provers to fewer than four for future work.
It may also be possible to improve the soundness guar-
antees in Corollary 2 by using the parallel repetition
techniques from [23], but we have not explored this
possibility.

In comparison to the PCP theorem, there are im-
portant parameters which are not explicit in Theo-
rem 1 and Corollary 2: the amount of randomness
used by the verifier and the total answer length.
In our constructions, both of them are just bounded
by a polynomial in the input length for NEXP, and
they are poly-logarithmic for the scaled-down version
corresponding to verification of languages in NP. If
these numbers are respectively reduced to a logarithm
and a constant for NP with a constant soundness,
the result will be an analogue of the PCP theorem in
presence of entanglement. Obtaining such a result may
require extending our analysis of the multilinearity test
to the more powerful low-degree tests that were key
to establishing the “scaled-down” version of the PCP
theorem.

Honest provers in our protocol do not need entan-
glement in order to achieve completeness 1 in the case
of a YES-instance. It remains open whether entangle-
ment can have any positive use in this context: is MIP∗
strictly larger than MIP = NEXP?
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APPENDIX

A. Multi-prover interactive proofs

In this appendix we define the complexity classes
that this work is concerned with: multi-prover inter-
active proof systems (MIP systems) and multi-prover
interactive proof systems with entanglement (MIP∗ sys-
tems).

Let k(n) be an integer, denoting the number of
provers, and m(n) an integer denoting the number
of rounds. Both k(n) and m(n) are from the set of
polynomially bounded, polynomial-time computable
functions in the input size |x|, denoted by poly.
Further, c and s denote polynomial-time computable
functions of the input size into [0, 1] corresponding
to completeness acceptance probability and soundness
error. For notational convenience in what follows we
will omit the arguments of these functions.

Multi-prover interactive proof systems (MIP systems):
Let k, m, l ∈ poly. A k-prover interactive proof sys-
tem consists of a verifier V and k provers P1, . . . , Pk.
The verifier is a probabilistic polynomial-time Turing
machine, and the provers are computationally un-
bounded. Each of them has a read-only input tape and
a private work tape. Each prover has a communication
tape. The verifier has a random tape. The verifier also
has k communication tapes, one for each prover, each
of which is l bits long.

The input tape for every party contains the same
input string x. The protocol consists of m(|x|) rounds.
In each round, first the verifier runs for a polyno-
mial amount of time, updating the work and com-
munication tapes. After that, the content of the ith
communication tape is sent to the ith prover for
each i = 1, . . . , k(|x|). Each prover reads this string,
updates the content of his own work tape, and decides
a reply to the verifier. The reply from the ith prover
is written in the ith communication tape, and this
round completes. After m(|x|) rounds of interaction,
the verifier produces a special output bit, designating
acceptance or rejection. The operations by provers are
instantaneous and do not have to be even computable;
the provers are assumed to be able to “compute” any
function.

For simplicity, we assume that each message be-
tween the verifier and the provers in each round is
exactly l bits long for the purpose of a formal defi-
nition, but it is not hard to modify the definition to
incorporate the more general case which does not sat-
isfy this assumption. Formally, a strategy for P1, . . . , Pk
in a k-prover m-round interactive proof system consists

250



of the length l′ ∈ N of a work tape, and km map-
pings fij : {0, 1}l × {0, 1}l ′ → {0, 1}l × {0, 1}l ′ for 1 ≤
i ≤ k and 1 ≤ j ≤ m. Each mapping fij specifies
the operation which prover i performs in round j:
fij(q, w) = (q′, w′) means that if the message from the
verifier in this round is q and the work tape contains
string w before the operation by the prover, then the
message to the verifier in this round is q′ and the work
tape contains string w after the operation.

Definition 4. Let k, m : N → N, and let c, s : N → [0, 1]
such that c(n) > s(n) for all n ∈ N. A language L is
in MIP(k, m, c, s) if and only if there exists an m-round
polynomial-time verifier V for a k-prover interactive proof
system such that, for every input x:

(Completeness) if x ∈ L, there exists a strategy
for provers P1, . . . , Pk such that the interaction
protocol of V with (P1, . . . , Pk) results in the
verifier accepting with probability at least c,
(Soundness) if x �∈ L, for any strategy for
provers P′1, . . . , P′k, the probability that the inter-
action protocol of V with (P1, . . . , Pk) results in
the verifier accepting is at most s.

In this formulation, the provers are deterministic, but
this is not a limitation because it is well-known that the
power of the model does not change if we allow the
provers to share a random source.

If some of the parameters k, m, c, and s are sets
of functions instead of single functions, the class is
interpreted to be the union over all choices in the sets.
For example,

MIP(5, 1, 1, 1− 1/ poly) =
⋃

f∈poly

MIP(5, 1, 1, 1− 1/ f ).

We denote MIP(poly, poly, 2/3, 1/3) simply by MIP.
Multi-prover interactive proof systems with entangle-

ment (MIP∗ systems): First introduced in [11], MIP∗
systems are defined analogously to MIP systems. The
only difference is that now the provers are allowed
to be quantum, while the verifier (and communication)
remains bounded in classical probabilistic polynomial-
time. This implies that the provers may share an
arbitrary entangled state |Ψ〉 among themselves before
the protocol starts and that each prover may use his
part of the entangled state to determine his reply to the
verifier. In each round, the provers individually receive
the messages from the verifier in a message register,
perform a quantum operation on this register together
with their share of the entangled state, measure the
message register in the computational basis, and send
back the outcome to the verifier.

Formally, an entangled strategy for P1, . . . , Pk in a k-
prover m-round interactive proof system with entan-
glement consists of the length l′ ∈ N of a work tape,

km quantum channels Φij from a quantum register
of l + l′ qubits to itself for 1 ≤ i ≤ k and 1 ≤ j ≤ m,
and the initial quantum state |Ψ〉 of the work tape,
which is a kl′-qubit state. Each channel Φij specifies the
operation which prover i performs in round j: the first l
qubits in the state correspond to the message from
and to the verifier, and the last l′ qubits represent the
content of the work tape. After the prover’s operation,
the first l qubits are measured in the computational
basis and sent to the verifier.

Definition 5. A language L is in MIP∗(k, m, c, s) if and
only if there exists an m-round polynomial-time verifier V
for k-prover interactive proof systems such that, for every
input x:

(Completeness) if x ∈ L, there exists an entan-
gled strategy for provers P1, . . . , Pk such that the
interaction protocol of V with (P1, . . . , Pk) results
in the verifier accepting with probability at least c,
(Soundness) if x �∈ L, for any entangled strategy
for provers P′1, . . . , P′k, the probability that the
interaction protocol of V with (P1, . . . , Pk) results
in the verifier accepting is at most s.

In certain cases, we can simplify part of the defini-
tion of entangled strategies. Suppose that the verifier
interacts with certain prover Pi only once; i.e., the
verifier is guaranteed to send Pi the empty string (or a
fixed string) in rounds other than round j, and is guar-
anteed to ignore the reply from Pi in rounds other than
round j. In this case, instead of specifying m quantum
channels to describe the behavior of Pi in the m rounds,
we may just specify measurements Aq = (Ar

q) for each
message q from the verifier, where the outcome of each
measurement gives a reply to the verifier.10 Since all
the interactive proof systems considered in this paper
have the property that the verifier interacts with each
prover only once except for one prover, we use this
simplified formulation in many places.

Note that we do not assume any upper bound on
the size l′ of the work tape used by each prover (in
particular, we do not assume that l′ ∈ poly; the model
with this restriction is considered in [24]). However,
we do assume that they only use a finite-dimensional
Hilbert space. A more general definition is commuting-
operator provers, considered by Tsirelson [32] in the
context of Bell inequalities and later in [30], [12], [27],
[17]. Although we expect that our results remain valid
with minor modifications to the proofs even if dishon-
est provers are allowed to use arbitrary commuting-
operator strategies, we have not explored this possi-
bility.

10Any classical post-processing by the prover can be incorporated
as part of the description of his measurement.
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B. NEXP-complete problems

Our results are based on the following NEXP-
complete problem, as stated in Proposition 4.2 of
Ref. [4]:

Problem 1: Oracle-3-satisfiability.
Instance. Integers r, n ∈ N in unary and a Boolean for-
mula B(z, b1, b2, b3, a1, a2, a3) in variables z ∈ {0, 1}r,
b1, b2, b3 ∈ {0, 1}n and a1, a2, a3 ∈ {0, 1}.

Question. Does there exist A : {0, 1}n → {0, 1} such
that B(z, b1, b2, b3, A(b1), A(b2), A(b3)) = 1 simultane-
ously for all z ∈ {0, 1}r and b1, b2, b3 ∈ {0, 1}n?

Using the standard technique of arithmetization (see
e.g. Proposition 3.1 and Lemma 7.1 of Ref. [4]), one
can show that the following problem is also NEXP-
complete.

Problem 2: Oracle-3-satisfiability, arithmetized ver-
sion.
Instance. Integers r, n ∈ N in unary and an arithmetic

expressionfor a polynomial f (z, b1, b2, b3, a1, a2, a3),
where z represents r variables and each of b1, b2, b3
represents n variables.

Yes-promise. There exists an A : {0, 1}n → {0, 1} such
that for all z ∈ {0, 1}r and all b1, b2, b3 ∈ {0, 1}n, it
holds that

f (z, b1, b2, b3, A(b1), A(b2), A(b3)) = 0 (3)

in Z (and therefore in every field).

No-promise. For every pair (F, A) of a field F and
a mapping A : {0, 1}n → F, there exist z ∈ {0, 1}r

and b1, b2, b3 ∈ {0, 1}n such that Eq. (3) is not satisfied
in F.

We note that the degree of the polynomial f rep-
resented by the arithmetic expression can be at most
the size of the arithmetic expression, and is therefore
bounded by the input size.
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