
A Polylogarithimic Approximation Algorithm
for Edge-Disjoint Paths with Congestion 2

Julia Chuzhoy ∗
Toyota Technological Institute,

Chicago, IL, USA
cjulia@ttic.edu

Shi Li †
Center for Computational Intractability

Department of Computer Science, Princeton University
Princeton, NJ, USA

shili@cs.princeton.edu

Abstract—In the Edge-Disjoint Paths with Congestion problem
(EDPwC), we are given an undirected n-vertex graph G, a
collection M = {(s1, t1), . . . , (sk, tk)} of demand pairs and
an integer c. The goal is to connect the maximum possible
number of the demand pairs by paths, so that the maximum
edge congestion - the number of paths sharing any edge - is
bounded by c. When the maximum allowed congestion is c = 1,
this is the classical Edge-Disjoint Paths problem (EDP).

The best current approximation algorithm for EDP achieves
an O(

√
n)-approximation, by rounding the standard multi-

commodity flow relaxation of the problem. This matches
the Ω(

√
n) lower bound on the integrality gap of this re-

laxation. We show an O(poly log k)-approximation algorithm
for EDPwC with congestion c = 2, by rounding the same
multi-commodity flow relaxation. This gives the best possible
congestion for a sub-polynomial approximation of EDPwC via
this relaxation. Our results are also close to optimal in terms
of the number of pairs routed, since EDPwC is known to be
hard to approximate to within a factor of Ω̃

(
(log n)1/(c+1)

)

for any constant congestion c. Prior to our work, the best
approximation factor for EDPwC with congestion 2 was
Õ(n3/7), and the best algorithm achieving a polylogarithmic
approximation required congestion 14.

Keywords-approximation algorithms; network routing; edge-
disjoint paths

I. INTRODUCTION

One of the central and most extensively studied graph

routing problems is the Edge-Disjoint Paths problem (EDP).

In this problem, we are given an undirected n-vertex graph

G = (V,E), and a collection M = {(s1, t1), . . . , (sk, tk)}
of k source-sink pairs, that we also call demand pairs.

The goal is to find a collection P of edge-disjoint paths,

connecting the maximum possible number of the demand

pairs.

Robertson and Seymour [1] have shown that EDP can be

solved efficiently, when the number k of the demand pairs is

bounded by a constant. However, for general values of k, it

∗ Supported in part by NSF CAREER grant CCF-0844872 and Sloan
Research Fellowship.† Supported by NSF awards MSPA-MCS 0528414, CCF 0832797, AF
0916218 and CCF-0844872.

is NP-hard to even decide whether all pairs can be simultane-

ously routed via edge-disjoint paths [2]. A standard approach

to designing approximation algorithms for EDP and other

routing problems, is to first compute a multi-commodity

flow relaxation, where instead of connecting the demand

pairs with paths, we are only required to send the maximum

amount of multi-commodity flow between the demand pairs,

with at most one flow unit sent between every pair. Such

a fractional solution can be computed efficiently by using

the standard multi-commodity flow LP-relaxation, and it can

then be rounded to obtain an integral solution. Indeed, the

best current approximation algorithm for the EDP problem,

due to Chekuri, Khanna and Shepherd [3], achieves an

O(
√
n)-approximation using this approach. Unfortunately,

a simple example by Garg, Vazirani and Yannakakis [4],

shows that the integrality gap of the multi-commodity flow

relaxation can be as large as Ω(
√
n), thus implying that

the algorithm of [3] is essentially the best possible for

EDP, when using this approach. This integrality gap appears

to be a major barrier to obtaining better approximation

algorithms for EDP. Indeed, we do not know how to design

better approximation algorithms even for some seemingly

simple special cases of planar graphs, called the brick-wall

graphs. With the current best hardness of approximation

factor standing on Ω(log1/2−ε n) for any constant ε (un-

less NP is contained in ZPTIME(npoly logn) [5], [6]), the

approximability of the EDP problem remains one of the

central open problems in the area of routing.

A natural question is whether we can obtain better ap-

proximation algorithms by slightly relaxing the disjointness

requirement, and allowing the paths to share edges. We say

that a set P of paths is an α-approximate solution with

congestion c, iff the paths in P connect at least OPT/α
of the demand pairs, while every edge of G appears on

at most c paths in P . Here, OPT is the value of the

optimal solution to EDP, where no congestion is allowed.

This relaxation of the EDP problem is called EDP with

congestion (EDPwC). The EDPwC problem is a natural

framework to study the tradeoff between the number of pairs

routed and the congestion, and it is useful in scenarios where

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.54

233

we can afford a small congestion on edges.

The classical randomized rounding technique of Raghavan

and Thompson [7] gives a constant factor approximation

for EDPwC, when the congestion c is Ω(log n/ log logn).
More generally, for any congestion value c, factor O(n1/c)-
approximation algorithms are known for EDPwC [8], [9],

[10]. Recently, Andrews [11] has shown a randomized

O(poly log n)-approximation algorithm with congestion c =
O(poly log log n), and Chuzhoy [12] has shown a random-

ized O(poly log k)-approximation algorithm with conges-

tion 14. For the congestion value c = 2, Kawarabayashi

and Kobayashi [13] have recently shown an Õ(n3/7)-
approximation algorithm, thus improving the best previously

known O(
√
n)-approximation for c = 2 [8], [9], [10].

We note that all the above mentioned algorithms rely on

the standard multi-commodity flow LP relaxation of the

problem. It is easy to see that the values of the optimal

solution of this LP relaxation for the EDP problem, where

no congestion is allowed, and for the EDPwC problem,

where congestion c is allowed, are within a factor c from

each other. Therefore, the statements of these results remain

valid even when the approximation factor is computed with

respect to the optimal solution to the EDPwC problem.

In this paper, we show a randomized O(poly log k)-
approximation algorithm for EDPwC with congestion 2.

Given an instance (G,M) of the EDP problem, our algo-

rithm w.h.p. routes at least Ω(OPT/poly log k) pairs with

congestion 2, where OPT is the maximum number of pairs

that can be routed with no congestion. Our algorithm also

achieves an O(poly log k)-approximation when compared

with the optimal solution to EDPwC with congestion 2.

The algorithm performs a rounding of the standard multi-

commodity flow relaxation for EDP. Therefore, our result

shows that when congestion 2 is allowed, the integrality

gap of this relaxation improves from Ω(
√
n) to polyloga-

rithmic. Our result is essentially optimal with respect to this

relaxation, both for the congestion and the number of pairs

routed, in the following sense. As observed above, if we

are interested in obtaining a sub-polynomial approximation

for EDP via the multi-commodity flow relaxation, then

the best congestion we can hope for is 2. On the other

hand, Andrews et al. [6] have shown that the integrality

gap of the multi-commodity flow relaxation for EDPwC

is Ω

((
logn

(log logn)2

)1/(c+1)
)

for any constant congestion

c. In particular, the integrality gap for congestion 2 is

polylogarithmic, though the degree of the logarithm is much

lower than the degree we obtain in our approximation

algorithm. Andrews et al. [6] have also shown that for

any constant ε, for any 1 ≤ c ≤ O
(

log logn
log log logn

)
, there

is no O
(
(log n)

1−ε
c+1

)
-approximation algorithm for EDPwC

with congestion c, unless NP ⊆ ZPTIME(npoly logn). In

particular, this gives an Ω
(
log(1−ε)/3 n

)
-hardness of ap-

proximation for EDPwC with congestion 2.

Our results. Our main result is summarized in the following

theorem.

Theorem 1: There is an efficient randomized algorithm, that,

given a graph G, and a collection M of k source-sink pairs,

w.h.p. finds a routing of Ω(OPT/(poly log k)) of the pairs in

M with congestion at most 2, where OPT is the maximum

number of pairs that can be routed with congestion 2.

Organization. We start with preliminaries in Section II and

provide an overview of our algorithm in Section III. We de-

velop machinery to analyze vertex clusterings in Section IV,

and complete the algorithm description in Sections V and VI.

Due to lack of space, many proofs are omitted from this

extended abstract, and can be found in the full version of

the paper in arXiv:1208.1272v1.

II. PRELIMINARIES

Notation. Suppose we are given an EDPwC instance

(G,M). We denote by T the set of vertices that participate

in pairs in M, and we call them terminals. Let OPT
denote the maximum number of demand pairs that can be

simultaneously routed with congestion at most 2. Given

any subset M′ ⊆ M of the demand pairs, we denote by

T (M′) ⊆ T the subset of terminals participating in the

pairs in M′.

For any subset S ⊆ V of vertices, we denote by outG(S) =
EG(S, V \ S), and by EG(S) the subset of edges with

both endpoints in S, omitting the subscript G when clear

from context. Throughout the paper, we say that a random

event succeeds w.h.p., if the probability of its success is

(1− 1/ poly(n)). All logarithms are to the base of 2.

Let P be any collection of paths in graph G. We say that

paths in P cause congestion η in G, iff for every edge e ∈ E,

at most η paths in P contain e. Given a set P of paths

connecting the edges of E1 to the edges of E2, we denote

P : E1 �η E2 iff P = {Pe | e ∈ E1}, where e is the first

edge on Pe, and the total congestion caused by the paths in

P is at most η. If every edge of E2 has at most one path

terminating at it, then we denote P : E1
1:1�η E2. We use a

similar notation for path sets connecting subsets of vertices

to each other, or a subset vertices with a subset of edges.

Given a subset S of vertices and two subsets E1, E2 ⊆
out(S) of edges, we say that a set P : E1 �η E2 of paths

is contained in S iff all inner edges on every path in P
belong to G[S].

Reduction to Well-Linked Instances. Given an instance

(G,M), we can assume w.l.o.g. that every terminal t ∈ T
participates in exactly one source-sink pair: otherwise, for

234

each demand pair in which t participates, we can add a new

terminal connected to t to the graph, that will replace t in

the demand pair. Similarly, we can assume that the degree

of every terminal is exactly 1, and the degree of every non-

terminal vertex is at most 4. In order to achieve the latter

property, we replace every vertex v whose degree dv > 4
with a dv × dv grid, and connect the edges incident on v to

the vertices of the first row of the grid. It is easy to verify

that these transformations do not affect the solution value.

The notion of well-linkedness has been widely used in graph

decomposition and routing, see e.g. [14], [15], [11]. While

the main idea is similar, the definition details differ from

paper to paper. Our definition of well-linkedness is similar

to that of [12].

Definition 1. Let S be any subset of vertices of a graph

G. For any integer k1, for any 0 < α ≤ 1, we say that set

S is (k1, α)-well-linked iff for any pair T1, T2 ⊆ out(S)
of disjoint subsets of edges, with |T1|+ |T2| ≤ k1, for any

partition (X,Y) of S with T1 ⊆ out(X) and T2 ⊆ out(Y),
|EG(X,Y)| ≥ α ·min {|T1|, |T2|}.

Suppose a set S is not (k1, α)-well-linked. We say that a

partition (X,Y) of S is a (k1, α)-violating partition, iff there

are two subsets T1 ⊆ out(X) ∩ out(S), T2 ⊆ out(Y) ∩
out(S) of edges with |T1| + |T2| ≤ k1, and |EG(X,Y)| <
α ·min {|T1|, |T2|}.

Definition 2. Given a graph G, a subset S of its vertices, a

parameter α > 0, and a subset Γ ⊆ out(S) of edges, we say

that S is α-well-linked for Γ, iff for any partition (A,B) of

S, |E(A,B)| ≥ α · min {|Γ ∩ out(A)|, |Γ ∩ out(B)|}. We

say that the set S is α-well-linked iff it is α-well-linked for

the set out(S) of edges.

Notice that if | out(S)| ≤ k1, then S is α-well-linked iff it

is (k1, α)-well-linked.

Similarly, if we are given a graph G and a subset T of its

vertices called terminals, we say that G is α-well linked

for T , iff for any partition (A,B) of V (G), |E(A,B)| ≥
α·min {|A ∩ T |, |B ∩ T |}. Notice that if G is α-well-linked

for T , then for any pair (T1, T2) of subsets of T with

|T1| = |T2|, we can efficiently find a collection P of paths,

P : T1 1:1��1/α� T2. This follows from the min-cut max-flow

theorem and the integrality of flow.

Chekuri, Khanna and Shepherd [16], [14] have shown

an efficient algorithm, that, given any EDP instance

(G,M), partitions it into a number of sub-instances

(G1,M1), . . . , (G�,M�), such that, on the one hand, each

instance Gi is 1-well-linked for the set of terminals par-

ticipating in Mi, and on the other hand, the sum of

the values of the optimal fractional solutions in all these

instances is Ω(OPT/ log2 k). Therefore, it is enough to find

a polylogarithmic approximation with congestion 2 in each

such sub-instance separately. We say an instance (G,M) is

a well-linked instance if, every vertex in G has degree at

most 4, every terminal has degree exactly 1 and participate

in exactly one pair in M, and G is 1-well-linked for the set

T of terminals. From the above arguments, we only need to

consider well-linked instances.

Sparsest Cut and the Flow-Cut Gap. Suppose we are given

a graph G = (V,E), and a subset T ⊆ V of k terminals. The

sparsity of a cut (S, S) in G is Φ(S) = |E(S,S)|
min{|S∩T |,|S∩T |} ,

and the value of the sparsest cut in G is defined to be:

Φ(G) = minS⊂V {Φ(S)}. The goal of the sparsest cut prob-

lem is, given an input graph G and a set T of terminals, to

find a cut of minimum sparsity. Arora, Rao and Vazirani [17]

have shown an O(
√
log k)-approximation algorithm for the

sparsest cut problem. We denote this algorithm by AARV,

and its approximation factor by αARV(k) = O(
√
log k).

A problem dual to sparsest cut is the maximum concurrent

flow problem. For the above definition of the sparsest cut

problem, the corresponding variation of the concurrent flow

problem asks to find the maximum value λ, such that every

pair of terminals can send λ/k flow units to each other

simultaneously with no congestion. The flow-cut gap is

the maximum ratio, in any graph, between the value of

the minimum sparsest cut and the maximum value λ of

concurrent flow. The value of the flow-cut gap in undirected

graphs, that we denote by β(k) throughout the paper, is

Θ(log k) [18], [19], [20], [21]. Therefore, if Φ(G) = α,

then every pair of terminals can send α
kβ(k) flow units

to each other with no congestion. Equivalently, every pair

of terminals can send 1/k flow units to each other with

congestion at most β(k)/α. Moreover, any matching on the

set T of terminals can be fractionally routed with congestion

at most 2β(k)/α.

Given a graph G, a subset S ⊆ V (G) of vertices, and

a subset Γ ⊆ out(S) of edges, we define an instance

SC(G,S,Γ) of the sparsest cut problem as follows. First,

we sub-divide every edge e ∈ Γ by a new vertex te,

and we let T (Γ) = {te | e ∈ Γ}. Let GS(Γ) be the sub-

graph of the resulting graph, induced by S ∪ T (Γ). The

instance SC(G,S,Γ) of the sparsest cut problem is defined

over the graph GS(Γ), where the vertices of T (Γ) serve

as terminals. Observe that for all α ≤ 1, the value of the

sparsest cut in SC(G,S,Γ) is at least α iff set S is α-well-

linked with respect to Γ in graph G. If Γ = outG(S), then

we will denote the corresponding instance of the sparsest

cut problem by SC(G,S).

Expanders and the Cut-Matching Game. We say that

a (multi)-graph G = (V,E) is an α-expander, iff

min S⊆V :

|S|≤|V |/2

{
|E(S,S)|
|S|

}
≥ α.

235

We use the cut-matching game of Khandekar, Rao and

Vazirani [22]. In this game, we are given a set V of N
vertices, where N is even, and two players: a cut player,

whose goal is to construct an expander X on the set V of

vertices, and a matching player, whose goal is to delay its

construction. The game is played in iterations. We start with

the graph X containing the set V of vertices, and no edges.

In each iteration j, the cut player computes a bi-partition

(Aj , Bj) of V into two equal-sized sets, and the matching

player returns some perfect matching Mj between the two

sets. The edges of Mj are then added to X . Khandekar,

Rao and Vazirani have shown that there is a strategy for

the cut player, guaranteeing that after O(log2 N) iterations

we obtain a 1
2 -expander w.h.p. Subsequently, Orecchia et

al. [23] have shown the following improved bound:

Theorem 2 ([23]): There is a probabilistic algorithm for the

cut player, such that, no matter how the matching player

plays, after γCMG(N) = O(log2 N) iterations, graph X is an

αCMG(N) = Ω(logN)-expander, with constant probability.

Parameters. We now define some global parameters that

will be used in our algorithm. Let γCMG = γCMG(k) =
O(log2 k) be the parameter for the number of iterations in

the cut-matching game from Theorem 2. Let γ = 224γ4
CMG

.

We will also use the following two parameters for well-

linkedness: α = 1
211γ log k = Ω

(
1

log9 k

)
, used to perform

the well-linked decomposition, and αWL = α
αARV(k)

=

Ω
(

1
log9.5 k

)
- the well-linkedness factor we achieve. We

use a parameter k1 = k
192γ3 log γ = k

poly log k , and we

assume that the parameter k is large enough, so k1 > 4/α
(otherwise we can simply route one demand pair to obtain

an O(poly log k)-approximation). We say that a cluster

C ⊆ V (G) is large iff | out(C)| ≥ k1, and small otherwise.

III. ALGORITHM OVERVIEW

Chekuri, Khanna and Shepherd [16], [14], [24] have sug-

gested the following high-level approach to solve EDP
instances (G,M), where G is well-linked for the terminals.

They start by defining a graph called a crossbar: a graph H
with a subset Y ⊆ V (H) of vertices is called a crossbar

with congestion c, iff any matching over the vertices of

Y can be routed with congestion at most c in H . They

then note that if we could show an algorithm that finds a

crossbar (H,Y) in graph G, with |Y | = k/ poly log k, and

constant congestion, then we can obtain a polylogarithmic

approximation to EDPwC with constant congestion. An

algorithm for constructing such a crossbar with a constant

congestion follows from the recent work of [12].

We follow this approach, and define a structure that we call a

good crossbar, which gives slightly stronger properties than

the general crossbar defined above. The formal definition is

as follows (see Figure 1).

S1 S2
. . . Sγ

T1 T2 . . . Tk∗

t1 t2 · · · tk∗

Figure 1. A good crossbar

Definition 3. Given a well-linked instance (G,M) with

|M| = k and a parameter k∗ = k/ poly log k, a good
crossbar consists of the following three components:

1) A family S∗ =
{
S∗1 , . . . , S

∗
γCMG

}
of disjoint subsets of

non-terminal vertices. Each set S∗j ∈ S∗ is associated

with a subset Γ∗j ⊆ out(S∗j) of 2k∗ edges, and S∗j is

1-well-linked for Γ∗j .

2) A subset M∗ ⊆ M of k∗ demand pairs. Let T ∗ =
T (M∗) be the corresponding set of terminals.

3) A collection τ∗ = {T1, . . . , T2k∗} of trees in graph

G. Each tree Ti ∈ τ∗, contains a distinct terminal

ti ∈ T ∗, and for each 1 ≤ j ≤ γCMG, tree Ti contains

a distinct edge ei,j ∈ Γ∗j . In other words, T ∗ =
{t1, . . . , t2k∗}, where ti ∈ Ti for each 1 ≤ i ≤ 2k∗;
and for each 1 ≤ j ≤ γCMG, Γ∗j = {e1,j , . . . , e2k∗,j},
where ei,j ∈ Ti for each 1 ≤ i ≤ 2k∗.

We say that the congestion of the good crossbar is c iff every

edge of G participates in at most c trees in τ∗, while every

edge in
⋃γCMG

j=1 E(S∗j) belongs to at most c− 1 such trees.

Chuzhoy [12] has implicitly defined a good crossbar, and

has shown that, given a good crossbar that causes con-

gestion c, there is an efficient randomized algorithm to

route Ω(k∗/ poly log k) demand pairs with congestion at

most c in graph G. This algorithm uses the cut-matching

game of Khandekar, Rao and Vazirani [22] to embed an

expander into G, and then finds a routing in this expander

using the algorithm of Rao and Zhou [15]. She has also

shown an efficient algorithm for constructing a good cross-

bar with congestion 14, thus obtaining an O(poly log k)-
approximation with congestion 14 for EDPwC.

We follow a similar approach here, except that we construct

a good crossbar with congestion 2. Our main result is the

following theorem:

Theorem 3: Assume we are given a well-linked instance

(G,M) with |M| = k. Then there is an efficient randomized

algorithm, that w.h.p outputs: (i) either a subset M′ ⊆ M
of k/ poly log k demand pairs and the routing of the pairs

in M′ with congestion at most 2 in G; or (ii) a good

congestion-2 crossbar (S∗,M∗, τ∗).

236

Combining this with the result of [12], we obtain an

O(poly log k)-approximation to EDPwC with congestion 2.

From now on we focus on proving Theorem 3.

We now provide a high-level overview of the construction

of the good crossbar of [12], and the barriers that need to

be overcome to reduce the congestion to 2. The algorithm

of [12] consists of three steps. In the first step, we construct

a family R = {S1, . . . , Sγ} of disjoint clusters in G \ T ,

where each cluster Sj is associated a set Γj ⊆ out(Sj) of

k∗ = k/poly log k edges, for which Sj is 1-well-linked.

Additionally, for every 1 ≤ j ≤ γ, we are given a flow

Fj , sending k∗/2 flow units from Γj to the terminals in T .

A family R of vertex subsets that has these properties is

called a good family of vertex subsets. In the second step,

we construct a family τ ′ = {T ′1, . . . , T ′k∗} of trees, where

every tree Ti ∈ τ ′ contains a distinct terminals ti ∈ T , and

a distinct edge ei,j ∈ Γj for each 1 ≤ j ≤ γ. However, the

terminals in set T ′ = {ti | Ti ∈ τ ′} do not necessarily form

source-sink pairs in M. In order to construct the trees in

τ ′, consider the graph G′ obtained from G by the following

operations: for every 1 ≤ j ≤ γ, add a super-node vj ; for

every e ∈ Γj , connect vj to the end-point of e that is not

in Sj . Then the problem of finding the set τ ′ of trees is

similar to the problem of packing Steiner trees in G′, with

Steiner nodes being V (G′)\{v1, v2, · · · , vγ}. The existence

of the flows {Fj}γj=1 can be viewed as evidence for the

existence of the set τ ′ of trees in G′, and we can use existing

algorithms to find it. The well-linkedness of the sets Sj ∈ R
is then exploited to simulate the super-nodes vj , in order

to construct a collection τ ′ of trees in the original graph.

Finally, in the third step, we select a subset M∗ ⊆ M of

k∗/2 demand pairs, and connect all terminals participating

in the pairs in M∗ to the terminals in set T ′. The union of

these new paths with the trees in τ ′ gives the final collection

τ of trees.

There are several factors contributing to the accumulation of

congestion in this construction. We mention the main two

barriers to reducing the congestion to 2 here.

The first problem is that we have used each cluster Sj twice

in constructing the set τ ′ of trees: once for packing the

Steiner-trees and once for simulating the super nodes vj .

It seems that this is unavoidable from the properties of R:

on the one hand, we have to use Sj to simulate vj ; on the

other hand, we cannot remove the clusters Sj from G′ since

the flows Fj′ from Γj′ to T , for j′ 	= j, might use Sj .

The second problem is that step 2 and step 3 are executed

separately, each contributing to the total congestion. It

appears that one has to incur a congestion of at least 2 when

constructing the set τ ′ of trees, using current techniques. If

the terminals in set T ′ do not form demand pairs in M,

then we need to additionally select a subset M∗ ⊆ M of

the demand pairs, and to route the terminals participating in

M∗ to the terminals of T ′, thus increasing the congestion

beyond 2.

In order to find a good family F of vertex subsets, the

algorithm of [12] performs a number of iterations. In each

iteration we start with what is called a legal contracted

graph G′. This graph is associated with a collection C of

disjoint subsets of non-terminal vertices of G, such that

each set C ∈ C is well-linked for out(C), and G′ is

obtained from G by contracting every cluster C ∈ C into

a super-node. Additionally, we require that for each cluster

C ∈ C, | out(C)| is small. We call such a clustering C a

good clustering. At the beginning of the algorithm, C = ∅
and G′ = G. In every iteration, given a legal contracted

graph G′, the algorithm either computes a good family F of

vertex subsets, or produces a new legal contracted graph G′′,
containing strictly fewer vertices than G′. This guarantees

that after n iterations, the algorithm produces a good family

F of vertex subsets.

In order to overcome the two problems mentioned above

and avoid accumulating the congestion, we combine all

three steps of the algorithm together. We define a potential

function ϕ over collections C of disjoint non-terminal vertex

subsets, where ϕ(C) roughly measures the number of edges

in the graph obtained from G by contracting every cluster in

C into a super-node. The potential function ϕ has additional

useful properties, that allow us to perform a number of

standard operations (such as the well-linked decomposition)

on the clusters of C, without increasing the potential value.

Our algorithm also consists of a number of iterations (that

we call phases). In each such phase, we start with some legal

contracted graph G′ and a corresponding good clustering

C′. We then either construct a good crossbar, or produce

a new good clustering C′′ with ϕ(C′′) < ϕ(C′), together

with the corresponding new legal contracted graph G′′. Each

phase is executed as follows. We start with some clustering

C∗ of the vertices of G, where ϕ(C∗) < ϕ(C′), but C∗
is not necessarily a good clustering. We then perform a

number of iterations. In each iteration, we select a family

F = {S1, . . . , Sγ} of disjoint subsets of non-terminal

vertices, that we treat as a potential good family vertex

subsets, and we try to find a subset M∗ ⊆M of k∗ demand

pairs and a family τ of trees, to complete the construction

of a good crossbar. If we do not succeed in constructing

a good crossbar in the current iteration, then we use the

family F of vertex subsets to refine the current clustering C∗,
such that the potential of the new clustering goes down by

a significant amount. This ensures that after polynomially-

many iterations, we will succeed in either constructing a

good crossbar, or a good clustering C∗ with ϕ(C∗) < ϕ(C′).
This combination of all three steps of the algorithm of [12]

appears necessary to overcome the two barriers described

above. For example, it is possible that the family F of vertex

237

subsets is a good family, but we are still unable to extend it to

a good crossbar (for example because of the problem of the

paths in Pj using the edges of G[Sj′], as described above).

Still, we will be able to make progress in such cases by

refining the current clustering C∗. Similarly, we construct the

trees and connect the terminals participating in pairs in M∗

to them simultaneously, to avoid accumulating congestion.

Again, whenever we are unable to do so, we will be able to

refine the current clustering C∗.
In the following section we define several types of cluster-

ings the algorithm uses, the notion of the legal contracted

graphs, and several operations on a given clustering, that are

used throughout the algorithm.

IV. VERTEX CLUSTERINGS AND LEGAL CONTRACTED

GRAPHS

In this section we define several types of vertex clusterings

that the algorithm uses, the notion of the legal contracted

graph, and several operations on a given clustering, that are

used throughout the algorithm.

Definition 4. Given a partition C of the vertices of V (G)
into clusters, we say that C is an acceptable clustering of G
iff:

• Every terminal t ∈ T is in a separate cluster, that is,

{t} ∈ C;

• Each small cluster C ∈ C is αWL-well-linked; and

• Each large cluster C ∈ C is a connected component.

An acceptable clustering that contains no large clusters is

called a good clustering.

Definition 5. Given a good clustering C of G, let HC be the

graph obtained from G by contracting every cluster C ∈ C
into a super-node vC (remove self-loops, but keep parallel

edges). Then we say that HC is the legal contracted graph
of G associated with C.

The following claim was proved in [12]; the proof is omitted

here.

Claim 1: If G′ is a legal contracted graph for G, then G′\T
contains at least k/3 edges.

Potential Function on Clusterings. Given any clustering

C of the vertices of G, we define a potential ϕ(C) for this

clustering. For any integer h, we define ϕ(h) as follows. For

h < k1, ϕ(h) = 4α log h. In order to define ϕ(h) for h ≥ k1,

we consider the sequence {n0, n1, . . .} of numbers, where

ni =
(
3
2

)i
k1. The potentials for these numbers are ϕ(n0) =

ϕ(k1) = 4α log k1 + 4α, and for i > 0, ϕ(ni) = 4αk1

ni
+

ϕ(ni−1). Notice that for all i, ϕ(ni) ≤ 12α + 4α log k1 ≤
8α log k1 ≤ 1

28γ .

We now partition all integers h > k1 into sets S1, S2, . . .,
where set Si contains all integers h with ni−1 ≤ h < ni.

For h ∈ Si, we define ϕ(h) = ϕ(ni−1). This finishes the

definition of potentials of integers. Clearly, for all h, ϕ(h) ≤
1

28γ .

Assume now that we are given some edge e ∈ E. If both

endpoints of e belong to the same cluster of C, then we set

its potential ϕ(e) = 0. Otherwise, if e = (u, v), and u ∈ C
with | out(C)| = h, while v ∈ C ′ with | out(C ′)| = h′, then

we set ϕ(e) = 1 + ϕ(h) + ϕ(h′). We think of ϕ(h) as the

contribution of u, and ϕ(h′) the contribution of v to ϕ(e).
Notice that ϕ(e) ≤ 1.1. Finally, we set ϕ(C) = ∑

e∈E ϕ(e).

Well-linked decomposition of small clusters. Suppose we

are given any partition C of V (G). Our first step is to show

that we can perform a well-linked decomposition of small

clusters in C, without increasing the potential. The proof of

the following theorem is omitted due to lack of space.

Theorem 4: Let C be any partition of V (G), and let C ∈ C
be any small cluster, such that G[C] is connected. Then there

is an efficient algorithm that finds a partition W of C into

small clusters, such that each cluster R ∈ W is αWL-well-

linked, and additionally, if C′ is a partition obtained from

C by removing C and adding the clusters of W to it, then

ϕ(C′) ≤ ϕ(C).
We denote the procedure given by Theorem 4 by

DECOMPOSE(C).

Given an acceptable clustering C of G, we define two

operations on C, each of which produces a new acceptable

clustering of G, whose potential is at most ϕ(C)− 2.

Operation 1: Partitioning a large cluster. Suppose we

are given an acceptable clustering C of G, a large cluster

C ∈ C, and a (k1, α)-violating partition (X,Y) of C.

Then PARTITION(C, C,X, Y) returns a new acceptable

clustering C′. In this operation, we first replace C with X
and Y in C. Additionally, if any of the clusters X and Y
become small, we perform the operation DECOMPOSE on

that cluster and update C with the resulting partitioning.

Clearly, the final clustering C′ is an acceptable clustering.

The proof of the following claim is omitted due to lack of

space.

Claim 2: Let C′ be the clustering returned by the operation

PARTITION(C, C,X, Y). Then ϕ(C′) ≤ ϕ(C)− 2.

Operation 2: Separating a large cluster. Let C ∈ C be a

large cluster in an acceptable clustering C. Assume further

that we are given a cut (A,B) in graph G, with C ⊆ A,

T ⊆ B, and |EG(A,B)| < k1/2. We perform the following

operation, that we denote by SEPARATE(C, C,A).
Consider some cluster S ∈ C. If S is a small cluster, but

S \A is a large cluster, then we modify A by removing all

238

vertices of S from it. Notice that in this case, the number of

edges in E(S) that originally contributed to the cut (A,B),
|E(S∩A,S∩B)| > | out(S)∩E(A)| must hold, so | out(A)|
only goes down as a result of this modification. We assume

from now on that if S ∈ C is a small cluster, then S \A is

also a small cluster. We build a new partition C′ of V (G) as

follows. First, we add every connected component of G[A]
to C. Notice that all these clusters are small, as | out(A)| <
k1/2. Next, for every cluster S ∈ C, such that S \A 	= ∅, we

add every connected component of G[S \ A] to C′. Notice

that every terminal t ∈ T is added as a separate cluster to

C′. In our final step, we replace every small cluster C ∈ C′
with the clusters produced by DECOMPOSE(C). Let C′′ be

the resulting acceptable clustering. Notice that if S ∈ C′′ is

a large cluster, then there must be some large cluster S′ in

the original partition C with S ⊆ S′.

Claim 3: Let C′′ be the clustering returned by the operation

SEPARATE(C, C,A). Then ϕ(C′′) ≤ ϕ(C)− 1.

Proof: In order to prove the claim, it is enough to prove

that ϕ(C′) ≤ ϕ(C) − 1, by Theorem 4. We can bound the

changes in the potential as follows:

• Every edge in out(A) contributes at most 1.1 to the

potential of C′′, and there are at most k1−1
2 such edges.

These are the only edges whose potential in C′′ may be

higher than their potential in C.

• Every edge in out(C) contributed at least 1 to the

potential of C′, and there are at least k1 such edges,

since C is a large cluster.

Therefore, the decrease in the potential is at least k1 −
1.1(k1−1)

2 ≥ 1.

V. THE ALGORITHM

In this section we prove Theorem 3, by providing an efficient

randomized algorithm, that w.h.p. either computes a subset

M′ ⊆ M of k/ poly log k demand pairs and their routing

with congestion at most 2 in G, or finds a good congestion-2
crossbar in G.

We maintain, throughout the algorithm, a good clustering

C of G. Initially, C is a partition of V (G), where every

vertex of G belongs to a distinct cluster, that is, C =
{{v} | v ∈ V (G)}. Clearly, this is a good clustering. We

then perform a number of phases. Each phase is executed

as follows.

For simplicity let, G′ = HC be the legal contracted graph

of G associated with C. Let m be the number of edges in

G′ \ T . From Claim 1, m ≥ k/3. As a first step of each

phase, we randomly partition the vertices in G′ \ T into

γ subsets X1, . . . , Xγ , where each vertex v ∈ V (G′) \ T
selects an index 1 ≤ j ≤ γ independently uniformly at

random, and is then added to Xj . We need the following

claim, that appeared in [12]; we omit the proof here due to

lack of space.

Claim 4: With probability at least 1
2 , for each 1 ≤ j ≤ γ,

| outG′(Xj)| < 10m
γ , while |EG′(Xj)| ≥ m

2γ2 .

We repeat the randomized partitioning procedure until the

conditions of Claim 4 hold (which can be checked effi-

ciently). From Claim 4, we are guaranteed to obtain the

desired partition after poly(n) iterations w.h.p. Assume now

that we are given a partition X1, . . . , Xγ of V (G′) \ T ,

for which the conditions of Claim 4 hold. Then for each

1 ≤ j ≤ γ, |EG′(Xj)| > | outG′ (Xj)|
20γ . Let X ′

j ⊆ V (G)\T be

the set obtained from Xj , after we un-contract each cluster,

that is, for each super-node vC ∈ Xj , we replace vC with

the vertices of C. Notice that
{
X ′

j

}γ

j=1
is a partition of

V (G) \ T .

Recall that C is the current good clustering of the vertices

of G, and every cluster C ∈ C is either contained in X ′
j ,

or it is disjoint from it. For each 1 ≤ j ≤ γ, we construct

an acceptable clustering Cj of G as follows. Initially, Cj
is just the clustering obtained from C by replacing the

clusters contained in X ′
j with the connected components

of X ′
j . If any of these components C ′ is a small cluster,

then we replace it with the collection of clusters returned by

procedure DECOMPOSE(C ′). Clearly, Cj is an acceptable

clustering, with the following property:

P1) If C ∈ Cj is a large cluster, then C ⊆ X ′
j .

We need the following claim that bounds the potential of

the clustering Cj .

Claim 5: For each 1 ≤ j ≤ γ, ϕ(Cj) ≤ ϕ(C)− 1.

Proof: Let C′j be the partition of V (G), obtained as

follows: we add to C′j all clusters C ∈ C with C ∩Xj = ∅,
and we add all connected components of G[Xj] to C′j (that

is, C′j is obtained like Cj , except that we do not perform

well-linked decompositions of the small clusters). From

Theorem 4, it is enough to prove that ϕ(C′j) ≤ ϕ(C) − 1.

The changes of the potential from C to C′j can be bounded

as follows:

• The edges in EG′(Xj) contribute at least 1 to ϕ(C) and

contribute 0 to ϕ(C′j).
• The potential of edges in outG(X

′
j) may increase. The

increase is at most ϕ(n) ≤ 1
28γ per edge. So the total

increase is at most
| outG′ (Xj)|

28γ ≤ |EG′ (Xj)|
4 . These are

the only edges whose potential may increase.

Overall, the decrease in the potential is at least
|EG′ (Xj)|

2 ≥
m
4γ2 ≥ k

12γ2 ≥ 1.

If there is some 1 ≤ j ≤ γ such that Cj is a good partition,

then we replace C with Cj and start a new phase. Otherwise,

we select any large cluster Sj ∈ Cj for each 1 ≤ j ≤

239

γ. We then consider the resulting collection S1, . . . , Sγ of

large clusters, and try to exploit them to construct a good

crossbar. Notice that for each 1 ≤ j ≤ γ, Sj ⊆ X ′
j , the sets

S1, . . . , Sγ are mutually disjoint and they do not contain

terminals, due to Property (P1). Our algorithm then uses the

following theorem, whose proof appears in the following

section:

Theorem 5: Suppose we are given a family R =
{S1, S2, · · · , Sγ} of disjoint large clusters in G \ T . Then

there is an efficient randomized algorithm, that w.h.p. com-

putes one of the following:

• Either a subset M′ ⊆ M of k/ poly log k demand

pairs, and a routing of pairs in M′ with congestion

at most 2 in G;

• Or a good congestion-2 crossbar (S∗,M∗, τ∗);
• Or a (k1, α)-violating partition (X,Y) of Sj , for some

1 ≤ j ≤ γ;

• Or a cut (A,B) in G with Sj ⊆ A, T ⊆ B and

|EG(A,B)| < k1/2, for some 1 ≤ j ≤ γ.

We apply the algorithm in Theorem 5 to the current fam-

ily {S1, S2, · · · , Sγ} of vertex subsets. If the algorithm

returns either a routing of M′, or a good congestion-2
crossbar, then we terminate the algorithm. Otherwise, we

apply the appropriate action: PARTITION(Cj , Sj , X, Y), or

SEPARATE(Cj , Sj , A) to obtain a new partition C′j with

ϕ(C′j) ≤ ϕ(Cj) − 1. Moreover, it is easy to see that this

new clustering also has Property (P1): if the PARTITION
operation is performed, then we only partition existing

clusters; if the SEPARATE operation is performed, then the

only large clusters in the new partition C′j are subsets of

large clusters in Cj .

If all clusters in C′j are small, then we replace C with C′j
and start a new phase. Otherwise, we replace Cj with C′j ,

let Sj be any large subset in the new partition Cj , and

apply Theorem 5 to the new collection {S1, . . . , Sγ} of

clusters, which are again guaranteed to be disjoint due to

Property (P1). Notice that every time we apply Theorem 5,

we reduce the potential of some clustering Cj by at least

1. Therefore, after applying the theorem polynomially many

times, we are guaranteed to terminate the current phase of

the algorithm, obtaining either a good clustering C′ with

ϕ(C′) ≤ ϕ(C) − 1, or a good congestion-2 crossbar, or a

routing of a subset M′ of Ω(k/ poly log k) demand pairs

with congestion at most 2.

In each phase, the potential of the clustering C is decreased

by at least 1. Therefore, the algorithm terminates after a

polynomial number of phases. In order to complete the proof

of Theorem 3, it is now enough to prove Theorem 5.

VI. PROOF OF THEOREM 5

Throughout the algorithm, we will sometimes be interested

in routing flow across the sets Sj ∈ R. Specifically, given

two subsets Γ,Γ′ ⊆ out(Sj) of edges, with |Γ| = |Γ′| ≤
k1/2, we will be interested in routing integrally the edges of

Γ to the edges of Γ′ inside Sj , with congestion at most 1/α.

In other words, we will be looking for a set P : Γ
1:1��1/α� Γ′

of paths contained in Sj . Notice that if such a set does not

exist, then we can find a (k1, α)-violating partition (X,Y)
of Sj , by using the min-cut max-flow theorem. We can then

return this partition and terminate the algorithm. Therefore,

in order to simplify the exposition of the algorithm, we will

assume that whenever the algorithm attempts to find such a

set P of paths, it always succeeds.

We start by verifying that for each 1 ≤ j ≤ γ, the vertices

of Sj can send k1/2 flow units with no congestion to the

terminals. If this is not the case for some set Sj , then there

is a cut (A,B) with Sj ⊆ A, T ⊆ B and |EG(A,B)| <
k1/2. We then return the partition (A,B) of G and finish

the algorithm. From now on we assume that each set Sj can

send k1/2 flow units with no congestion to the terminals.

The rest of the proof consists of three steps. In the first step,

we construct a degree-3 tree T̃ , whose vertex set is V (T̃) =
{vS | S ∈ R′}, for a large enough family R′ ⊆ R of vertex

subsets, and each edge e = (vS , vS′) in tree T̃ corresponds

to a collection Pe of paths in G, connecting the vertices of

S to the vertices of S′. Moreover, we will ensure that the

paths in
⋃

e∈E(T̃) Pe only cause congestion 2 in G. In the

second step, we find a subsetM∗ ⊆M of the demand pairs,

and route the terminals in T (M∗) to the vertices of S ∪S′,
where (S, S′) is some pair of vertex subsets in R′. In the

final third step, we construct a good congestion-2 crossbar.

We only provide a sketch of the three steps, omitting the

proofs of Theorem 6, 7 and 8. The complete proof appears

in the full version of the paper.

A. Step 1: Constructing the Tree T̃

This step is summarized in the following theorem.

Theorem 6: There is an efficient algorithm, that either com-

putes a (k1, α)-violating partition of some set Sj ∈ R, or

finds a subset R′ ⊆ R of size r = 8γCMG, a tree T̃ of

maximum degree 3 with vertex set V (T̃) = {vS | S ∈ R′},
and a collection Pe of k2 = Ω

(
k1α·αWL

γ3.5

)
paths in G for

every edge e ∈ E(T̃), such that:

• For each edge e = (vS , vS′) ∈ E(T̃), every path P ∈
Pe connects a vertex of S to a vertex of S′, and does

not contain the vertices of
⋃

Sj∈R′ Sj as inner vertices.

• The paths in
⋃

e∈E(T̃) Pe cause congestion 2 in G.

240

B. Step 2: connecting the terminals

To simplify the notation, assume that R′ = {S1, . . . , Sr}.
In this step we connect a subset of terminals to two subsets

S, S′ ∈ {S1, . . . , Sr}, using the following theorem.

Theorem 7: There is an efficient algorithm, that either finds

a routing of a subset M′ ⊆ M of k/poly log k demand

pairs via edge-disjoint paths in G, or finds the following:

• A subset M1 ⊆ M of k4 = Ω(k2/r
2) demand pairs

and a partition of T (M1) into two subsets T ′1 , T ′′1 of

size k4 such that for each pair (s, t) ∈M1, s ∈ T ′1 , t ∈
T ′′1 or vice versa,

• A sub-tree T ∗ of T̃ of size r′ ≥ 2γCMG with V (T ∗) =
{vS′′ : S′′ ∈ R′′} for some R′′ ⊆ R′, a vertex vS′ of

degree at most 2, and a vertex vS of degree 1 in T ∗

(possibly vS = vS′),
• Two sets P ′1 : T ′1

1:1� out(S), P ′′1 : T ′′1
1:1� out(S′) of

paths in G, and

• For each edge e ∈ E(T ∗) ⊆ E(T̃), a subset P ′e ⊆ Pe

of �k2/2� paths.

Moreover, paths in P ′1 ∪ P ′′1 ∪
(⋃

e∈E(T∗) P ′e
)

do not

contain any vertices of
⋃

vS̃∈V (T∗) S̃ as inner vertices, and

they cause congestion 2 in G. Additionally, every edge in

out(S) ∪ out(S′) is used by at most one path in the set.

C. Step 3: Building the Good Crossbar

Assume w.l.o.g R′′ = {S1, . . . , Sr′}, where r′ ≥ 2γCMG.

Consider some set Sj ∈ R′′, and let P be any collection of

paths in G. We denote by Γj(P) ⊆ out(Sj) the multi-set of

edges, that appear as the first or the last edge on any path

in P . We use the following theorem:

Theorem 8: There is an efficient algorithm, that either com-

putes a subset M′ ⊆M1 of k/ poly log k demand pairs and

their routing with congestion at most 2 in G, or a (k1, α)-
violating partition of some set Sj ∈ R′′, or it computes, for

each edge e ∈ E(T ∗), a subset P ′′e ⊆ P ′e of k5 = Ω(α2
WL
k2)

paths, and two subsets P ′2 ⊆ P ′1,P ′′2 ⊆ P ′′1 , such that:

• Each set Sj ∈ R′′ is 1-well-linked for the set Γj(P ′)
of edges, where P ′ = P ′2 ∪ P ′′2 ∪

(⋃
e∈E(T∗) P ′′e

)
.

• There is a subset M2 ⊆M1 of size Ω(α2
WL
) · |M1| =

Ω(α2
WL
· k4) demand pairs such that P ′2 : T ′2

1:1� out(S)

and P ′′2 : T ′′2
1:1� out(S′), where T ′2 = T ′1 ∩ T (M2)

and T ′′2 = T ′′1 ∩ T (M2).

Let k6 = |M2| = Ω(α2
WL
)k4. Notice that 2k6 < k5. For

each edge e ∈ E(T ∗), while |P ′′(e)| > 2k6, we discard

arbitrary paths from P ′′(e), until |P ′′(e)| = 2k6 holds. We

now assume that |P ′′(e)| = 2k6 for all e ∈ E(T ∗), and

recall that |P ′2|, |P ′′2 | = k6.

We are now ready to define the good crossbar in graph G.

Let S∗ contain all sets Sj , where the degree of vertex vj
in tree T ∗ is either 1 or 2 (excluding the set S). Notice

that at least half the vertices of T ∗ must have this property,

and therefore, |S∗| ≥ γCMG. If |S∗| > γCMG, then we discard

vertex subsets from S∗ arbitrarily, until |S∗| = γCMG holds.

Instead of defining the set τ∗ of 2k6 trees explicitly, we

specify a set of paths in graph G, whose disjoint union will

give the collection τ∗ of trees. First, all the paths in P ′2 ∪
P ′′2 ∪

(⋃
e∈E(T∗) P ′′e

)
are included to construct τ∗.

Consider some degree-2 vertex vj of T ∗. Let e, e′ be the two

edges incident to vj in T ∗, and Γ,Γ′ ⊆ out(Sj) be the sets

of edges lying on the paths P ′′e and P ′′e′ , respectively. Since

Sj is 1-well-linked for Γ∪Γ′, we can find a setQj : Γ
1:1�1 Γ

′

of paths contained in Sj . Then, paths in Qj are included to

construct τ∗.

For a degree-3 vertex vj of T ∗, define e, e′, e′′ and

Γ,Γ′,Γ′′ ⊆ out(Sj) in the same way. Then, we can find

2 sets Qj : Γ
1:1�1 Γ

′ and Q′j : Γ
1:1�1 Γ

′′ of paths in Sj . The

paths in Qj and Q′j are included to construct τ∗.

Notice that the included paths already form 2k6 trees. The

remaining task is to connect the 2k6 terminals to the 2k6
trees.

We first consider the case S = S′. Let e be the unique edge

incident on vS in tree T ∗ (recall that vS′ has degree 1 in T ∗).
Let Γ ⊆ out(S) be the subset of edges lying on the paths

in P ′′e , and Γ′ ⊆ out(S) be the subset of edges lying on the

paths in P ′2∪P ′′2 . We can then find a set Q(v) : Γ 1:1�1 Γ
′ of

paths in set S. The paths in Q(v) are included to construct

τ∗.

For the case S 	= S′, let e be some edge incident to vS
and e′ be the unique edge incident to vS′ in tree T ∗. Let

Γ1 ⊆ out(S) be the subset of edges lying on the paths in

P ′2 and Γ2 ⊆ out(S) be the subset of edges lying on the

paths in P ′′e . Let Γ′1 ⊆ out(S′) be the subset of edges lying

on the paths in P ′′2 and Γ′2 ⊆ out(S) be the subset of edges

lying on the paths in P ′′e′ . Notice that |Γ1| = |Γ′1| = k6 and

|Γ2| = |Γ′2| = 2k6. We discard some edges in Γ2 and Γ′2 so

that |Γ2| = |Γ′2| = k6. Since S is 1-well-linked for Γ1 ∪ Γ2

and S′ is 1-well-linked for Γ′1 ∪ Γ′2, we can find 2 sets of

paths Q : Γ1
1:1�1 Γ2 and Q′ : Γ′1

1:1�1 Γ
′
2. Q and Q′ are

included to construct τ∗. We discard edges in Γ2 and Γ′2
in such a way that each tree in τ ′ will contain exactly 1

terminal in T (M2).

We have included all the paths that constitute τ∗. It is easy

to check that the paths form 2k6 trees, each containing a

distinct terminal in T (M2). Moreover, the 2k6 trees cause

congestion 2 in G; each edge inside any cluster S ∈ S∗
is used at most once by τ∗. The final good crossbar is

(S∗,M∗ =M2, τ
∗).

241

REFERENCES

[1] N. Robertson and P. D. Seymour, “Outline of a disjoint paths
algorithm,” in Paths, Flows and VLSI-Layout. Springer-
Verlag, 1990.

[2] R. Karp, “Reducibility among combinatorial problems,”
in Complexity of Computer Computations, R. Miller and
J. Thatcher, Eds. Plenum Press, 1972, pp. 85–103.

[3] C. Chekuri, S. Khanna, and F. B. Shepherd, “An O(
√
n)

approximation and integrality gap for disjoint paths and
unsplittable flow,” Theory of Computing, vol. 2, no. 1, pp.
137–146, 2006.

[4] N. Garg, V. V. Vazirani, and M. Yannakakis, “Primal-dual
approximation algorithms for integral flow and multicut in
trees, with applications to matching and set cover,” in ICALP,
ser. Lecture Notes in Computer Science, A. Lingas, R. G.
Karlsson, and S. Carlsson, Eds., vol. 700. Springer, 1993,
pp. 64–75.

[5] M. Andrews and L. Zhang, “Hardness of the undirected edge-
disjoint paths problem,” in STOC, H. N. Gabow and R. Fagin,
Eds. ACM, 2005, pp. 276–283.

[6] M. Andrews, J. Chuzhoy, V. Guruswami, S. Khanna, K. Tal-
war, and L. Zhang, “Inapproximability of edge-disjoint paths
and low congestion routing on undirected graphs,” Combina-
torica, vol. 30, no. 5, pp. 485–520, 2010.

[7] P. Raghavan and C. D. Tompson, “Randomized
rounding: a technique for provably good algorithms
and algorithmic proofs,” Combinatorica, vol. 7,
pp. 365–374, December 1987. [Online]. Available:
http://portal.acm.org/citation.cfm?id=45291.45296

[8] Y. Azar and O. Regev, “Strongly polynomial algorithms for
the unsplittable flow problem,” in In Proceedings of the
8th Conference on Integer Programming and Combinatorial
Optimization (IPCO), 2001, pp. 15–29.

[9] A. Baveja and A. Srinivasan, “Approximation algorithms for
disjoint paths and related routing and packing problems,”
Mathematics of Operations Research, vol. 25, p. 2000, 2000.

[10] S. G. Kolliopoulos and C. Stein, “Approximating disjoint-
path problems using packing integer programs,” Mathematical
Programming, vol. 99, pp. 63–87, 2004.

[11] M. Andrews, “Approximation algorithms for the edge-disjoint
paths problem via Raecke decompositions,” in Proceedings
of the 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, 2010, pp. 277–286.

[12] J. Chuzhoy, “Routing in undirected graphs with constant
congestion,” in Proceedings of the 44th symposium on
Theory of Computing, 2012, pp. 855–874.

[13] K. Kawarabayashi and Y. Kobayashi, “Breaking O(n1/2)-
approximation algorithms for the edge-disjoint paths problem
with congestion two,” in STOC, L. Fortnow and S. P. Vadhan,
Eds. ACM, 2011, pp. 81–88.

[14] C. Chekuri, S. Khanna, and F. B. Shepherd, “Multicommodity
flow, well-linked terminals, and routing problems,” in STOC
’05: Proceedings of the thirty-seventh annual ACM sympo-
sium on Theory of computing. New York, NY, USA: ACM,
2005, pp. 183–192.

[15] S. Rao and S. Zhou, “Edge disjoint paths in moderately
connected graphs,” SIAM J. Comput., vol. 39, no. 5, pp. 1856–
1887, 2010.

[16] C. Chekuri, S. Khanna, and F. B. Shepherd, “The all-or-
nothing multicommodity flow problem,” in STOC, L. Babai,
Ed. ACM, 2004, pp. 156–165, a full version at
http://www.math.mcgill.ca/˜bshepherd/PS/all.pdf.

[17] S. Arora, S. Rao, and U. V. Vazirani, “Expander flows, geo-
metric embeddings and graph partitioning,” J. ACM, vol. 56,
no. 2, 2009.

[18] F. T. Leighton and S. Rao, “Multicommodity max-flow min-
cut theorems and their use in designing approximation algo-
rithms,” Journal of the ACM, vol. 46, pp. 787–832, 1999.

[19] N. Garg, V. Vazirani, and M. Yannakakis, “Approximate max-
flow min-(multi)-cut theorems and their applications,” SIAM
Journal on Computing, vol. 25, pp. 235–251, 1995.

[20] N. Linial, E. London, and Y. Rabinovich, “The geometry of
graphs and some of its algorithmic applications,” Proceedings
of 35th Annual IEEE Symposium on Foundations of Computer
Science, pp. 577–591, 1994.

[21] Y. Aumann and Y. Rabani, “An O(log k) approximate min-
cut max-flow theorem and approximation algorithm,” SIAM
J. Comput., vol. 27, no. 1, pp. 291–301, 1998.

[22] R. Khandekar, S. Rao, and U. V. Vazirani, “Graph partitioning
using single commodity flows,” in STOC, J. M. Kleinberg, Ed.
ACM, 2006, pp. 385–390.

[23] L. Orecchia, L. J. Schulman, U. V. Vazirani, and N. K.
Vishnoi, “On partitioning graphs via single commodity
flows,” in Proceedings of the 40th annual ACM symposium
on Theory of computing, ser. STOC ’08. New York,
NY, USA: ACM, 2008, pp. 461–470. [Online]. Available:
http://doi.acm.org/10.1145/1374376.1374442

[24] C. Chekuri, S. Khanna, and F. B. Shepherd, “Edge-disjoint
paths in planar graphs,” in Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science, ser.
FOCS ’04. Washington, DC, USA: IEEE Computer Society,
2004, pp. 71–80.

242

