
From the Impossibility of Obfuscation to
a New Non-Black-Box Simulation Technique

(Extended Abstract)

Nir Bitansky

Tel Aviv University
nirbitan@tau.ac.il

Omer Paneth

Boston University
omer@bu.edu

Abstract—The introduction of a non-black-box sim-
ulation technique by Barak (FOCS 2001) has been a
major landmark in cryptography, breaking the previous
barriers of black-box impossibility. Barak’s techniques
were subsequently extended and have given rise to various
powerful applications.

We present the first non-black-box simulation technique
that does not rely on Barak’s technique (or on non-
standard assumptions). Our technique is based on essen-
tially different tools: it does not invoke universal arguments,
nor does it rely on collision-resistant hashing. Instead,
the main ingredient we use is the impossibility of general
program obfuscation (Barak et al., CRYPTO 2001).

Using our technique, we construct a new resettably-
sound zero-knowledge (rsZK) protocol. rsZK protocols
remain sound even against cheating provers that can
repeatedly reset the verifier to its initial state and random
tape. Indeed, for such protocols black-box simulation is
impossible. Our rsZK protocol is the first to be based
solely on semi-honest oblivious transfer and does not rely
on collision-resistant hashing; in addition, our protocol
does not use PCP machinery.

In the converse direction, we show a generic transfor-
mation from any rsZK protocol to a family of functions
that cannot be obfuscated.

I. INTRODUCTION

Zero-knowledge (ZK) protocols [17] are a corner-

stone of modern cryptography; they can express all NP

computations [16], and are essential to almost any form

of secure computation.

The ZK guarantee of a protocol is established by

exhibiting an efficient simulator that can simulate the

entire view of any malicious verifier from the verifier’s

code and the statement alone. Following the common

practice of black-box reductions, the first ZK protocols

all relied on simulators that only use the verifier as

a black-box, without making any explicit use of its

code. However, while sufficient for a variety of powerful

Supported by the Check Point Institute for Information Secu-
rity, a Marie Curie grant PIRG03-GA-2008-230640, an ISF grant
0603805843, an NSF grant 1218461, and the Fulbright program.

applications, ZK protocols with black-box simulation

were soon shown to have inherent limitations. A known

example is the impossibility of constant-round public-

coin ZK [15]. Surpassing such black-box impossibilities

was considered to be an inconceivable task.

This barrier was crossed with the groundbreaking

result of Barak [1] that introduced non-black-box sim-

ulation techniques, which allowed, in particular, to

achieve constant-round public-coin ZK. The non-black-

box techniques of Barak were then utilized to achieve

various cryptographic goals, most of which where pre-

viously limited by black-box impossibilities [2], [4], [6],

[7], [11], [18], [19], [22]–[26].

Room for new non-black-box techniques: Barak’s

result, indeed, opened up a new frontier of non-black-

box research. However, our understanding of non-black-

box techniques is yet far from being satisfactory; in fact,

we do not know of any non-black-box techniques that do

not rely on (or extend) those of Barak. Also, we still do

not understand to what extent the tools and assumptions

used by Barak are inherent.

For example, a dominant feature of Barak’s protocol

is the reliance on universal arguments (UAs) [3], which

in turn use rather heavy PCP machinery. While, in

theory, the state of the art PCPs may guarantee good

asymptotic complexity, from a practical perspective,

their efficiency is still not well understood. Another

feature of Barak’s protocol (which might be a byproduct

of using UAs) is the reliance on collision-resistant hash
functions.

Are Barak’s assumptions and tools inherent in
non-black-box simulation?

Can its applications be achieved without universal
arguments? and from which assumptions?

Resetting attacks: One field that developed tremen-

dously due to Barak’s techniques is the study of reset-
ting attacks [8]. In the resetting model, honest parties

are restricted to one fixed random tape, while the adver-

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.40

223

sary has the power to “reset” these parties to their initial

state, repeating the interaction in any way it chooses

(equivalently, honest parties can be rewound to any

previous state). Indeed, the threat of reset attacks arises

in real life settings where fresh randomness cannot

be generated on the fly, and parties are subject to

physical resets; common examples are: parties running

on smart cards or virtual machines (which emulate

real machines and, typically, support state snapshot and

revert features).

Canetti et al. [8] defined and constructed resettably-

ZK protocols (rZK) that remain ZK against reset-

ting verifiers. Barak et al. [4] defined and constructed

resettably-sound ZK protocols (rsZK) that remain sound

against resetting provers. Deng, Goyal and Sahai [11]

solved the (long standing open) question of constructing

protocols that are simultaneously resettably-ZK and

resettably-sound. Leveraging on these results, positive

results have also been shown for the more general set-

ting of resettable two-party and multi-party computation

[18], [19]. In addition, there has been a large body

of work trying to construct improved rZK and rsZK

protocols in the relaxed bare public-key model [8], [10],

[21]; in this work, however, we focus on the plain

model.

All the works mentioned above encounter the non-

black-box barrier: rsZK cannot be based on black-box

simulators (except for languages in BPP) [4], [15].

Indeed, a resetting prover has, essentially, the same

power as a black-box simulator, and can hence utilize

such a simulator to break soundness. To overcome this

inherent difficulty, [4] rely on Barak’s non-black-box

protocol. Indeed, constant-round public-coin protocols

suggest a rather direct approach for obtaining resettable-

soundness: instead of sending random coins, apply

a pseudo-random function to all messages previously

sent by the prover. All the other resettably-sound pro-

tocols mentioned above also rely on the non-black-

box techniques of Barak (notably, [11] extend Barak’s

techniques in a powerful and beautiful way).

Resettable-soundness with lighter machinery: Go-

ing back to the reliance on UAs in Barak’s techniques,

we note that efficiency and simplicity are of major

importance for resettably-sound ZK protocols, as we

would like to execute these protocols on computa-

tionally weak devices. However, for the purpose of

resettable-soundness it may be possible to use lighter

machinery. Indeed, Barak’s protocol achieves constant-

round public-coin ZK, a seemingly harder problem

than rsZK; however, going to the model of resetting

must result in a private-coin solution (e.g., the pseudo-

random function described above). One may hope that,

by directly considering a private-coin solution, it is

possible to gain in terms of simpler and more efficient

machinery, and perhaps even assumptions.

Can we base resettably-sound ZK on alternative non
black-box techniques? Can we avoid universal

arguments? Can we rely on different assumptions?

A. Our Results

In this work, we construct a constant-round

resettably-sound ZK protocol in the plain model, using

new non-black-box simulation techniques. The protocol

is also a resettable argument of knowledge. Our protocol

does not invoke UAs and relies on rather simple and

practical tools. The protocol can be based on semi-
honest oblivious transfer, which is incomparable to the

existence of collision-resistant hash-functions used in

previous protocols. Interestingly, the main ingredient in

our construction is the impossibility of general program
obfuscation shown by Barak et al. [5]. In the converse

direction, we show a generic transformation from any

resettable argument of knowledge ZK protocol to a

family of functions that cannot be obfuscated.

B. Paper Organization

In Section II, we describe the high-level ideas behind

our protocol. We then go over the main issues arising

when trying to follow these high-level ideas, and explain

how to resolve them. In Section III, we present an

overview of the entire protocol and state our main

theorem. In Section IV, we present an overview of the

ZK simulation procedure. In Section V, we show that

a converse relation between rsZK and unobfuscatable

functions also holds.

The detailed protocol, as well as the proofs of secu-

rity, are omitted here, and can be found in the full ver-

sion of this paper. The formal definitions of resetabble-

soundness and unobfuscatable functions can be found

in Appendices A and B. Other formal definitions can

be found in the full version of this paper.

II. OUR PROTOCOL AND TECHNIQUES - AN

OVERVIEW

To describe the main ideas behind our protocol, we

first recall the notion of unobfuscatable functions.

Unobfuscatable functions: The problem of pro-

gram obfuscation deals with ”compiling” a given pro-

gram P into an obfuscated analog O(P) that, on one

hand, has the same functionality as P , but on the

other, does not leak any other information on P (except

for its input-output behavior). Assuming only one-way

functions, Barak et al. [5] construct a family of functions

224

{fk} that is unobfuscatable in the following sense: first,

no efficient algorithm that is given black-box access

to a randomly chosen fk can learn k. Second, there

is an efficient extractor E that, given the description

of any program that computes fk, manages to learn k.

In particular, any obfuscation O(fk) leaks information

beyond the input-output behavior of fk.
An abstract rsZK protocol: At a very high-level,

our protocol follows the FLS paradigm [12]; namely, the

protocol proceeds in two phases: the first phase defines

a hard to compute trapdoor, and in the second phase,

the prover gives a witness indistinguishable (WI) proof

that either the statement is correct or that it “knows”

the trapdoor. In our case, to obtain resettable-soundness,

we will have to ensure that the trapdoor is actually

“hard to compute”, even given the ability to reset the

verifier, and also that the WI proof given at the second

phase is resettably sound. For ZK, we will exhibit a

simulator that, given the code of the verifier, can obtain

the trapdoor and successfully complete the simulation.
More concretely, in the trapdoor phase of our pro-

tocol, the verifier chooses a random function fk from

a family of unobfuscatable functions and commits to

k, which will set as the trapdoor. Then, the prover

and verifier will engage in a secure function evaluation

protocol (SFE), which should allow the prover to learn

the value fk(x) for an input x of his choice. The SFE

protocol should be able to guarantee privacy for the

verifier (the SFE evaluator), and privacy and correctness

for the prover (the SFE receiver). Specifically, from

the perspective of the verifier, the protocol should only

allow the resetting prover to learn fk(x) for multiple

inputs x of his choice (or in other words, it should es-

sentially be equivalent to black-box access to fk). From

the prover’s perspective, the protocol should ensure that

the prover never accepts an incorrect value y �= fk(x);
moreover, as we will see later on, we will also need

the SFE protocol to guarantee that the verifier cannot

distinguish different prover inputs from one another.
In the proof phase, after the SFE execution is com-

pleted, the prover provides a WI argument of knowledge

of either k or of a witness for the statement (the

WI argument of knowledge should also hold against a

resetting prover).
Establishing resettable-soundness and ZK: The

above strategy seem to yield resettable-soundness and

ZK in the following way. Resettable-soundness should

follow from the fact that, effectively, the resetting prover

only gains black-box access to fk, which is unobfuscat-

able, and hence, in particular, not black-box learnable.

ZK would rely on the fact that, given any code that

computes fk, one can efficiently extract the secret k.

This suggests that the ZK simulator, which is given the

code of the verifier, may be able extract the trapdoor and

successfully simulate. To transform the verifier’s code to

a code that computes fk, we rely on the fact that the SFE

protocol guarantees both correctness and input privacy

for the prover. Indeed, correctness guarantees that the

verifier cannot deviate from the SFE protocol, except

by aborting. Input privacy guarantees that as long as the

verifier does not abort and evaluates fk with noticeable

probability, for some input x, it must also evaluate fk,

for all other inputs x′, with roughly the same probability.

This means that, using repetitions, the simulator can

obtain a code that (almost perfectly) computes fk on

all inputs, and thus extract the trapdoor.

When realizing an SFE protocol with the appropriate

features, as well as executing the above simulation

strategy, we encounter several technical difficulties. We

next describe the main challenges and the way we

overcome each one of them.

Implementing the abstract protocol: challenges and
solutions: A natural starting point for obtaining the

appropriate SFE protocol is any semi-honest two-party

SFE protocol, which can be constructed, for example,

based on semi-honest oblivious-transfer (OT) and Yao’s

garbled circuit technique [20].

The next step would be to enforce semi-honest behav-

ior on both the resetting prover and the verifier. Clearly,

we cannot simply GMW-compile the protocol by adding

ZK proofs of valid behavior; for this to work, the ZK

proofs given by the prover should be resettably-sound,

and this is exactly what we set out to achieve. In fact,

for GMW-compilation, soundness is not enough — we

need an argument of knowledge property. This poses a

problem when considering the verifier’s proofs of honest

behavior; the verifier would need to give resettably-ZK

proofs of knowledge, and such proofs are only known

to exist relying on resettably sound ZK (and require

non-black-box extraction).

Relation to resettable two-party computation [19]:
The problem of designing SFE protocols where one

party can be reset was addressed by Goyal and Sa-

hai [19]. (We consider SFE protocols where only the

non-resettable party obtains output, while [19] consider

general two-party protocols.) In this work, similarly to

[19], we compile a semi-honest SFE protocol into one

that is secure against malicious parties in the presence

of resets. The key difference is that, being interested

in resettable SFE as a goal, Goyal and Sahai aim

at satisfying a strong and general notion of security.

Naturally, their construction relies on rsZK protocols as

a main tool.

225

Aiming to construct rsZK, we clearly cannot use the

[19] construction. To compile a semi-honest SFE into

one that is secure against malicious parties, we will use

substantially weaker tools and obtain a weaker security

guarantee than the one obtained by [19]. Nevertheless,

this, together with the properties of the unobfuscat-

able function family in use, will be sufficient for our

purposes. (In particular, we do not use full-fledged

resettable-ZK, and are, therefore, able to maintain a

constant number of rounds.)

We now go further into the protocol, explaining how

to resolve the above issues (as well as additional issues

that arise in the process). We start by describing in

Section II-A how to enforce semi-honest behavior of

the resetting prover and obtain resettable-soundness. We

then describe in Section II-B how to enforce semi-

honest behavior on the verifier (without compromising

resettable-soundness). Then, in Section II-C, we review

the main challenges that arise in establishing ZK. In

Section II-D, we compare our non-black-box technique

to that of Barak’s.

A. Challenges in Proving Resettable-Soundness

At high-level, to show resettable-soundness, we

would like to follow the same paradigm as in [4];

namely, the verifier V will have a hardwired pseudo-

random function, and will derive its randomness for

each round by applying the function to the protocol’s

transcript so far. Then, we would like to transform any

resetting prover P∗ into a non-resetting prover P̃∗ for

one instance of the protocol and rely on the soundness

of the stand-alone protocol. Unlike [4], who apply this

paradigm to a public-coin protocol, we would like to

apply it to a private-coin protocol; that is, the verifier

will also apply a pseudo random function to derive

its randomness for each and every round, but some

of this randomness will be kept private and used in

subsequent stages of the protocol. This difference makes

the transformation from a resetting P∗ to a non-resetting

P̃∗ for one instance of the protocol more involved.

Specifically, we show how to transform any con-

vincing resetting P∗ to a non-resetting P̃∗ that also

gets black-box access to the function fk. Then, we

deduce soundness based on: (a) the fact that k cannot

be learned, given black-box access to fk, (b) the stand

alone security of the SFE protocol (which is yet to

be established), and (c) the prover’s WI argument of

knowledge (in the proof phase).

The transformation from the resetting P∗ to the
non-resetting P̃∗: Like in [4], the high-level idea be-

hind the transformation is to note that any convincing

interaction, between the verifier V and the prover P∗,

includes a “convincing session” among the multiple

sessions that the prover engages (via resetting). The

strategy applied by P̃∗ is to internally emulate P∗ in

all sessions, except in a random one, which will be

conducted with the external verifier V. If we manage to

emulate all other sessions consistently with the external
one, and in addition “hit” the convincing session, we

will convince the external verifier.

Hitting the convincing sessions occurs with notice-

able probability so long as the number of rounds in

the protocol is constant (in fact, we show that we can

also deal with SFE protocols that have a super-constant

number of rounds). The main challenge is the emulation

of the internal sessions, and more concretely, of the SFE

protocol. Indeed, such emulation typically requires that

we will be able to simulate “continuations” for sessions

that share a prefix with the external session, while we

do not have the coins used by the external verifier. In

particular, all sessions must be emulated with respect to

the same k chosen by V at the beginning of the protocol.

When emulating the internal SFE protocol, we will

have to manage without having k, but only having

black-box access to fk. As a warmup, we can consider

provers that employ a semi-honest resetting strategy:

they invoke many SFE sessions with different inputs,

but each one is done semi-honestly and without any

resettings within. For such provers, we can invoke the

simulator of the semi-honest SFE, given the randomness

used by the prover, its input for the computation, and

the fk-oracle.

To enforce such behavior, we can try and perform a

GMW-like (coin flipping plus validity proofs) compi-

lation: the prover commits to its input x and random

coins r, and provides a WI argument of knowledge

(WIAOK) of (r, x) or of a witness for the statement.

Then, the verifier sends a random r′ and, from this point

on, the prover is required to provide after each step

a WI proof that it followed the semi-honest protocol

with coins r ⊕ r′ and input x. This also has the effect

that the prover cannot open more than one session after

his commitment, implying that we will not need to

simulate continuations of the external session (which is

somewhat similar to the [8] transformation). All the WI

proofs given are standard 3-round proofs (e.g., Blum),

and are, in particular, resettably sound.

A concurrency problem and its resolution: The

above approach encounters a problem when trying to

invoke the AOK guarantee (of the first proof); indeed,

to obtain (x, r), P̃∗ must apply the AOK extractor

that has to rewind P∗. However, since P∗ may start

a new session at any point, we might be required to

226

perform recursive rewinding, which, as in the setting of

concurrent ZK, may result in an exponential blowup.

The recursive simulation problem can be solved using

known techniques from the concurrent ZK regime (e.g,

[27]), but these involve adding a large number of rounds.

Instead, we choose an alternative approach that avoids

the problem of recursive rewinding and allows us to

maintain a constant-round protocol: we add a prelimi-

nary phase to the protocol, in which the prover commits

to a trapdoor, and proves that it knows the trapdoor (or

a witness for the statement) using a WIAOK. Given

such a trapdoor, we can later extract the prover’s input

and randomness (x, r) without having to rewind during

the SFE emulation. For example, the prover’s trapdoor

can be a secret key sk of a symmetric key encryption

scheme, and the prover will send (x, r) encrypted under

sk.

A key point is that the prover’s trapdoor is set before
the verifier commits to k. If P∗ resets the verifier

and commits to a different trapdoor, the verifier will

commit to a different value k′. This means that we

only need to extract the trapdoor for sessions that share

the external commitment to sk; other sessions can be

simulated from scratch, by choosing k′ at random and

simulating honestly. It is important to notice that after

the initial trapdoor phase, the prover is only committed

to sk and may still choose x independently of k; this

will be crucial for simulation. However, it turns out that

by introducing the initial commitment to sk, we have

introduced a subtle problem in the simulation, which

we explain next.

B. The Verifier’s Proofs: Resettable WI Arguments of
Knowledge

As outlined above, to establish the ZK guarantee of

the protocol, we will need to ensure that the prover’s

inputs to the SFE protocol remain private, and that the

verifier indeed evaluates the function fk it committed

to. For this purpose, we add a coin-flipping stage to

determine the coins to be used by the verifier in the

SFE protocol, and have V∗ prove after each step that

it followed the semi-honest protocol with respect to k
and the coins established in the coin-flipping stage.

For this to work, the verifier’s proofs (at least the first

one) should be an argument of knowledge (AOK); on

the other hand, they should be hiding against a resetting

prover so as not to compromise resettable-soundness.

This presents a seemingly inherent limitation: proofs

cannot be resettably ZK (or WI) and an AOK at the

same time, assuming that the knowledge extraction is

black-box. Barak et al. [4] construct (constant-round)

rWIAOK and (super-constant-round) rZKPOK using

non-black-box extraction; however, their constructions

rely on rsZK, which is what we are trying to obtain in

the first place.

Instead, we make use of an instance-dependent

rWIAOKy protocol. The protocol is not rWI and AOK

simultaneously, but rather, if the instance y is not in

the language L, the protocol is rWI, while if y ∈ L,

the protocol is an AOK with a black-box extractor that

works given a witness w ∈ RL(y). Such a protocol is,

indeed, sufficient as the AOK property is only needed

to establish ZK and the rWI property is only needed for

resettable-soundness. We use this protocol (where y is

the instance for which the proof is given) in order to

have the verifier prove, at any point, that it follows the

semi-honest SFE protocol with respect to fk (and the

coin flipping) or that it “knows” the prover’s trapdoor

sk. (We note that the ZK simulator does not use the

knowledge extractor of the rWIAOKy directly, since it

makes use of a witness w, which the simulator lacks.

We only use the AOK property in a reduction showing

that the verifier does not break the semantic security of

the SFE scheme, and does not choose fk dependently

on the prover’s trapdoor sk.)

Instance-dependent rWIAOK from trapdoor com-
mitments: The main tool we use to construct an

rWIAOKy protocol is a trapdoor commitment Comy [9],

[13] (also known as an equivocal commitment). Such

a commitment scheme Comy is (statistically) binding

when x /∈ L, but if x ∈ L, one can simulate a

commitment and use the witness w in order to open the

commitment to any value. Given such a commitment,

we can take a standard 3-round public coin WIAOK

protocol and add an initial message where the verifier

of the rWIAOKy (the prover in our rsZK protocol)

commits to its challenge using Comy . If y /∈ L, the

verifier is committed to its challenge and cannot benefit

from resetting; indeed, [8] show that such a protocol is

rWI. If y ∈ L, we can use the witness w to equivocate

the commitment and just run the knowledge extractor of

the WIAOK protocol. (In fact, the scheme has a slightly

stronger property — it allows anyone to extract, from

any resetting WI distinguisher, a witness w ∈ RL(y).
This property, eventually, allows us to get an argument

of knowledge and not only resettable-soundness.)

C. Challenges in ZK

Recall that the high-level idea behind the ZK simula-

tion is to derive, from the code of any malicious verifier

V∗, a circuit C that computes the function fk, and then

use the extraction procedure E(C), given by the fact

that the fk is drawn from an unobfuscatable family.

Concretely, the ZK simulator S honestly simulates the

227

trapdoor phase: it selects a random sk, feeds V∗ with a

commitment to sk, and obtains a commitment to some

k. Then, S will use the code of the residual verifier in

order to construct the required circuit C. The natural

way to achieve this is to “wrap” the verifier’s circuit

with a (randomized) circuit that gets an arbitrary input

x, and emulates the SFE phase with the residual V∗.
However, by now the simulator S is committed to

a specific trapdoor sk; in particular, S (or actually the

SFE emulator wrapping V∗) should encrypt any input x
with the secret key sk. This may pose an obstacle if we

want the circuit C to compute the exact same function

as fk on all inputs x, because of possible dependencies

between x and sk. To exemplify this point, we can

think of sk as a key for a one-time-pad encryption, and

assume that V∗ decides to abort whenever it obtains an

encryption x ⊕ sk = 0|sk|, which implies that V∗ can

abort whenever sk = x, without actually knowing sk.

The question is whether the extractor E of the

unobfuscatable family can do with a circuit C that

does not compute fk exactly. To try to understand the

answer, it may be instructive to look into the extractor

E constructed for the unobfuscatable family of [5].

Their extractor, given input circuit C, evaluates C as

a black-box on several inputs that are derived from the

code of C itself. If, for some input x chosen by E,

C(x) �= fk(x), then E may fail to extract k. In our

case, the circuit C constructed by S implicitly depends

on sk (for example, it uses sk to encrypt x) and hence

inputs selected by E may also implicitly depend on sk.

Strongly unobfuscatable functions: To ensure that

the inputs queried by E are independent of sk, we use

another notion, introduced by [5], of strongly unob-

fuscatable functions. These are functions fk, where k
cannot be learned using black-box access to fk, but k
can be learned given a random circuit from a family that

“approximates” fk rather than computes it exactly (for a

precise definition, see Section B). Barak et al. also show

how to construct such strongly unobfuscatable functions

assuming one-way functions. The extractor E that they

construct selects inputs that are almost independent of

the structure of C and only depend on its functionality

(specifically, these inputs are chosen from one of a

constant number of fixed distributions).

Using such unobfuscatable functions, our task be-

comes much simpler as it is reduced to showing that the

function fk chosen by V∗ is independent of sk (in some

computational sense, guaranteed by the hiding of the

commitment to sk). To show that this is indeed the case,

we require that V∗ provides an AOK of the function

fk it commits to; this prevents, for example, mauling

attacks where V∗ obliviously uses the commitment to

sk to commit to a related k. Obtaining an AOK proof

which is rZK or rWI brings forward another problem to

be dealt with, which we discuss in the next paragraph.

We note that, eventually, in order to use strongly un-

obfuscatable functions as is, we are required to commit

to sk, using a statistically-hiding commitment; however,

by using unobfuscatable functions with slightly stronger

properties, we can settle for computationally hiding

commitments as well. The stronger properties required

are satisfied by the [5] construction (which only relies

on one-way functions).

Simulation running time: Finally, we touch the

main issues concerning the running time of the ZK

simulator. At high-level, the simulation time depends on

the probability ε that the cheating verifier V∗ does not

abort before evaluating the function fk on the prover’s

input. When ε is noticeable, we can construct a circuit

C that computes fk with overwhelming probability by

repeating the code of V∗ roughly O(n/ε) times (where

n is the security parameter or, say, the size of the

instance). If ε is negligible, simulation is trivial, since

V∗ almost always aborts before we need to simulate

any proof. Concretely, to control the expected simu-

lation time, we follow the approach of Goldreich and

Kahan [14], where a similar situation is encountered.

While the expected time required to construct the

circuit C is polynomial, the part of the simulation that

dominates the running time is not the construction of

the circuit, but rather the running of the (strongly)

unobfuscatable function-family’s extractor on C. For ex-

ample, the extractor of [5] runs in time O(|C|2), which

will result in expected simulation time (poly(n)/ε)2 · ε
which may not be bounded by a polynomial in case

ε is negligible. To cope with this problem we add

several more rounds to the protocol: the prover and

verifier will run the SFE protocol twice sequentially.

Now, if the probability that V∗ does not abort in both

executions is ε, we can show that at least in one of the

executions, V∗ does not abort with probability at least√
ε. The size of the circuit C is therefore O(n/

√
ε) and,

accordingly, the expected running time of the extractor

is (poly(n)/
√
ε)2 · ε = poly(n). (In the general case,

if the extractor for the unobfuscatable function family

runs in time O(|C|d), for some constant d, we can repeat

the SFE protocol d times sequentially to get the same

result).

D. Comparing our Technique to Barak’s

Barak’s non-black-box technique [1] makes essential

use of universal arguments (UAs) and collision-resistant

hash functions, while our technique does not; this can

228

be seen as the result of a more fundamental difference

between the two techniques. Both our protocol and

Barak’s protocol follow the FLS paradigm, in which the

prover ultimately proves a statement that has a trapdoor

witness. In Barak’s protocol, this trapdoor is the code of

some program, the length of which is not bounded by

any fixed polynomial. In particular, this program may

be as long as any cheating verifier. Proving a statement

using such a long witness is made possible using UAs

and collision-resistant hash functions.

In contrast, in our protocol, the trapdoor witness is

a random key for the unobfuscatable function family

and is of fixed polynomial length. The use of such a

“short” trapdoor is made possible since, in our protocol,

the verifier has private coins. (Indeed, in public-coin

protocols, the verifier has no secrets, and hence a

secret trapdoor cannot be determined by the protocol’s

transcript alone.) We believe that our non-black-box

simulation technique with short trapdoor will be useful

in other applications as well.

One additional advantage of using a short trapdoor

is that it allows us to transform our rsZK protocol

into a protocol that is simultaneously a proof; namely,

it is sound against unbounded non-resetting provers.

(Indeed, [4] show that it is impossible to get secu-

rity against an unbounded resetting provers.) We note,

however, that such a protocol, which is simultaneously

a rsZK argument and a stand-alone proof, can also

be constructed by sequentially composing any rsZK

argument with a stand-alone proof. The details of the

transformation of our rsZK protocol into a proof are

omitted.

III. THE FULL PROTOCOL

We now provide a high-level description of the full

protocol described through the overview of Section II.

Protocol 1 gives rise to the following theorem:

Theorem III.1. Assuming constant-round semi-honest
oblivious transfer, there exists a constant-round
resettably-sound ZK argument system. The system is
also a resettable argument of knowledge. The system
does not invoke universal arguments.

IV. AN OVERVIEW OF THE SIMULATOR

In this section, we provide a high-level overview of

our non-black-box simulator.

The simulator S proceeds in three main steps:

1) S simulates all the interaction up until the Proof of

Statement Phase in a black-box way by following

the honest prover strategy. Indeed, the prover only

makes use of the witness in the proof phase. If at

any point the verifier aborts (or causes the honest

prover to abort), the simulator S also aborts and

outputs the transcript up to this point. Otherwise,

it proceeds to the next step.

2) S runs an extraction procedure Ext to extract

the key (for the unobfuscatable function) that the

verifier committed to in the Verifier’s Trapdoor

Commitment Phase. The extraction procedure will

make use of the code of the cheating verifier and

is described below.

3) After extracting the verifier’s trapdoor, simulate the

interaction in the Proof of Statement Phase in a

black-box way using the verifier’s trapdoor as a

witness.

The non-black-box trapdoor extraction procedure
Ext: Ext uses the code of the residual verifier whose

state is set to right after the committment to a key k
for an unobfuscatable function. Recall that the Function

Evaluation Phase consists of d executions of the SFE

protocol, with respect to the same function fk. The

extraction procedure proceeds as follows:

1) First, the extractor approximates the probability pi
that the verifier does not abort (or deviates from

the protocol in a way that causes an abort) in each

particular iteration i among the d iterations. This is

still done in a black-box way using rewinding, by

repeatedly running the verifier up to the i-th SFE

execution, using the same input x = 0n and fresh

randomness.

2) Let i be such that the approximated value of pi
is maximal. The extractor Ext now uses the code

of the verifier to construct a new circuit F that

computes fk with high-probability. On input x the

circuit F interacts with the code of the verifier,

executing the i-th SFE protocol on input x. If the

execution of the i-th SFE protocol does not abort,

F will get an output from the SFE protocol and

output the same. In case of abort, F will output

⊥. Intuitively, it follows from the correctness and

security of the SFE protocol that, for every x,

F(x) = fk(x) with probability negligibly close to

pi, and⊥ with probability negligibly close to 1−pi.
3) Next, the extractor creates an amplified circuit Fm

that executes m copies of F with independent

randomness on the same input, and outputs the

same as the first copy that does not output ⊥.

If all copies output ⊥, Fm outputs ⊥ as well.

Here, m is set according to the approximation

of pi, so that Fm outputs ⊥ (on any input) only

with negligible probability, and with overwhelming

229

Protocol 1

Input and randomness:
• The prover P and verifier V have joint input x. P has additional input w ∈ RL(x).
• The verifier’s randomness is fixed to a seed for a function F drawn from a pseudo random function family. In each

round, the verifier will apply the function F to the transcript of all sessions so far, in order to derive randomness
for the current round.

P and V execute the following protocol:

Prover’s Trapdoor Commitment Phase:
• P commits to a random secret key sk for a symmetric key encryption, as its trapdoor.
• P proves with a WIAOK that x ∈ L or that it knows sk.

Verifier’s Trapdoor Commitment Phase:
• V commits to a random key k for an unobfuscatable function fk, as its trapdoor.

Function Evaluation Phase:
• P and V run a coin-flipping protocol to obtain randomness (rP, rV) to be used in the SFE protocol.
• P sends an encryption under sk of both its randomness rP and an input y := 0n for the SFE protocol. Then it proves

with a WIAOK that the encryption is consistent with its commitment to sk, or that x ∈ L.
• P and V run the semi-honest SFE protocol, at the end of which P should learn fk(y). P uses the input y and

randomness rP. V uses the input fk and the randomness rV.
• After every message P sends in the SFE protocol, P proves with a WIAOK that the message was computed honestly

with respect to (y, rP), or that x ∈ L.
• After every message that V sends in the SFE protocol, V proves with an x-dependent rWIAOKx that the message

was computed honestly with respect to (k, rV), or that it knows the prover’s trapdoor sk.
• P and V repeat the function evaluation phase d = O(1) times, where d is the determined by the running time of

the extractor for the unobfuscatable function family.

Proof Phase:
• P proves using a WIAOK that it knows the verifier’s trapdoor k, or that x ∈ L.

Figure 1. A constant-round rsZK protocol for L

probability computes the function fk
1.

4) Finally, Ext invokes the extractor of the unob-

fuscatable function family on the circuit Fm and

obtains the verifier’s trapdoor k.

As outlined in Section II-C proving the validity of the

above simulation process encounters several challenges,

such as proving the correctness of the circuit Fm, based

on the properties of the SFE protocol and analyzing the

running time of the simulator (which is done similarly

to [14]). The details are given in the full version of this

paper.

V. FROM RSZK BACK TO UNOBFUSCATABLE

FUNCTIONS

Our main construction provides a general transfor-

mation from a family of (strongly) unobfuscatable func-

tions to an rsZK argument of knowledge. We show that,

in fact, a converse relation also holds by exhibiting

1In the actual proof, we will only be able to construct a circuit that
approximates the function fk , which will still be sufficient for the
extraction to succeed

a simple transformation from any rsZK argument of

knowledge to a family of unobfuscatable functions.

We give an informal overview of this transformation.

Given a d-round rsZK argument of knowledge 〈P,V〉
with d rounds, and given a one-way function g, we

construct a family of functions {fk}k∈{0,1}n that im-

plements the honest verifier strategy on some “hard to

prove statement”. More precisely, we interpret the key

of the function as a triplet k = (x, r, b), where x is an

input to g, r is randomness for V and b is a bit. The

function fk is defined as follows:

1) Given a special input GET-IMAGE, fk outputs y =
g(x).

2) Given a partial protocol transcript consisting of

prover messages T = (p1, . . . , pi) for i < d, fk
runs the honest verifier V with the random tape

r and the statement “y is in the image set of g”

and feeds it with the messages (p1, . . . , pi) as the

first i prover messages. fk obtains the next verifier

message vi generated by V and outputs vi.
3) Given a full transcript T = (p1, . . . , pd), fk runs

Vr as above. If Vr accepts, fk outputs b; otherwise,

230

it outputs ⊥.

We argue (informally) that {fk}k∈{0,1}n is a family

of unobfuscatable functions; indeed:

1) b is unlearnable: no poly-size algorithm L that is

given black-box access to fk where k is sampled

uniformly, can guess b with more than negligible

advantage (over a random guess). Indeed, the bit

b remains information theoretically hidden, unless

L produces a convincing proof for the fact that

y = g(x) for some x. Since L only interacts with

fk as a black-box, we can easily transform L into

a resetting adversary for the rsZK argument of

knowledge, which convinces the resettable verifier

V. Therefore, by invoking knowledge extractor, we

can also extract x and invert g, in contradiction to

its one-wayness. (Note that the function fk can,

indeed, be constructed from g(x) alone, without

any extra information regarding x.)

2) b is learnable from any code: there exists a

PPT algorithm Ext that, given any circuit C that

computes the function fk, can learn the value of b.
Ext uses the code of C to construct an interactive

verifier V′ for the rsZK protocol. Ext then runs

the ZK simulator with the code of V′ and obtains

a transcript T. It follows from the correctness

of the simulation that T is, indeed, an accepting

transcript. Ext runs C on the sequence of prover

messages in T and gets as outputs the bit b.

Acknowledgements

We thank Ran Canetti for valuable discussions and

comments.

REFERENCES

[1] B. Barak, “How to go beyond the black-box simulation
barrier,” in FOCS, 2001, pp. 106–115.

[2] ——, “Constant-round coin-tossing with a man in the
middle or realizing the shared random string model,” in
FOCS, 2002, pp. 345–355.

[3] B. Barak and O. Goldreich, “Universal arguments and
their applications,” SIAM J. Comput., vol. 38, no. 5, pp.
1661–1694, 2008.

[4] B. Barak, O. Goldreich, S. Goldwasser, and Y. Lindell,
“Resettably-sound zero-knowledge and its applications,”
in FOCS, 2001, pp. 116–125.

[5] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. P. Vadhan, and K. Yang, “On the
(im)possibility of obfuscating programs,” in CRYPTO,
2001, pp. 1–18.

[6] B. Barak and Y. Lindell, “Strict polynomial-time in
simulation and extraction,” in STOC, 2002, pp. 484–493.

[7] B. Barak and A. Sahai, “How to play almost any
mental game over the net - concurrent composition via
super-polynomial simulation,” Electronic Colloquium on
Computational Complexity (ECCC), no. 096, 2005.

[8] R. Canetti, O. Goldreich, S. Goldwasser, and S. Mi-
cali, “Resettable zero-knowledge (extended abstract),” in
STOC, 2000, pp. 235–244.

[9] I. Damgård, “On the existence of bit commitment
schemes and zero-knowledge proofs,” in CRYPTO, 1989,
pp. 17–27.

[10] Y. Deng, D. Feng, V. Goyal, D. Lin, A. Sahai, and
M. Yung, “Resettable cryptography in constant rounds
- the case of zero knowledge,” in ASIACRYPT, 2011,
pp. 390–406.

[11] Y. Deng, V. Goyal, and A. Sahai, “Resolving the simul-
taneous resettability conjecture and a new non-black-box
simulation strategy,” in FOCS, 2009, pp. 251–260.

[12] U. Feige, D. Lapidot, and A. Shamir, “Multiple nonin-
teractive zero knowledge proofs under general assump-
tions,” SIAM J. Comput., vol. 29, no. 1, pp. 1–28, 1999.

[13] U. Feige and A. Shamir, “Zero knowledge proofs of
knowledge in two rounds,” in CRYPTO, 1989, pp. 526–
544.

[14] O. Goldreich and A. Kahan, “How to construct constant-
round zero-knowledge proof systems for np,” J. Cryptol-
ogy, vol. 9, no. 3, pp. 167–190, 1996.

[15] O. Goldreich and H. Krawczyk, “On the composition
of zero-knowledge proof systems,” SIAM J. Comput.,
vol. 25, no. 1, pp. 169–192, 1996.

[16] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that
yield nothing but their validity for all languages in np
have zero-knowledge proof systems,” J. ACM, vol. 38,
no. 3, pp. 691–729, 1991.

[17] S. Goldwasser, S. Micali, and C. Rackoff, “The knowl-
edge complexity of interactive proof systems,” SIAM J.
Comput., vol. 18, no. 1, pp. 186–208, 1989.

[18] V. Goyal and H. K. Maji, “Stateless cryptographic pro-
tocols,” in FOCS, 2011, pp. 678–687.

[19] V. Goyal and A. Sahai, “Resettably secure computation,”
in EUROCRYPT, 2009, pp. 54–71.

[20] Y. Lindell and B. Pinkas, “A proof of security of
yao’s protocol for two-party computation,” J. Cryptol-
ogy, vol. 22, no. 2, pp. 161–188, 2009.

[21] S. Micali and L. Reyzin, “Min-round resettable zero-
knowledge in the public-key model,” in EUROCRYPT,
2001, pp. 373–393.

[22] R. Pass, “Simulation in quasi-polynomial time, and its
application to protocol composition,” in EUROCRYPT,
2003, pp. 160–176.

231

[23] R. Pass and A. Rosen, “Bounded-concurrent secure two-
party computation in a constant number of rounds,” in
FOCS, 2003, pp. 404–413.

[24] ——, “Concurrent nonmalleable commitments,” SIAM J.
Comput., vol. 37, no. 6, pp. 1891–1925, 2008.

[25] ——, “New and improved constructions of nonmalleable
cryptographic protocols,” SIAM J. Comput., vol. 38,
no. 2, pp. 702–752, 2008.

[26] R. Pass, A. Rosen, and W.-L. D. Tseng, “Public-coin
parallal zero-knowledge for np,” 2011.

[27] M. Prabhakaran, A. Rosen, and A. Sahai, “Concurrent
zero knowledge with logarithmic round-complexity,” in
FOCS, 2002, pp. 366–375.

APPENDIX

A. Resettable Soundness

We briefly recall the definitions of resettable-

soundness presented in [4]. In the setting of resettable-

soundness, the prover P∗ has the power to reset the

verifier V. Specifically, the random tape of V is chosen

at random and fixed once and for all and, from that

point on, the prover can interact multiple times with

the residual deterministic verifier Vr(x) induced by r
and the common input x. Each such interaction is called

a session.

Note that the adversary may repeat in a current

session the same messages sent in a prior session,

resulting in an identical prefix of an interaction (since

the verifier’s randomness is fixed). Furthermore, by

deviating in the next message, the adversary may obtain

two different continuations of the same prefix of an

interaction. (A generalization of the above model, also

considered in [4], is to allow the prover to interact with

multiple “incarnations” of the verifier. In this extended

abstract, we restrict attention to the simpler model of

a single incarnation, although our results extend to the

multiple incarnations model.)

Definition A.1 (Resettably sound argument [4]). A
resetting attack of a malicious prover P∗ on a resettable
verifier V is defined by the following random process,
indexed by a security parameter n:

1) Uniformly select a random-tape r for V, resulting
in a deterministic strategy Vr.

2) For a given x ∈ {0, 1}n, a prover P∗ of size
poly(n) can initiate up to poly(n) complete in-
teractions with Vr(x).

An argument system 〈P,V〉 is a resettably sound ar-
gument for L if, for any resetting poly-size P∗, the
probability that in some session during a resetting

attack, P∗ convinces Vr(x) to accept, while x /∈ L, is
negligible in n.

B. Unobfuscatable Functions

At high-level, an unobfuscatable function ensemble

{fk} is parameterized by a secret k, and has the

guarantee that: (a) no efficient algorithm can learn k,

given black-box to a random fk drawn from the family,

and (b) given any circuit (or code) which computes fk,

k can be efficiently extracted.

A strengthening of this notion is to consider a setting

where extraction of k can also be done (with high-

probability) given a random circuit from a distribution

that only “approximates” fk, rather than computes the

exact same function. This notion was termed by Barak

et al. [5] – “strongly unobfuscatable functions”. Our

formal definition follows that of Barak et al. [5].

Definition A.2 (Unobfuscatable functions). Let F ={
fk : {0, 1}�(n) → {0, 1}∗}

k∈{0,1}n,n∈N be an ensem-
ble of circuits of size poly(n). F is unobfuscatable if:

1) It is black-box unlearnable: for any poly-size
learning algorithm L = {Ln}n∈N, and for all large
enough n ∈ N:

Pr
k←{0,1}n

[Lfk = k] ≤ negl(n) .

2) It is learnable given the code of a proper
approximation: there exists a PPT extraction al-
gorithm E such that for any distribution on circuits
C and any k ∈ {0, 1}n such that C approximates
fk and is of bounded expected size:
• EC←C [|C|] ≤ S
• ∀x ∈ {0, 1}�(n) : PrC←C [C(x) = fk(x)] >

1− ε,
the extractor E can extract k from C:

Pr
C←C

[E(C) = k] ≥ 1− S · ε .

In this work, we can rely on any unobfuscatable function

ensemble, such as the one constructed by Barak et al.

from minimal cryptographic assumptions:

Theorem A.1 (Existence of (strongly) unobfuscatable

functions [5]). If there exist one-way functions, then
there exist (strongly) unobfuscatable functions.

232

